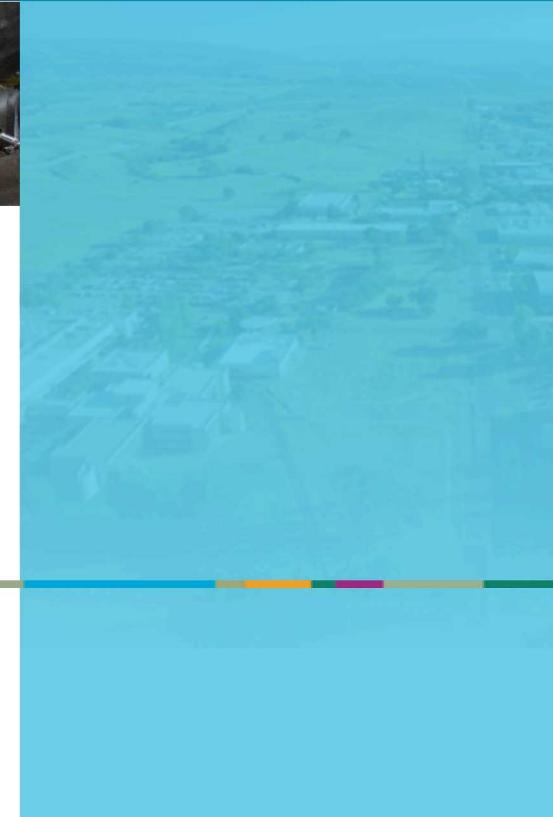


Transformers for Neural Machine Translation and Beyond

PRESENTED BY

David Kavaler

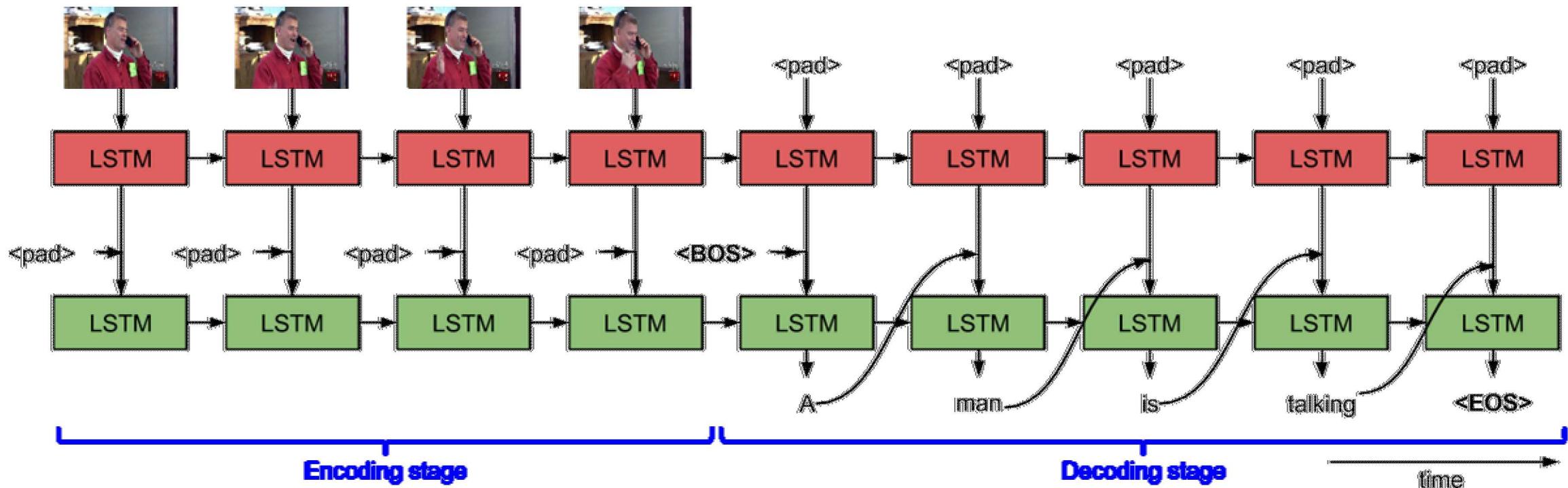
SAND2019-5079PE



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sequence to Sequence (Encoder-Decoder) Models

Sequence to Sequence (Encoder-Decoder) Models



Sequence to Sequence (Encoder-Decoder) Models

PROMPT:

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Sequence to Sequence (Encoder-Decoder) Models

PROMPT:

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

MODEL COMPLETION:

The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

6 Sequence to Sequence (Encoder-Decoder) Models

PROMPT:

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

MODEL COMPLETION:

The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

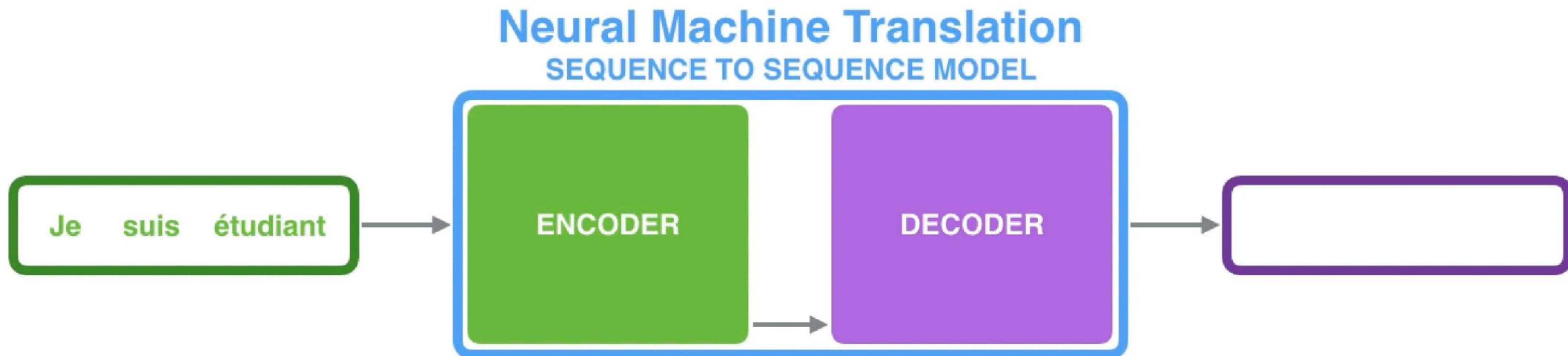
Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

...

Sequence to Sequence (Encoder-Decoder) Models

Deep learning models that take a sequence of items and outputs another sequence of items

- Generic input-output (sequence-sequence) format
- Successful across disciplines (machine translation, image captioning, etc)

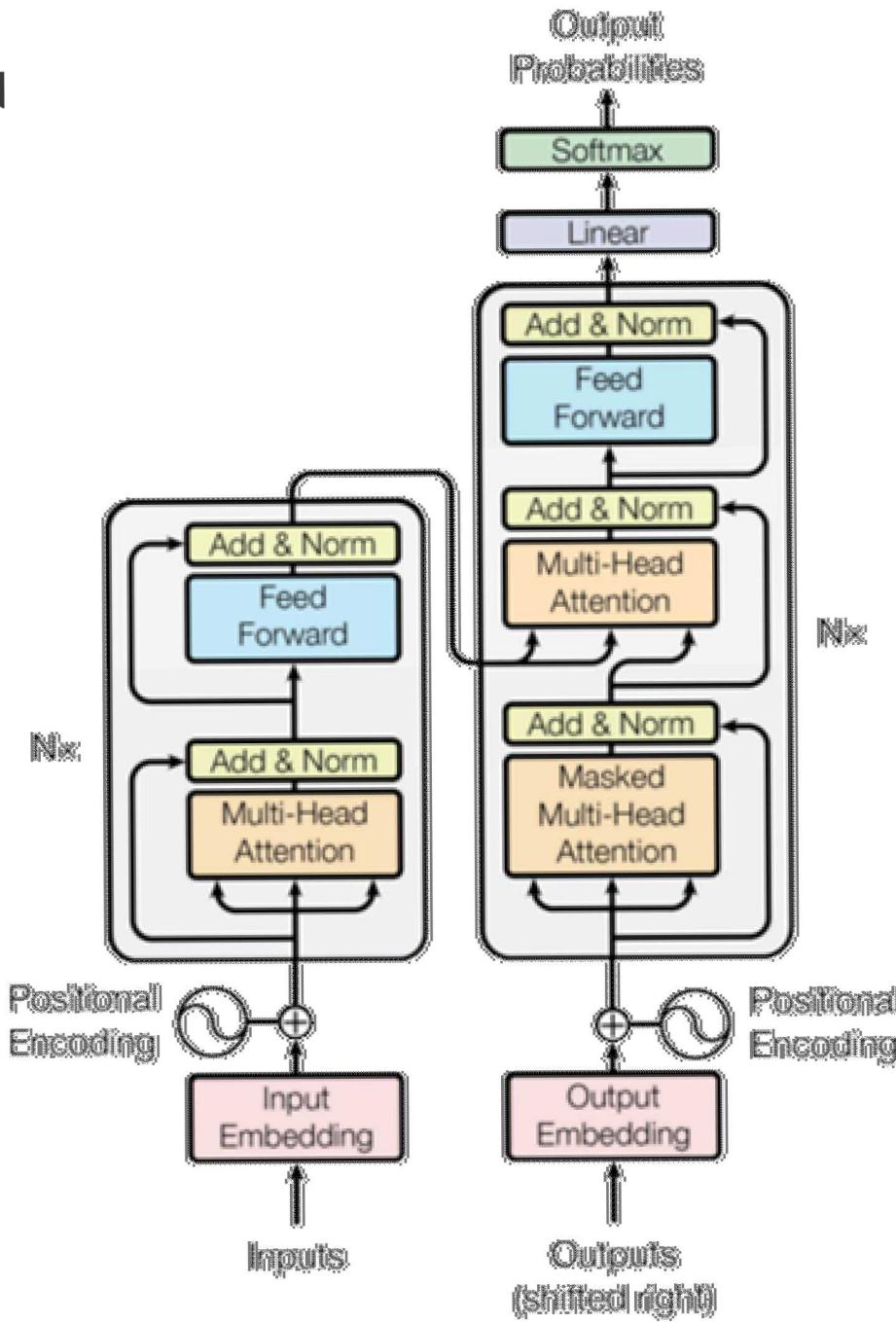


Sequence to Sequence (Encoder-Decoder) Models

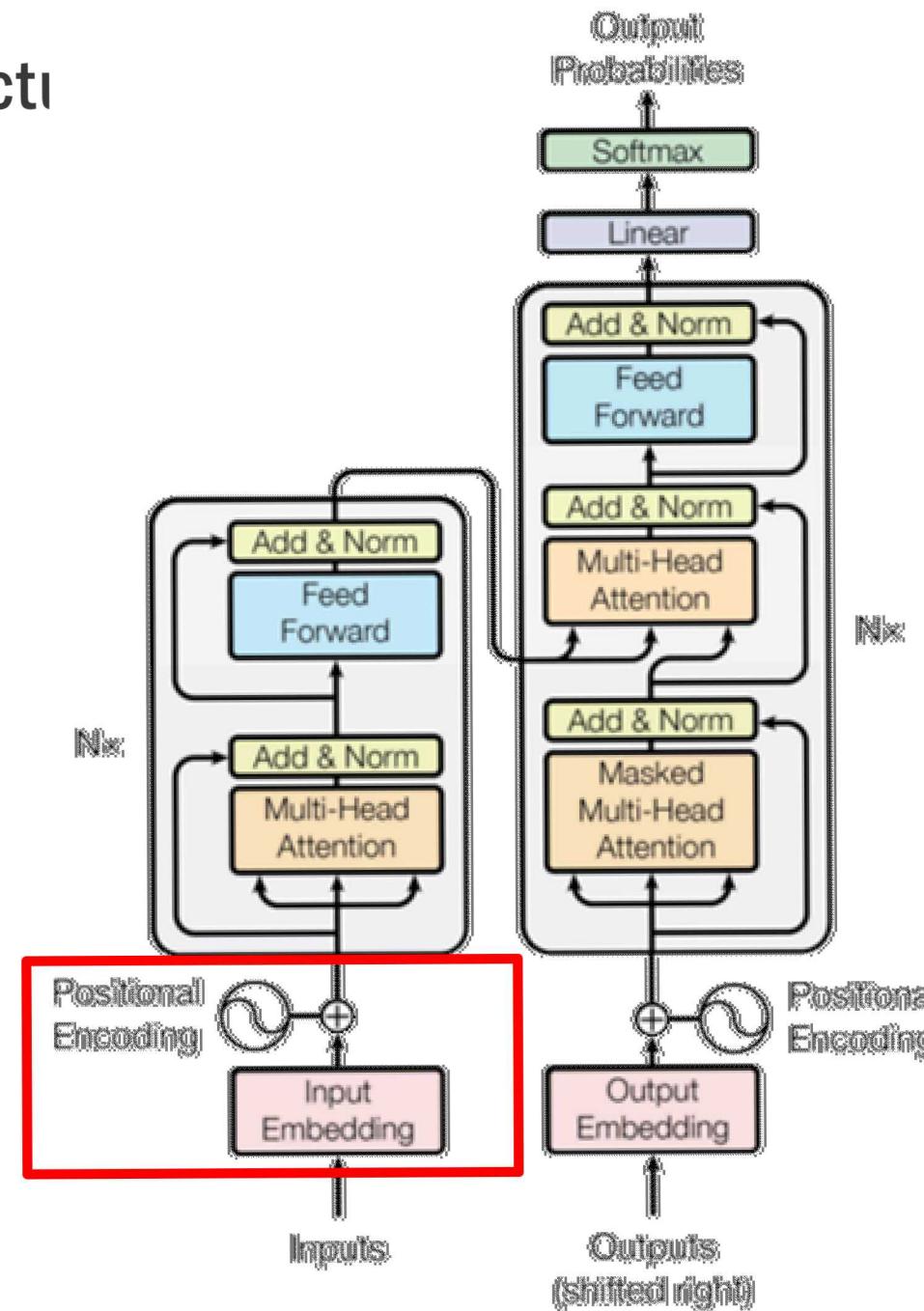
Deep learning models that take a sequence of items and outputs another sequence of items

- Generic input-output (sequence-sequence) format
- Successful across disciplines (machine translation, image captioning, etc)

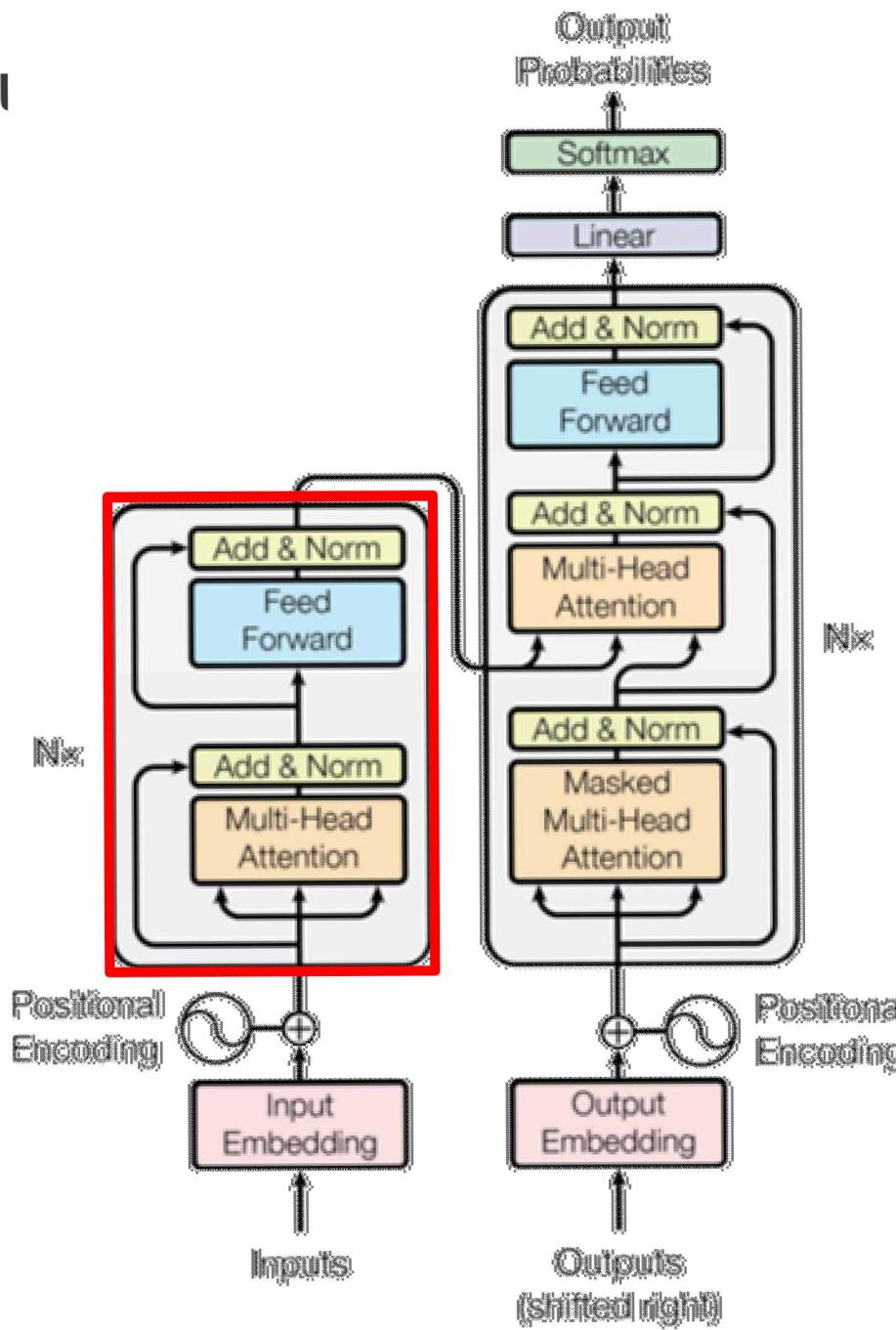
9 | Transformer Architecture



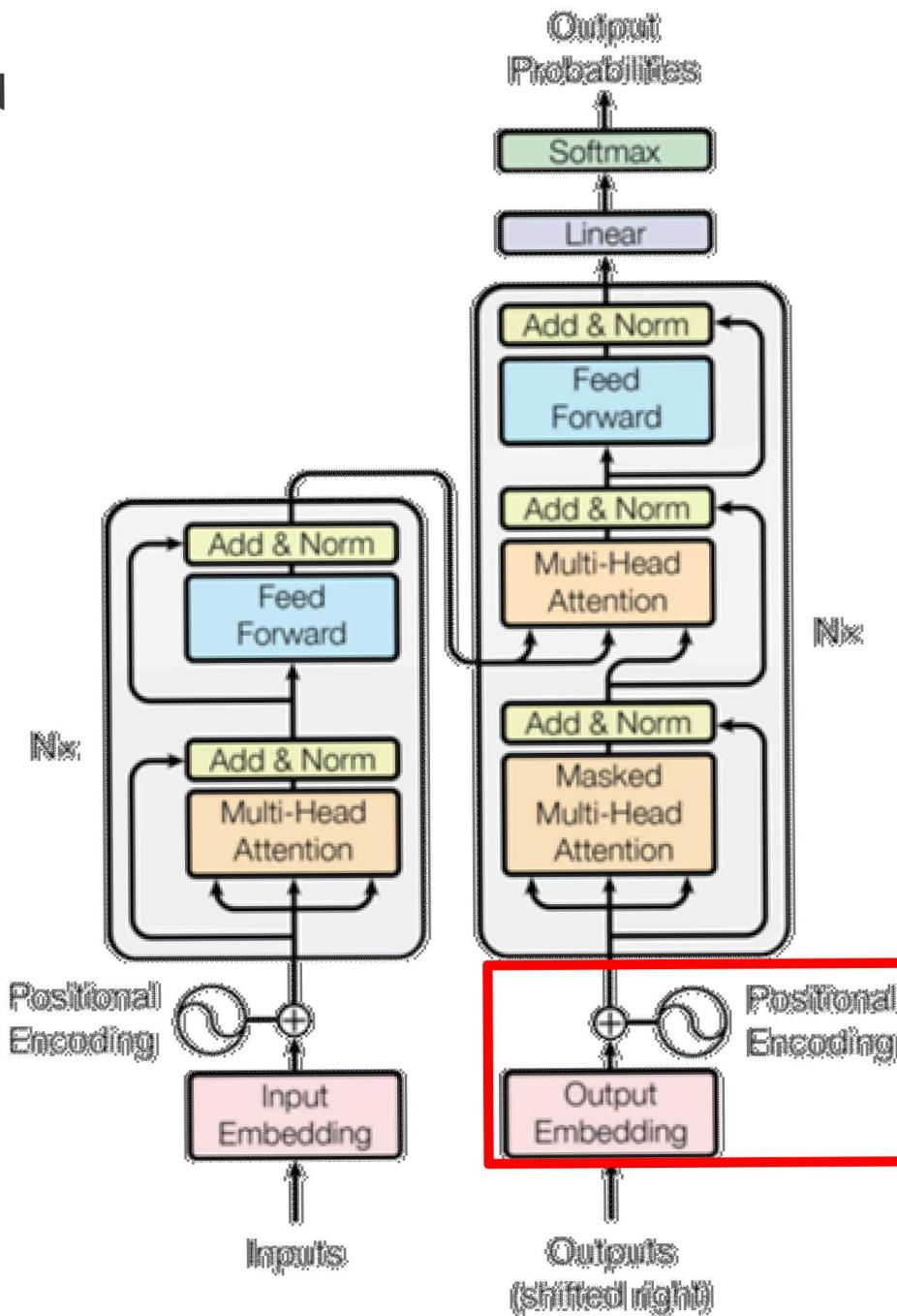
Transformer Architecture



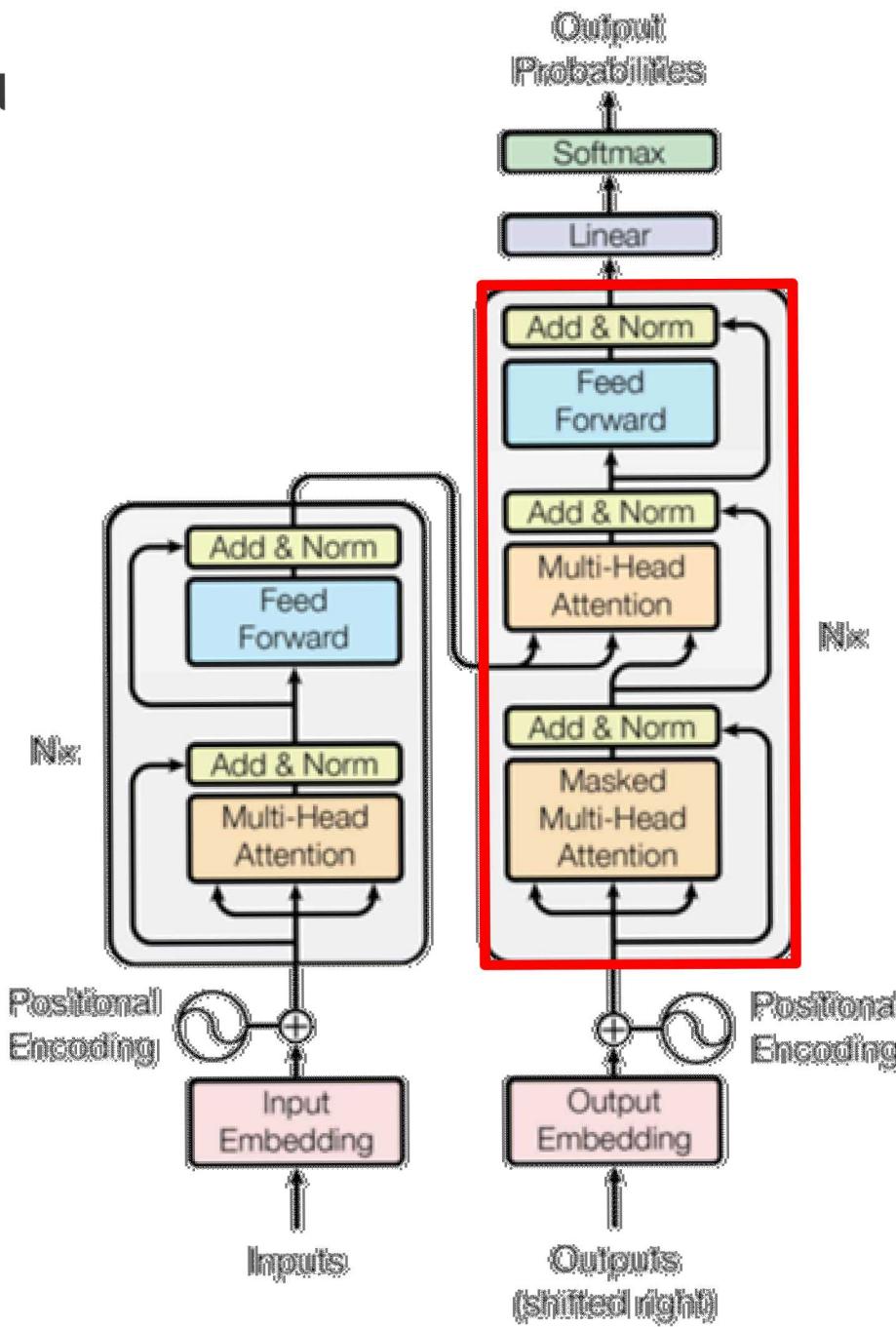
Transformer Architecture



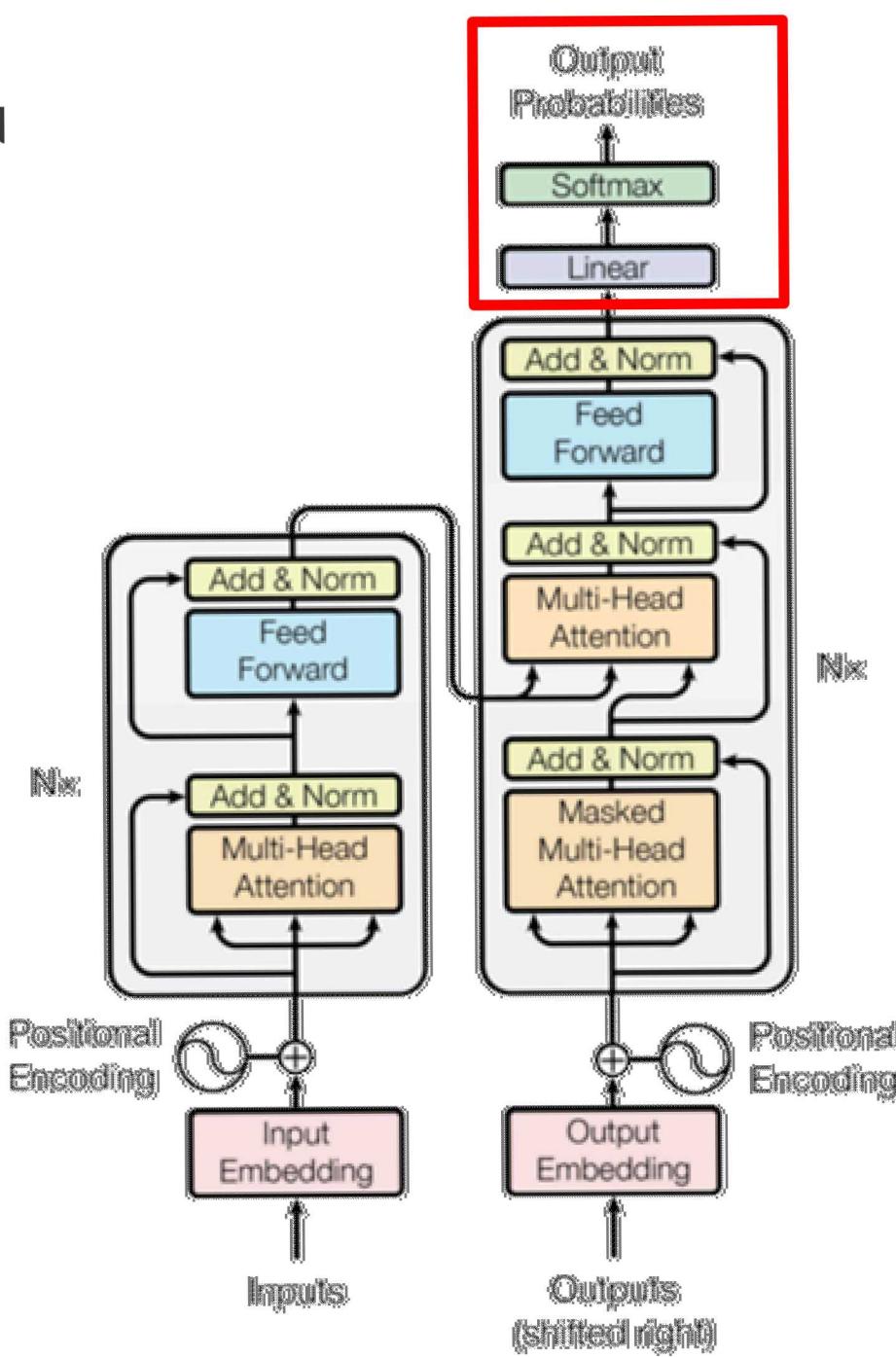
Transformer Architecture



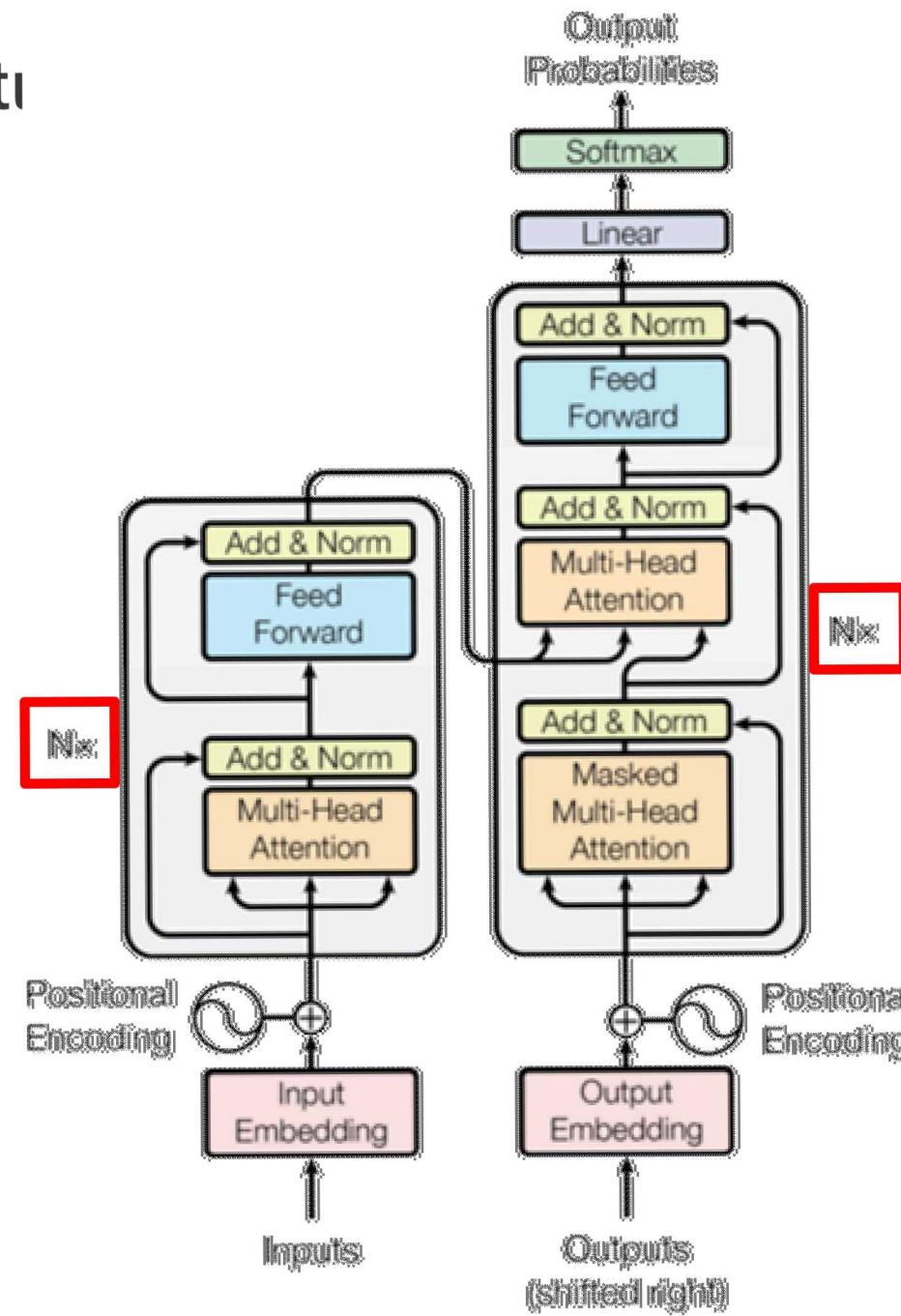
Transformer Architecture



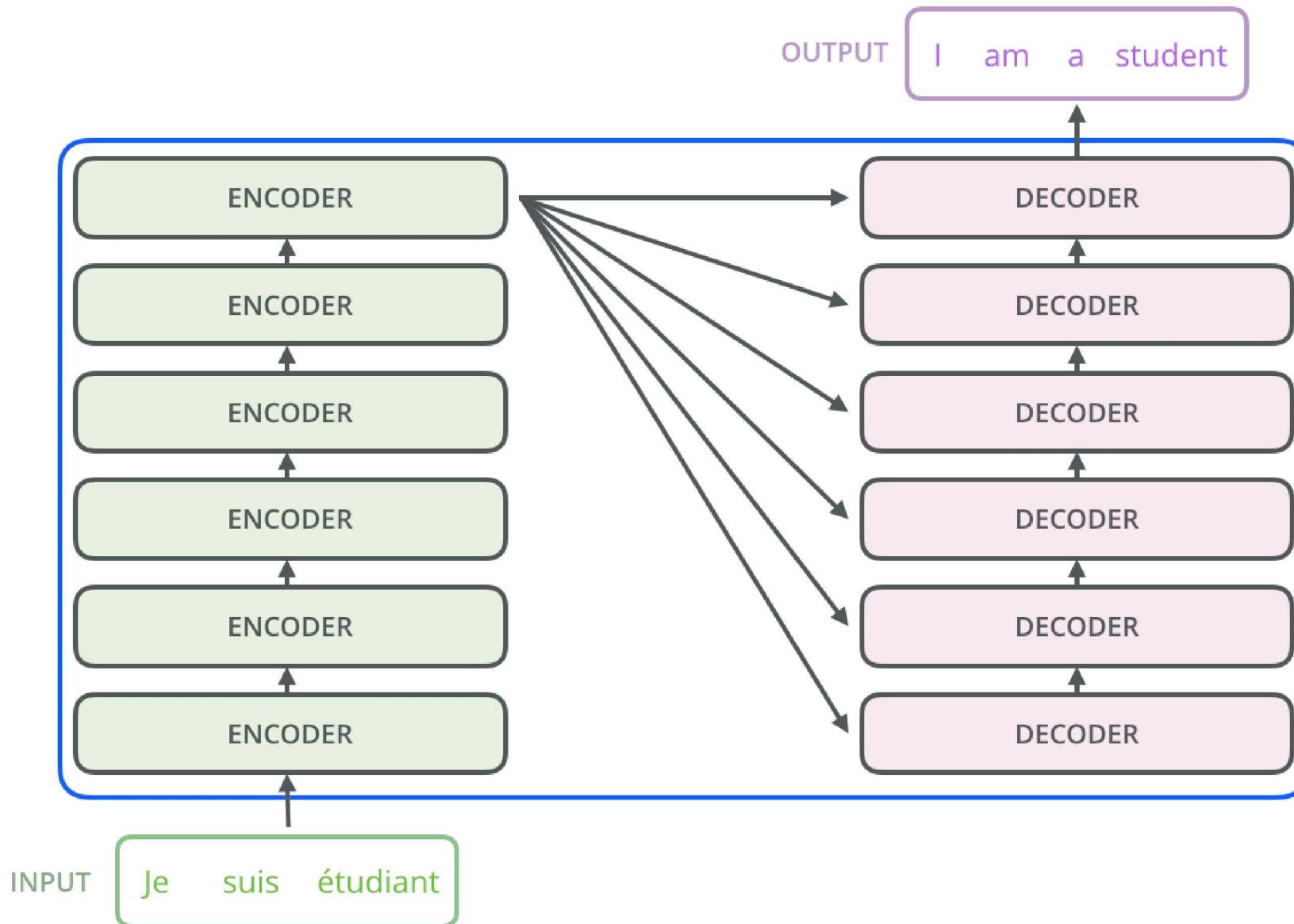
Transformer Architecture



Transformer Architecture



Transformer Architecture Overview



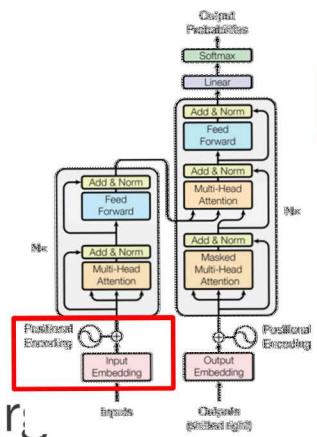
Transformer Complexity

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	$O(1)$	$O(1)$
Recurrent	$O(n \cdot d^2)$	$O(n)$	$O(n)$
Convolutional	$O(k \cdot n \cdot d^2)$	$O(1)$	$O(\log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	$O(1)$	$O(n/r)$

Embedding and Positional Encoding

Standard embedding lookup (weight matrix vocabulary index)

- Embedding weights shared between encoder input, decoder teacher forcing, and target sequence



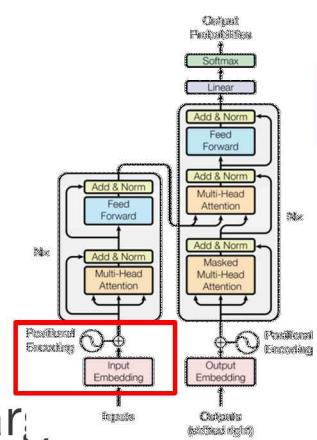
Embedding and Positional Encoding

Standard embedding lookup (weight matrix vocabulary index)

- Embedding weights shared between encoder input, decoder teacher forcing, and target sequence

Positional encoding

- RNNs have position encoded in architecture – forward feeding hidden state
- Want to encode information about word position in input sequence
- Want to handle variable length inputs, but be consistent across all sequences
- Want to be able to predict on sequences with length longer than anything seen in training



Embedding and Positional Encoding

Standard embedding lookup (weight matrix vocabulary index)

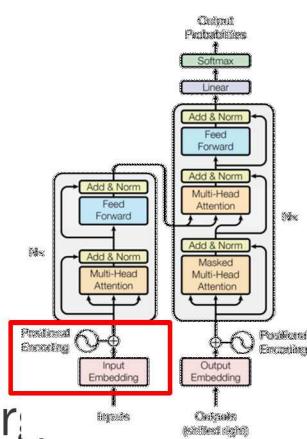
- Embedding weights shared between encoder input, decoder teacher forcing, and target sequence

Positional encoding

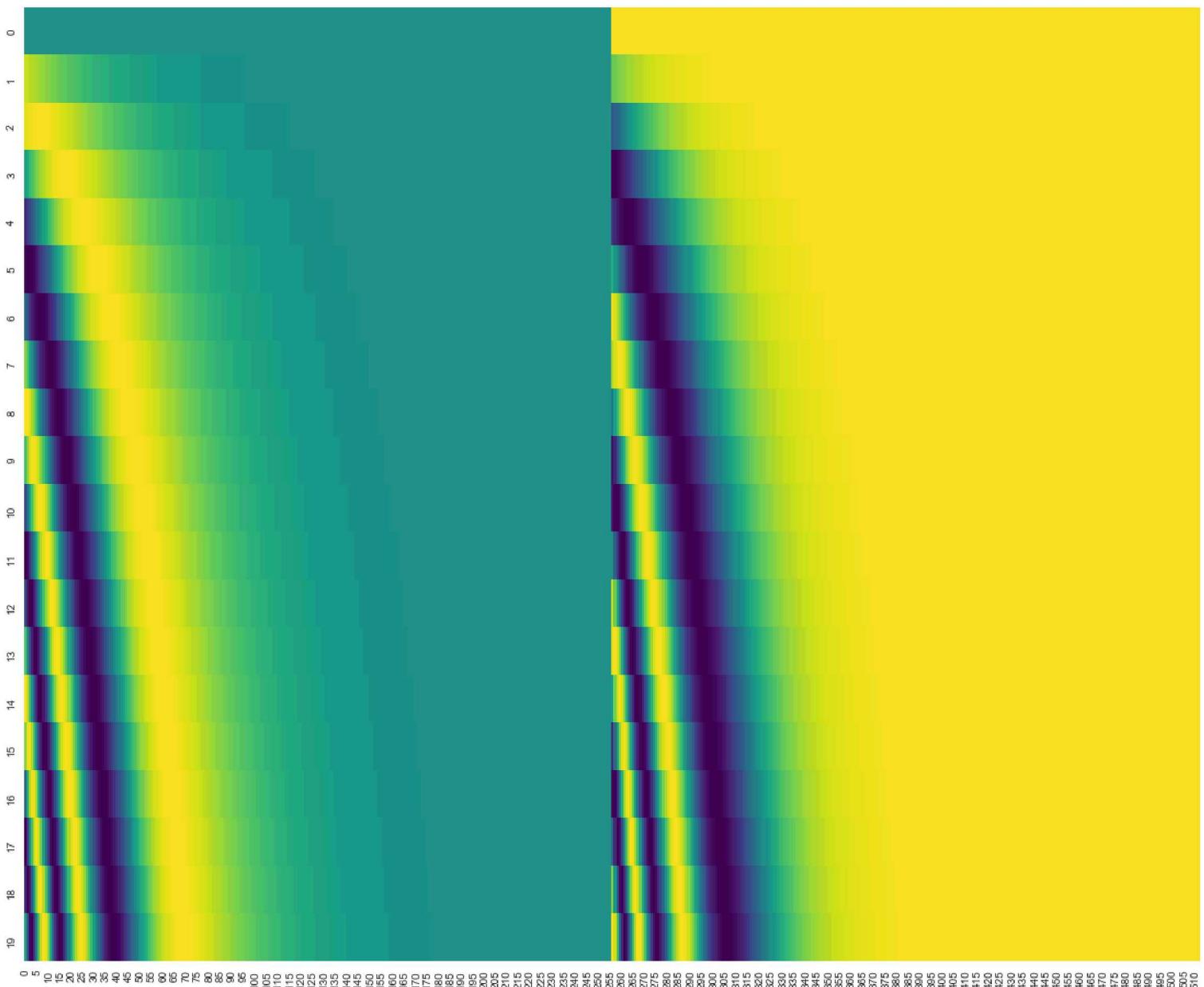
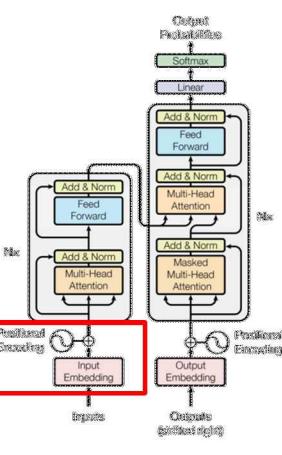
- RNNs have position encoded in architecture – forward feeding hidden state
- Want to encode information about word position in input sequence
- Want to handle variable length inputs, but be consistent across all sequences
- Want to be able to predict on sequences with length longer than anything seen in training

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$



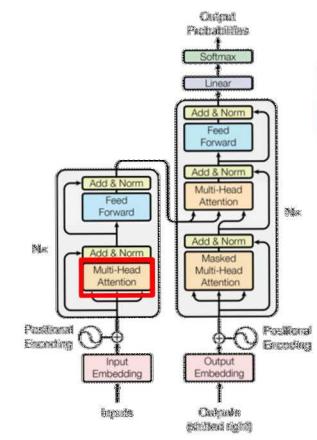
Embedding and Positional Encoding



Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

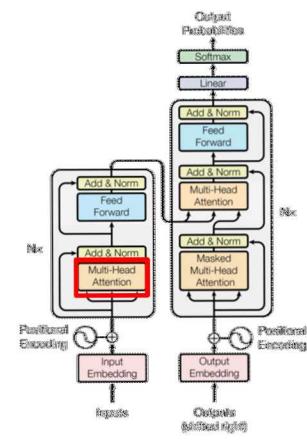
The animal didn't cross the street because it was too tired



Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

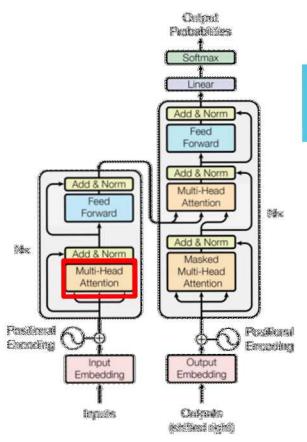
The animal didn't cross the street because it was too tired



Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

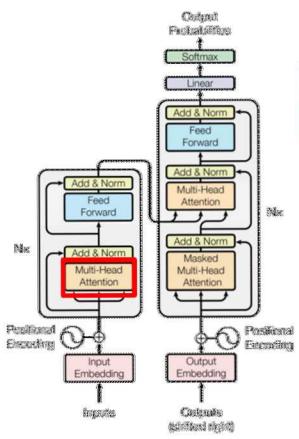
The animal didn't cross the street because it was too tired



Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

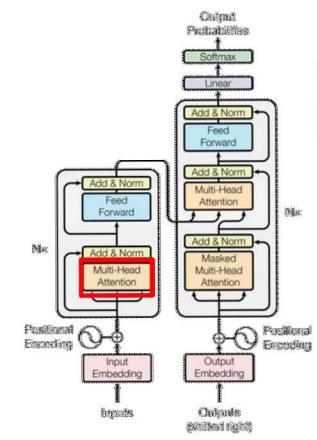
The animal didn't cross the street because it was too tired



Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

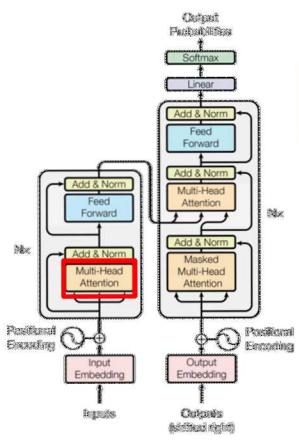
The animal didn't cross the street because it was too tired



Self-Attention

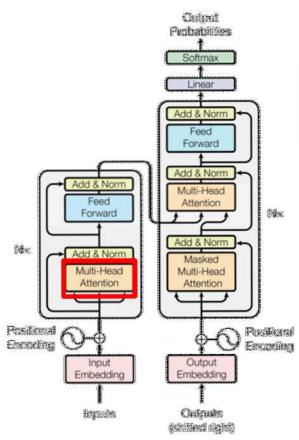
Core concept: words in a sentence are related to each other in a complex manner

The animal didn't cross the street because it was too tired



Self-Attention

Core concept: words in a sentence are related to each other in a complex manner



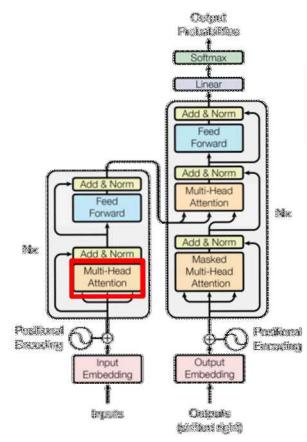
The animal didn't cross the street because it was too tired

Self-Attention

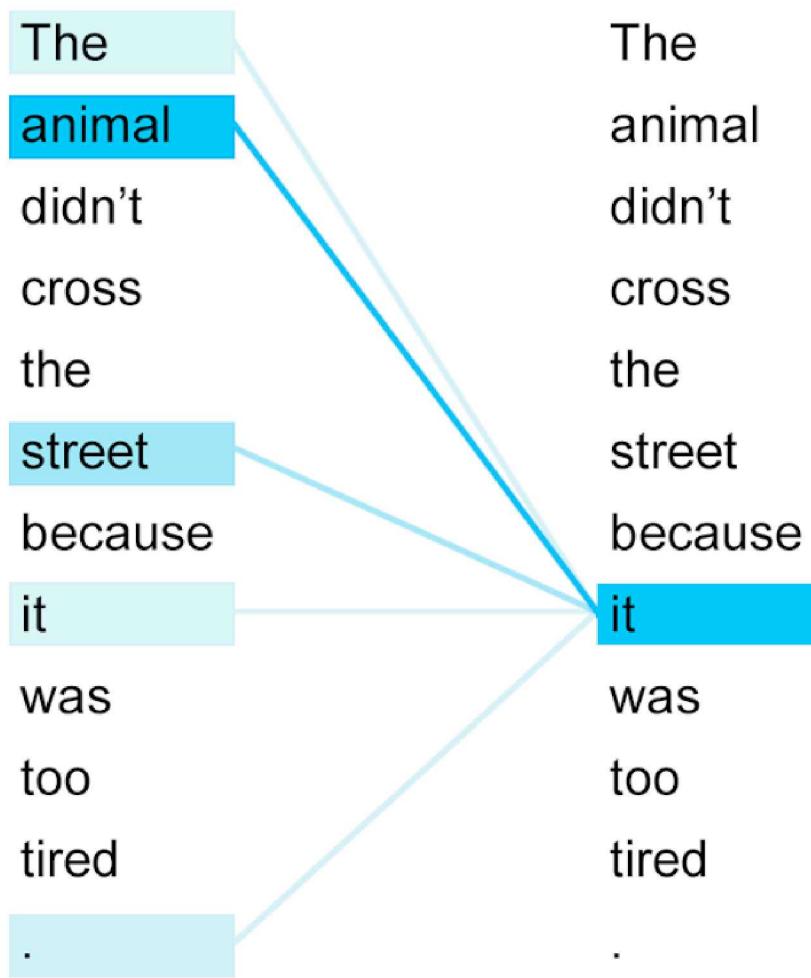
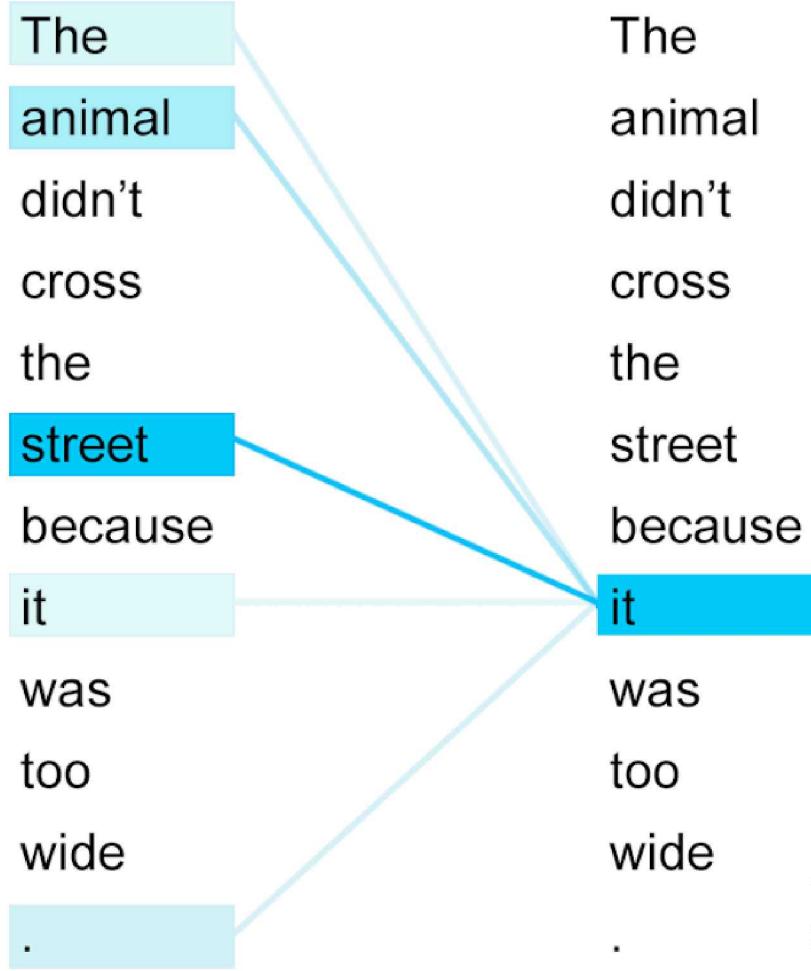
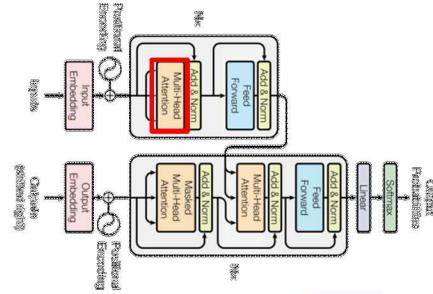
Core concept: words in a sentence are related to each other in a complex manner

The animal didn't cross the street because it was too tired

Self-attention is used to represent these complex dependencies



Self-Attention



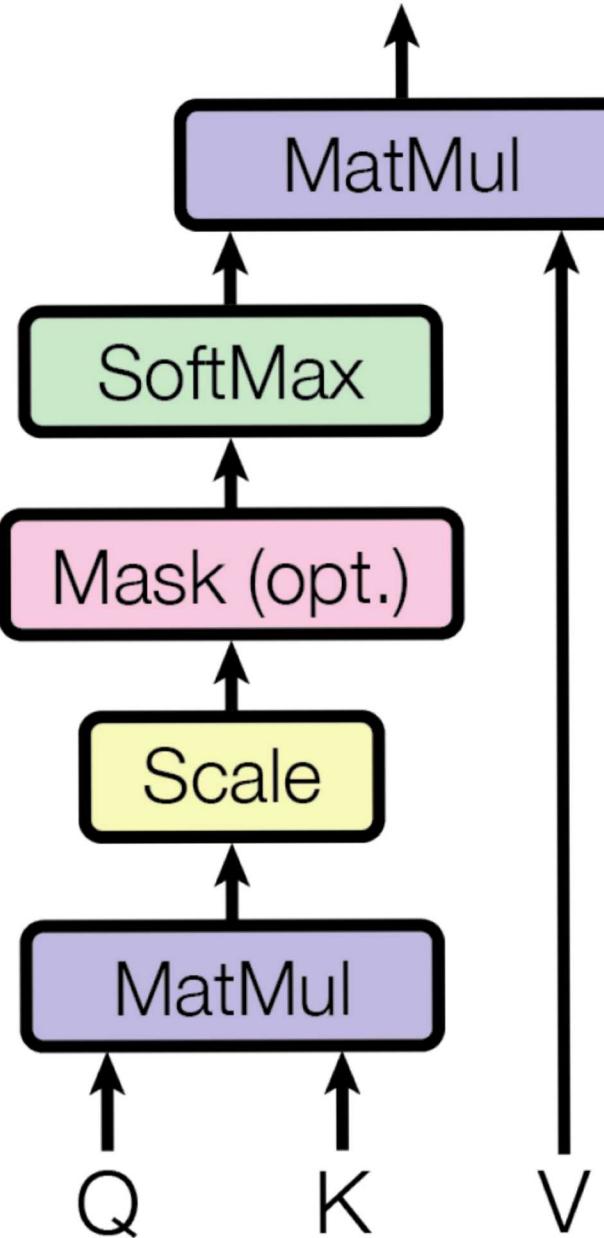
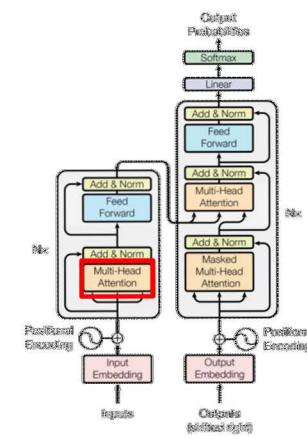
Self-Attention

Intuition:

Query: current token

Key: tokens to compare with (all tokens in input sequence)

Value: output (to be scaled by softmax of Q, K operation)

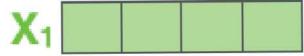


Self-Attention: Intuition

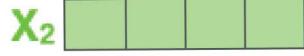
Input

Thinking

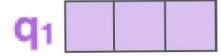
Embedding

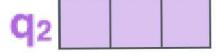
X_1 

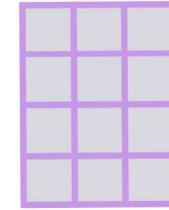
Machines

X_2 

Queries

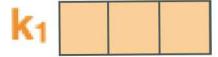
q_1 

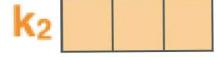
q_2 

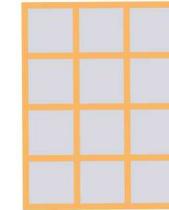


WQ

Keys

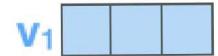
k_1 

k_2 

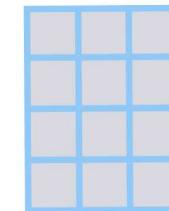


WK

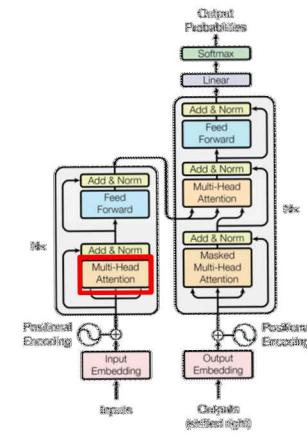
Values

v_1 

v_2 



WV



Self-Attention: Intuition

Input

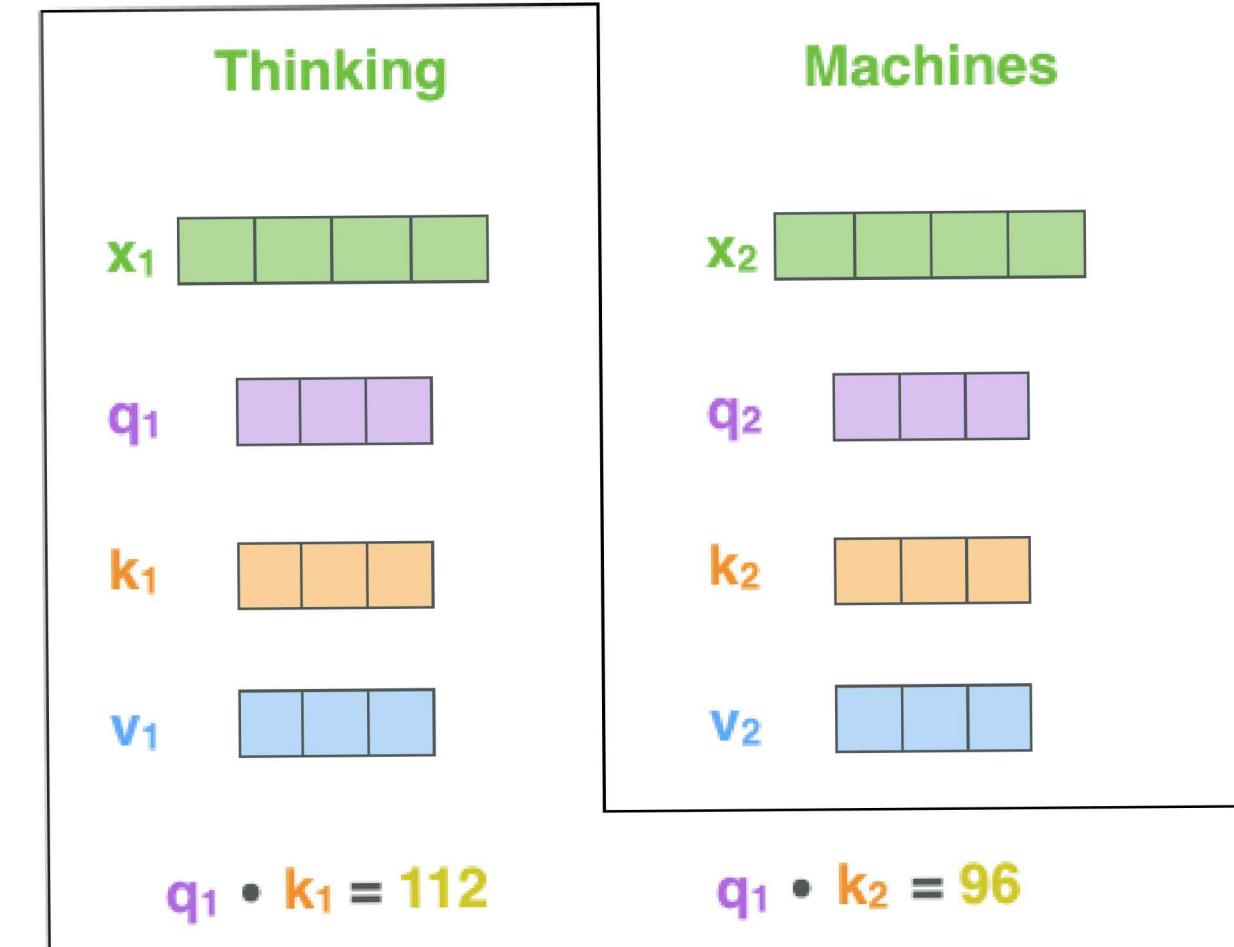
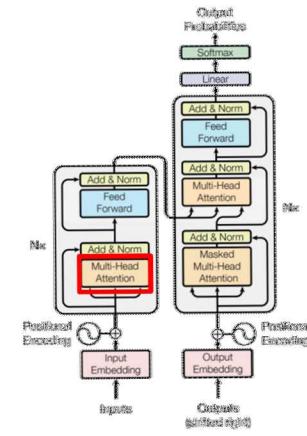
Embedding

Queries

Keys

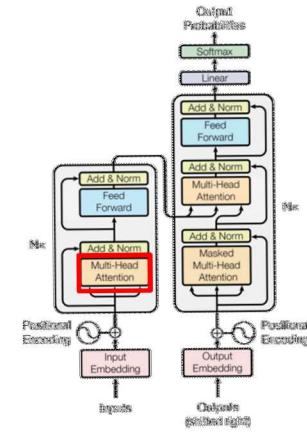
Values

Score

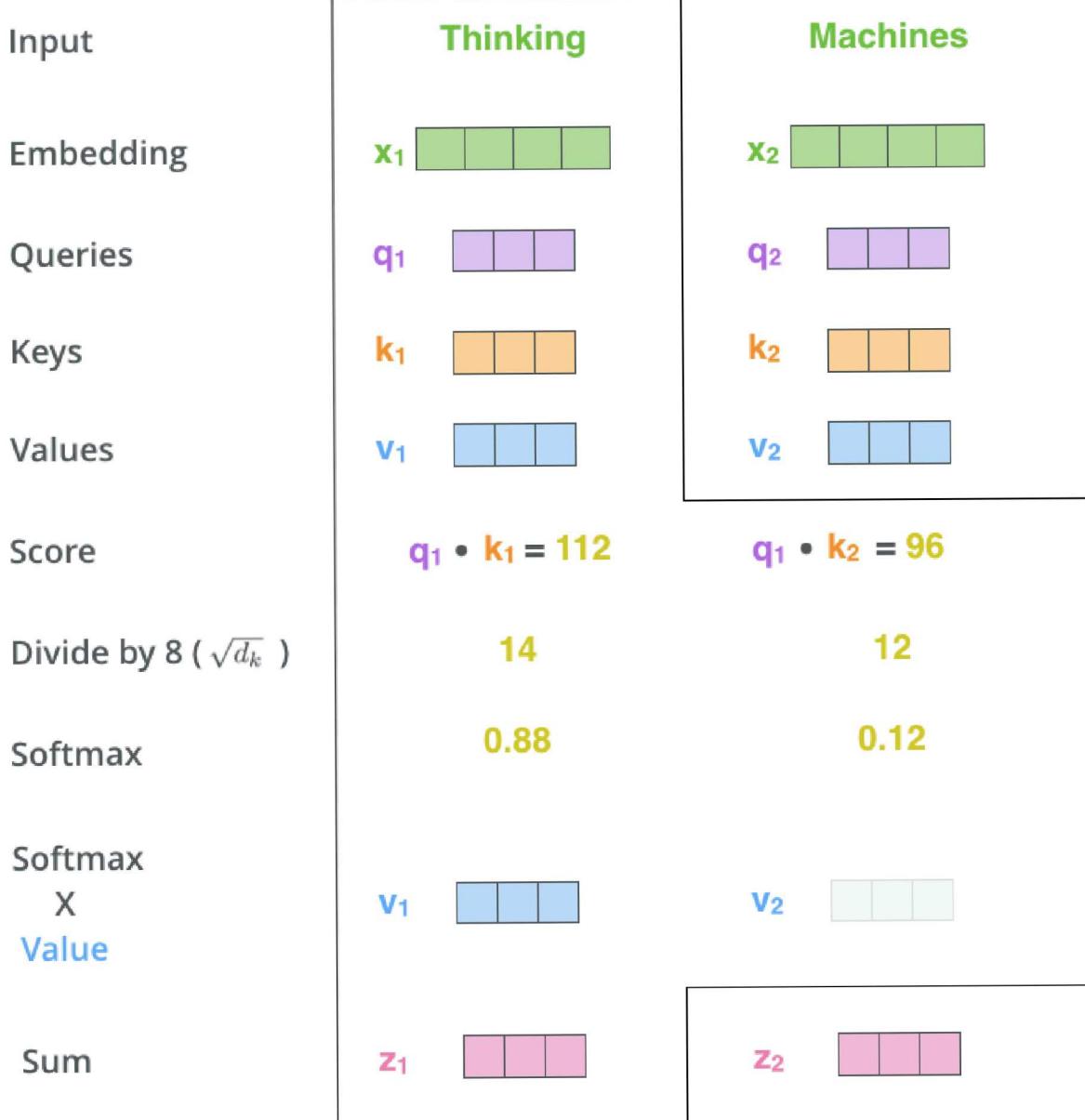
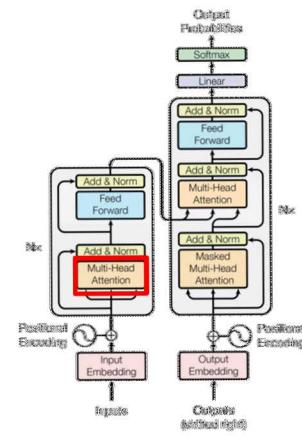


Self-Attention: Intuition

Input	Thinking		Machines	
Embedding	x_1	[4 green boxes]	x_2	[4 green boxes]
Queries	q_1	[3 purple boxes]	q_2	[3 purple boxes]
Keys	k_1	[3 orange boxes]	k_2	[3 orange boxes]
Values	v_1	[3 blue boxes]	v_2	[3 blue boxes]
Score	$q_1 \cdot k_1 = 112$		$q_1 \cdot k_2 = 96$	
Divide by 8 ($\sqrt{d_k}$)	14		12	
Softmax	0.88		0.12	



Self-Attention: Intuition

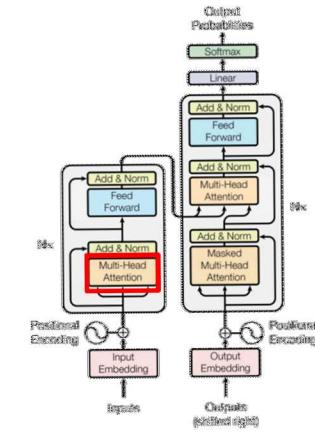


Self-Attention: Matrix Form

$$X \times W^Q = Q$$

$$X \times W^K = K$$

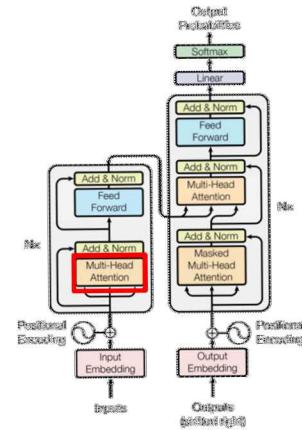
$$X \times W^V = V$$



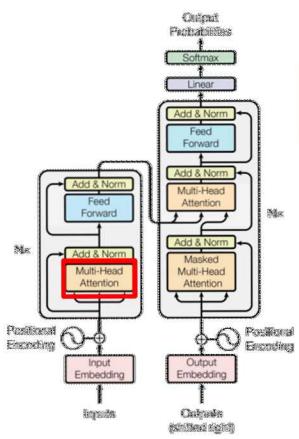
Self-Attention: Matrix Form

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

$$\text{softmax}\left(\frac{\begin{array}{c} \text{Q} \quad \text{K}^T \\ \begin{array}{c} \text{purple} \quad \text{orange} \\ \times \\ \hline \end{array} \end{array}}{\sqrt{d_k}}\right) \begin{array}{c} \text{V} \\ \text{blue} \end{array} = \begin{array}{c} \text{Z} \\ \text{pink} \end{array}$$



Multi-Headed Attention

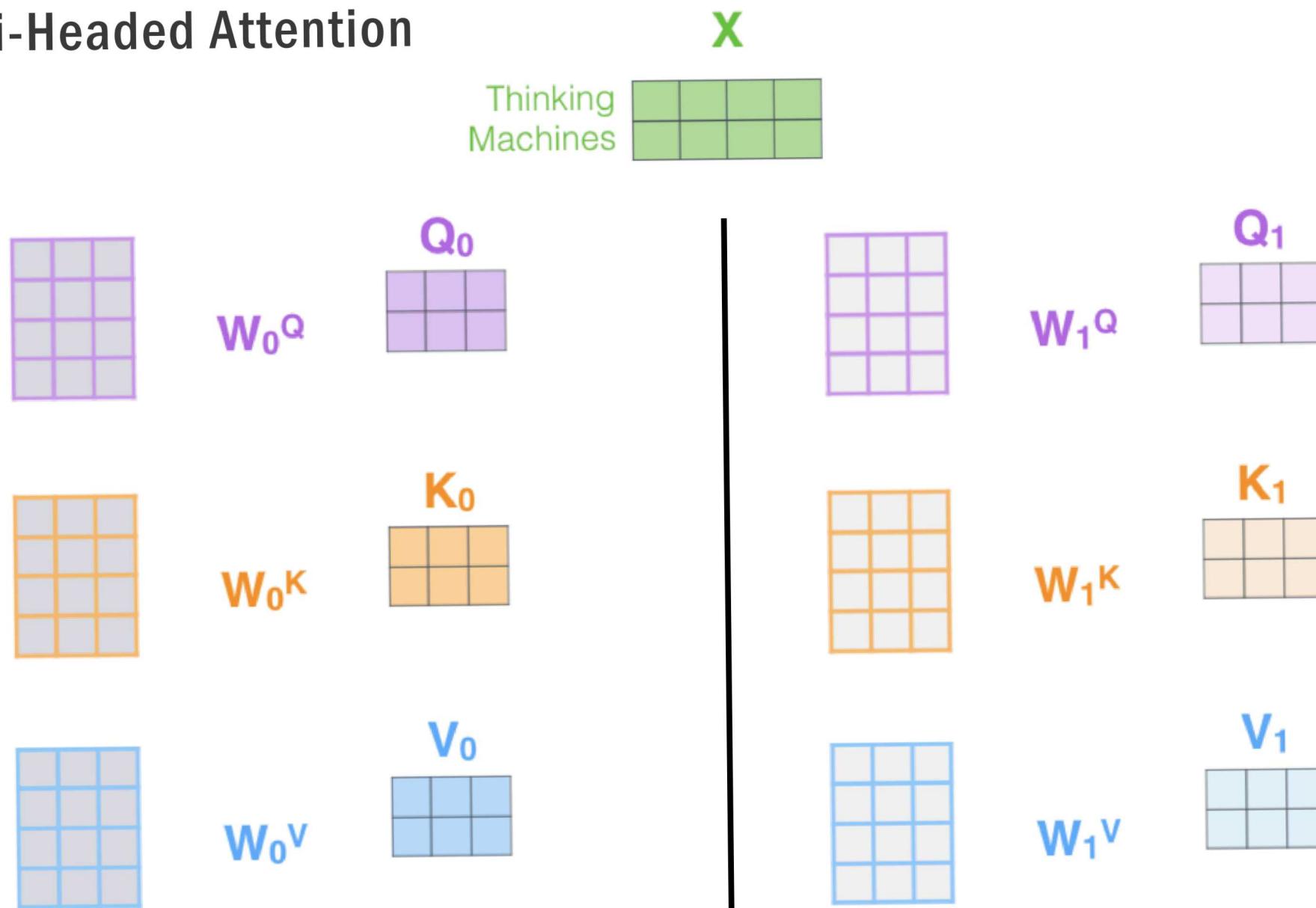
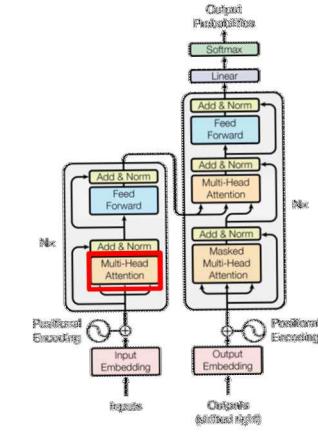


Single attention layer doesn't allow for separate representations of word relationships

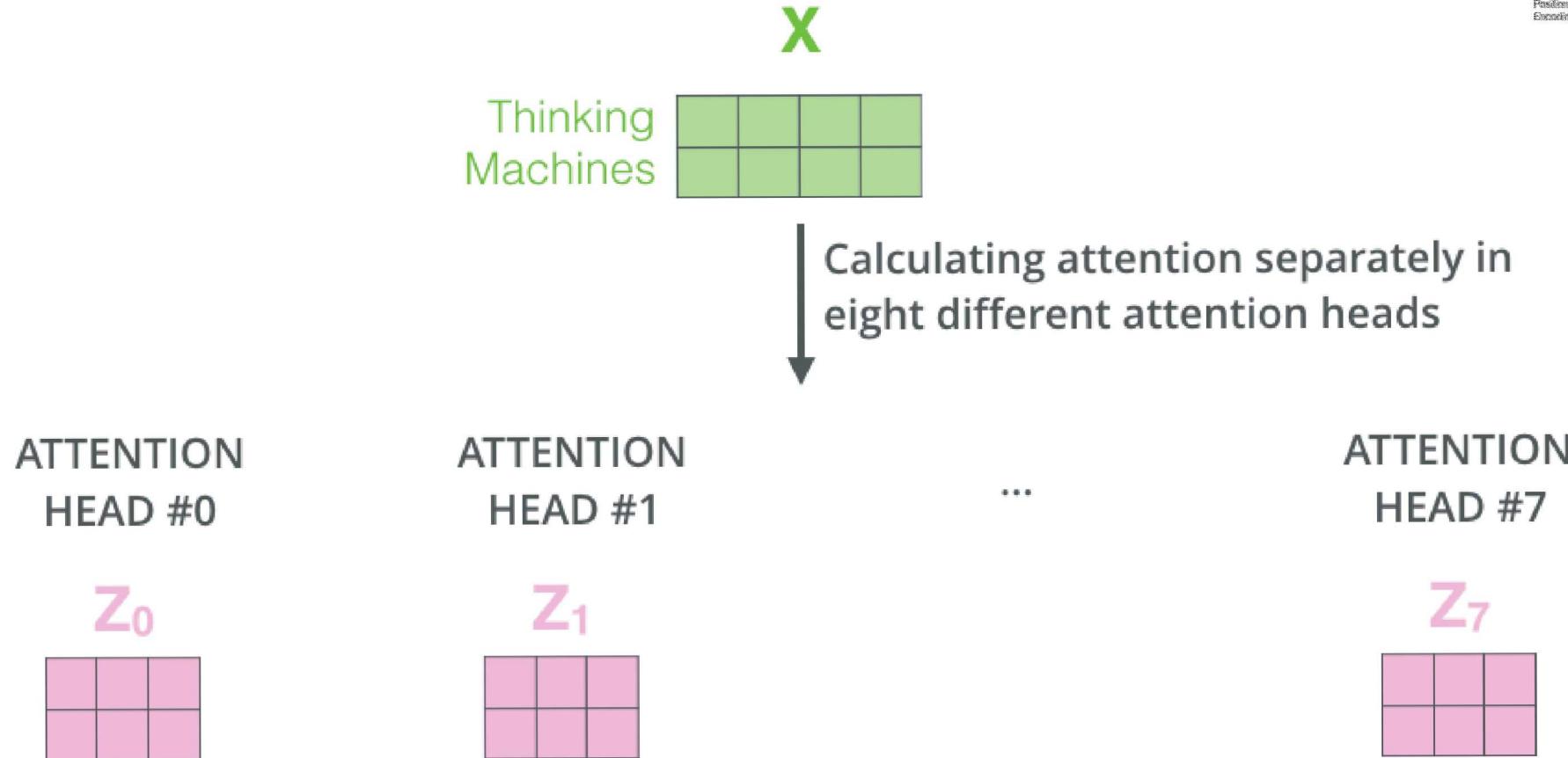
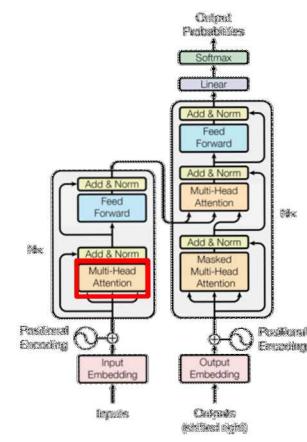
- E.g., want to represent word context, part of speech, constituency parse, etc.

Solution: multiple attention “heads”

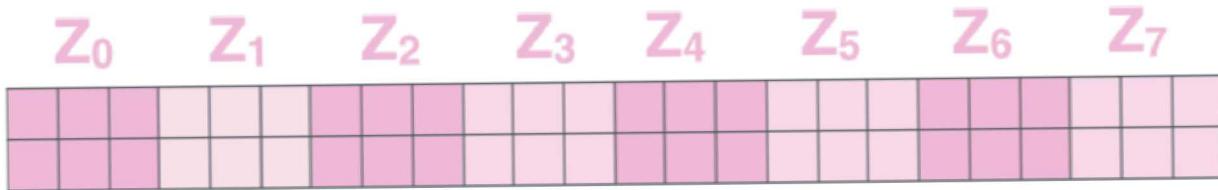
Multi-Headed Attention



Multi-Headed Attention



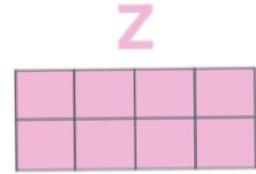
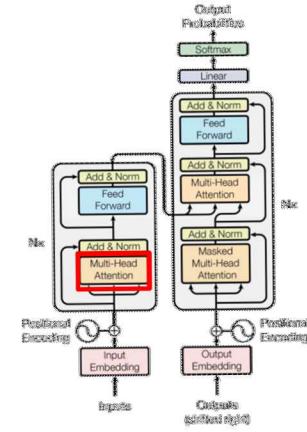
Multi-Headed Attention



X

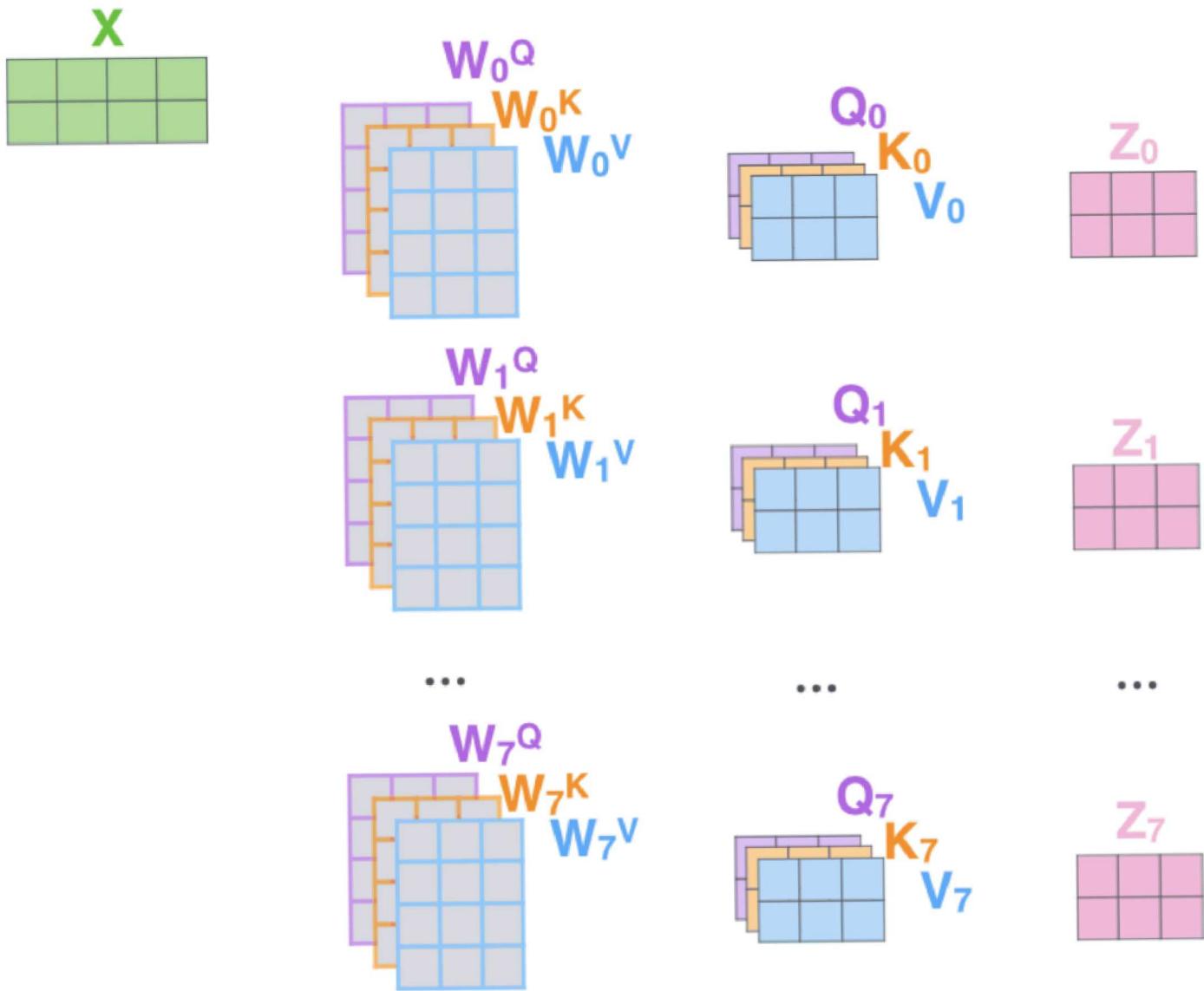
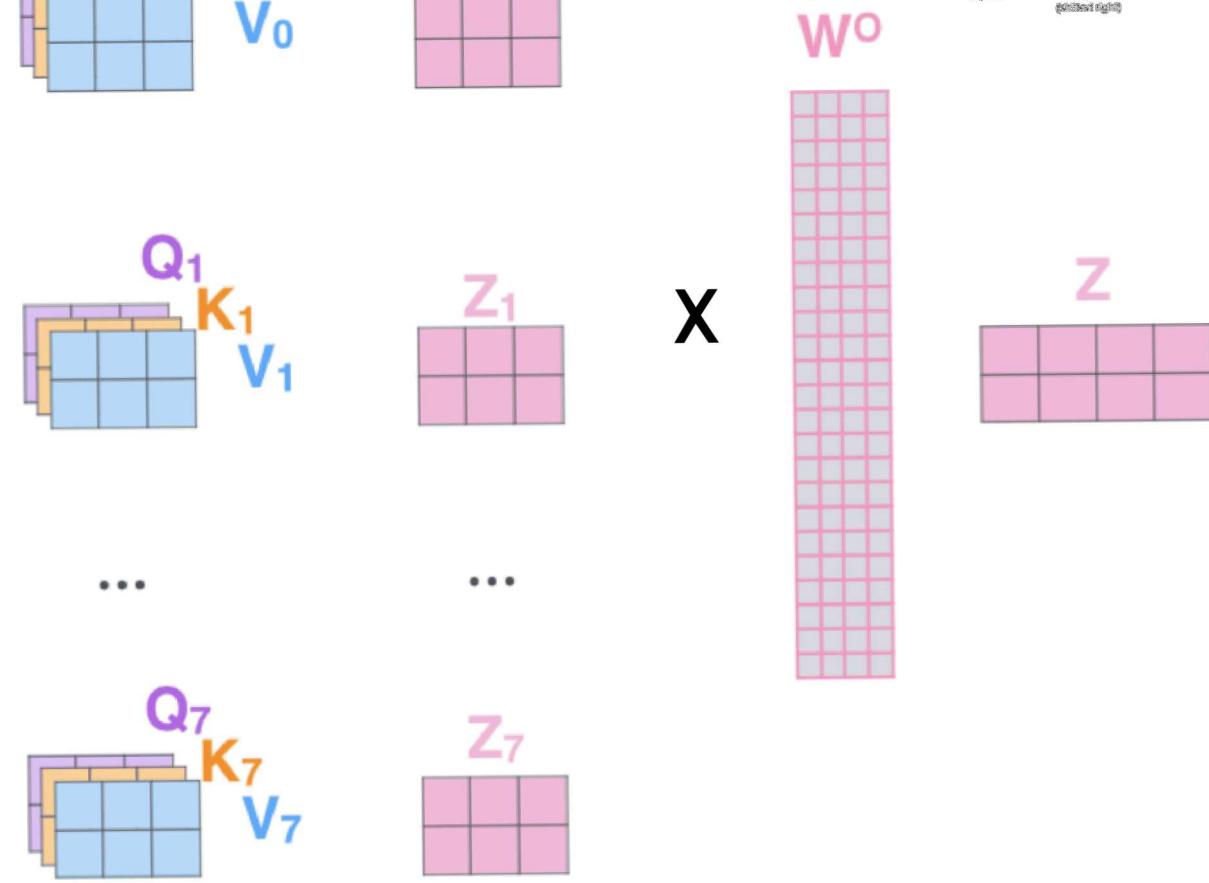
W^o

=

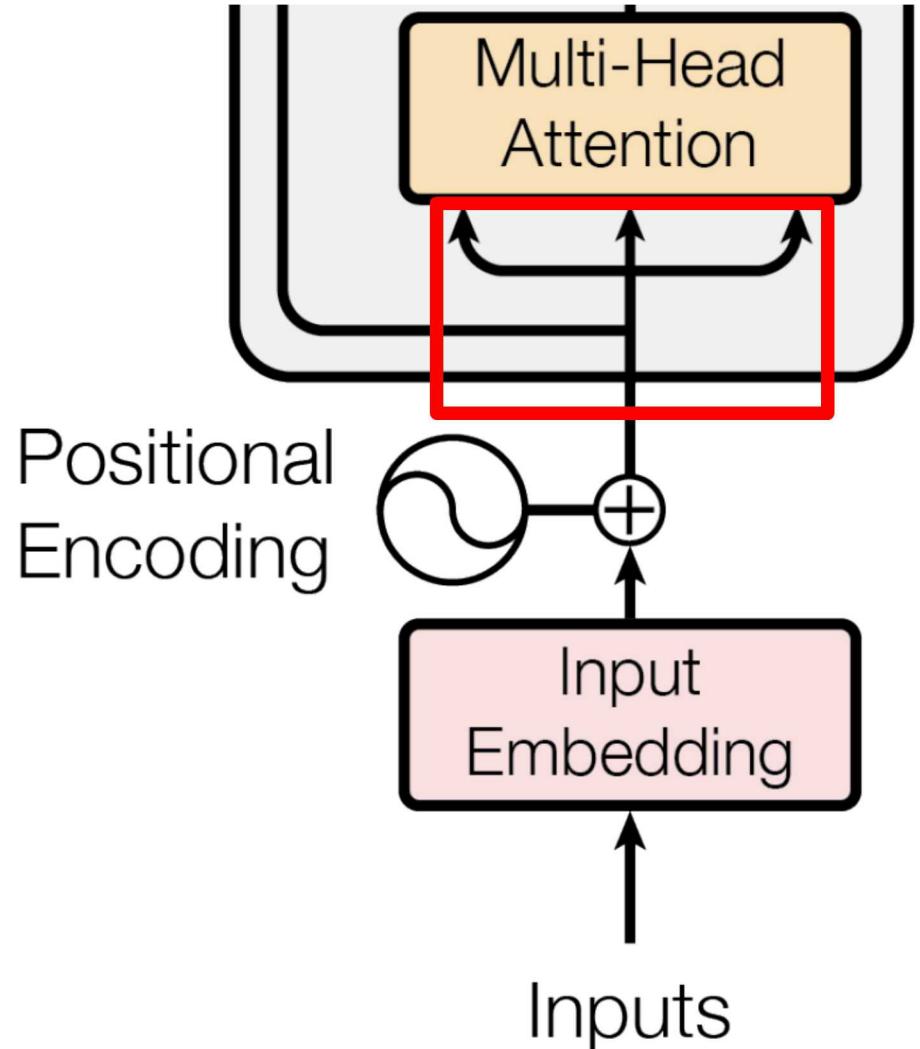
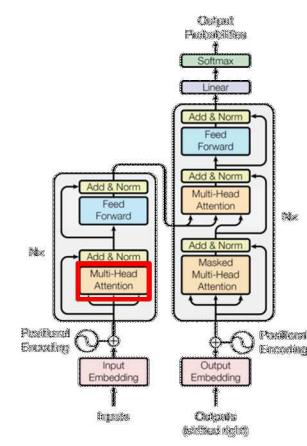


Multi-Headed Attention

Thinking
Machines



Multi-Headed Attention: Implementation Details

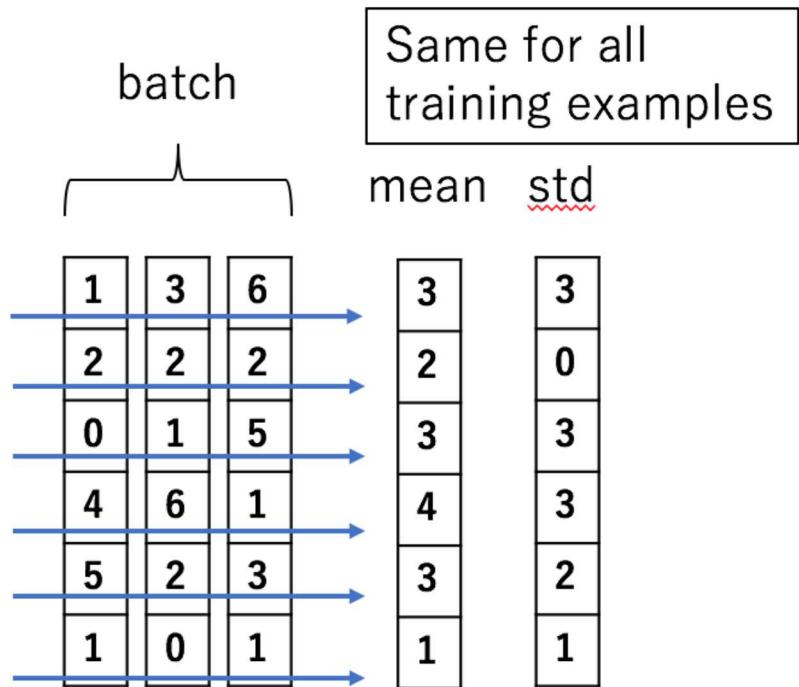


Encoder attention:

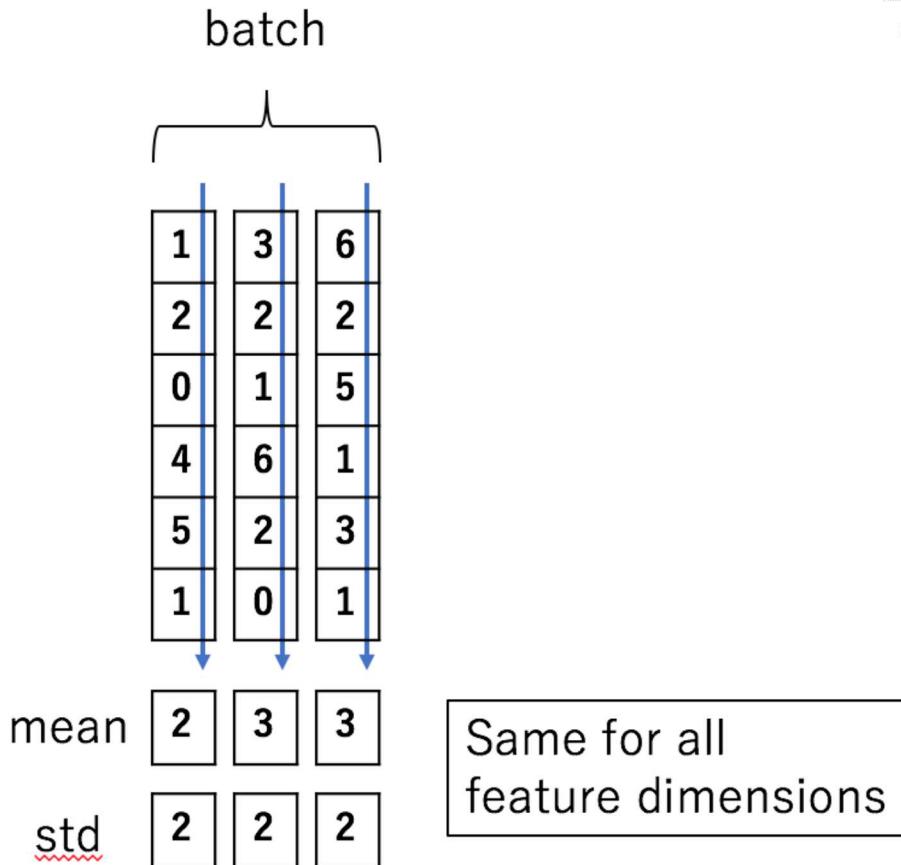
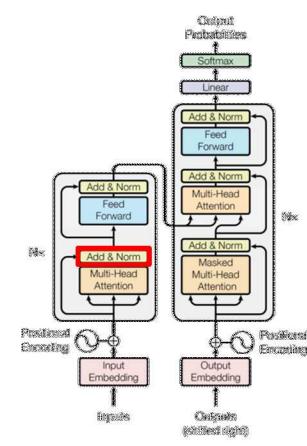
- Q, K, V matrices are all the same (different weight matrices). For multiple heads, reshape output from matrix multiplication
- I.e., if word embedding dimension is 512 and there are 8 heads, calculate $XW^Q = Q$ (dimension 512), reshape into 8 chunks (result dimension 64 for each head)
- E.g., $(\text{seq_len}, 512) \Rightarrow (\text{seq_len}, 64, 8)$
- Thus, embedding dimension must be divisible by number of heads

Layer Normalization

Batch Normalization



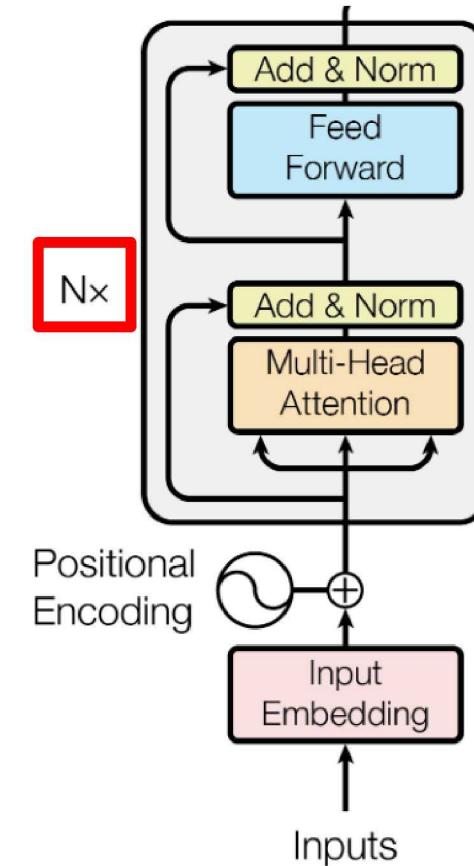
Layer Normalization



Feed Forward, Encoder Sublayers

Results of multi-headed attention + layer normalization are fed to fully connected feed forward network (2 layers)

- Input/output dimension 512, inner dimension 2048



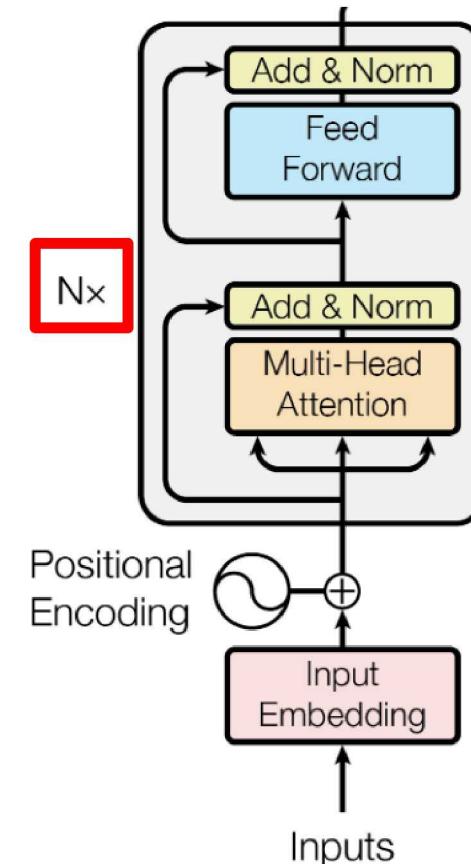
Feed Forward, Encoder Sublayers

Results of multi-headed attention + layer normalization are fed to fully connected feed forward network (2 layers)

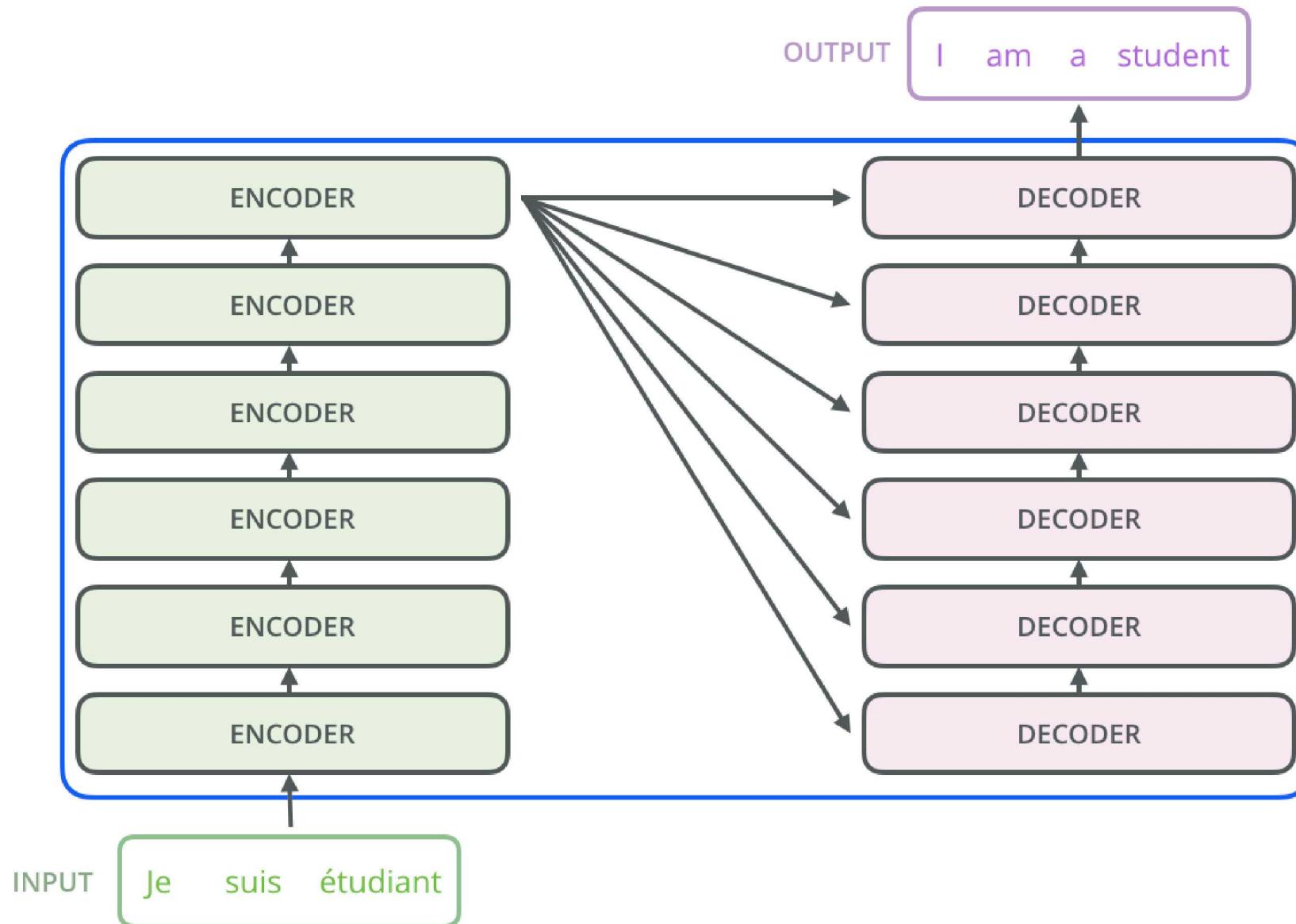
- Input/output dimension 512, inner dimension 2048

Encoder sublayers

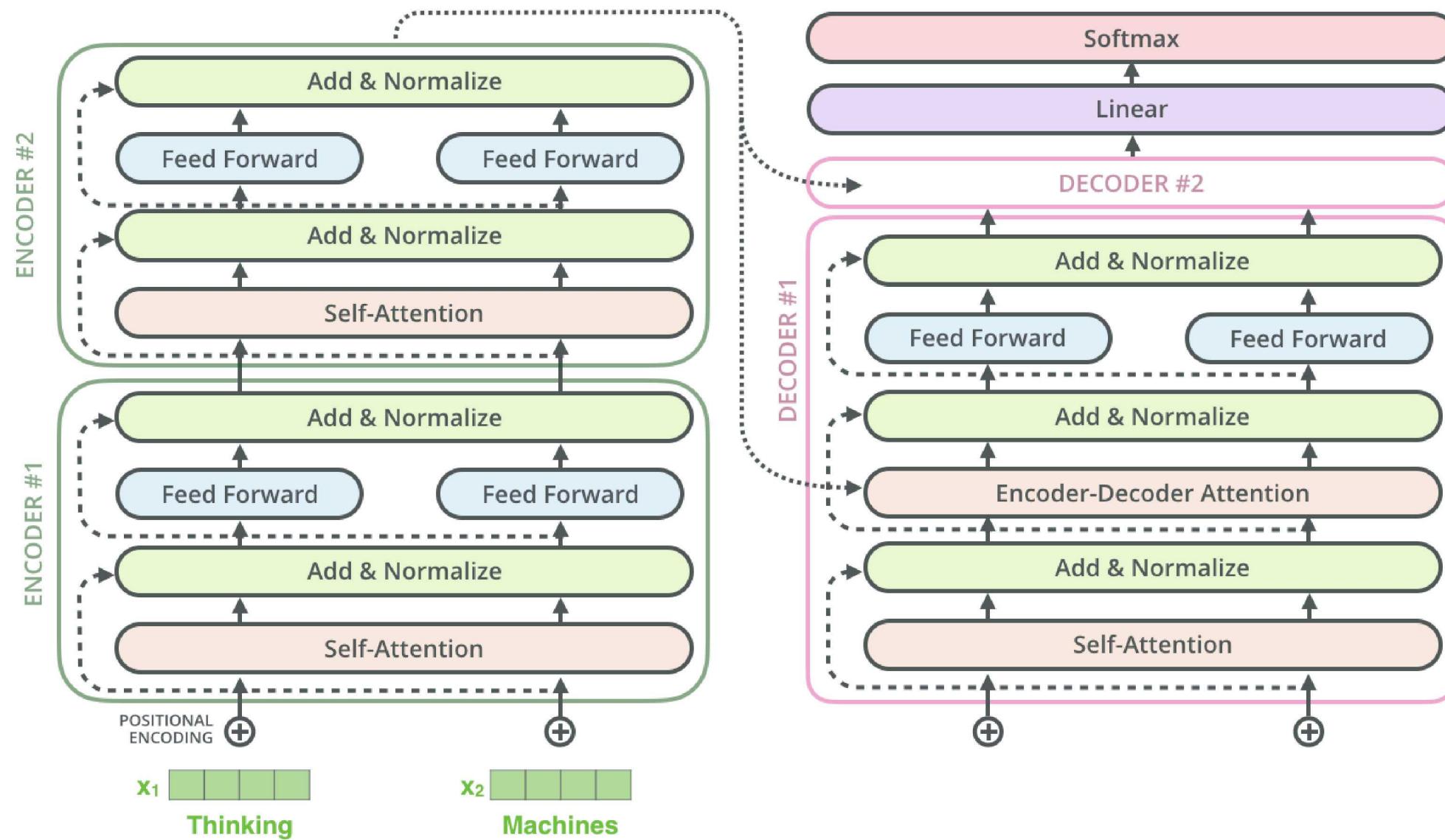
- 0th sublayer, input is embedding of input sequence
- All other sublayers, input is output of feed forward network



Encoder and Decoder Sublayers



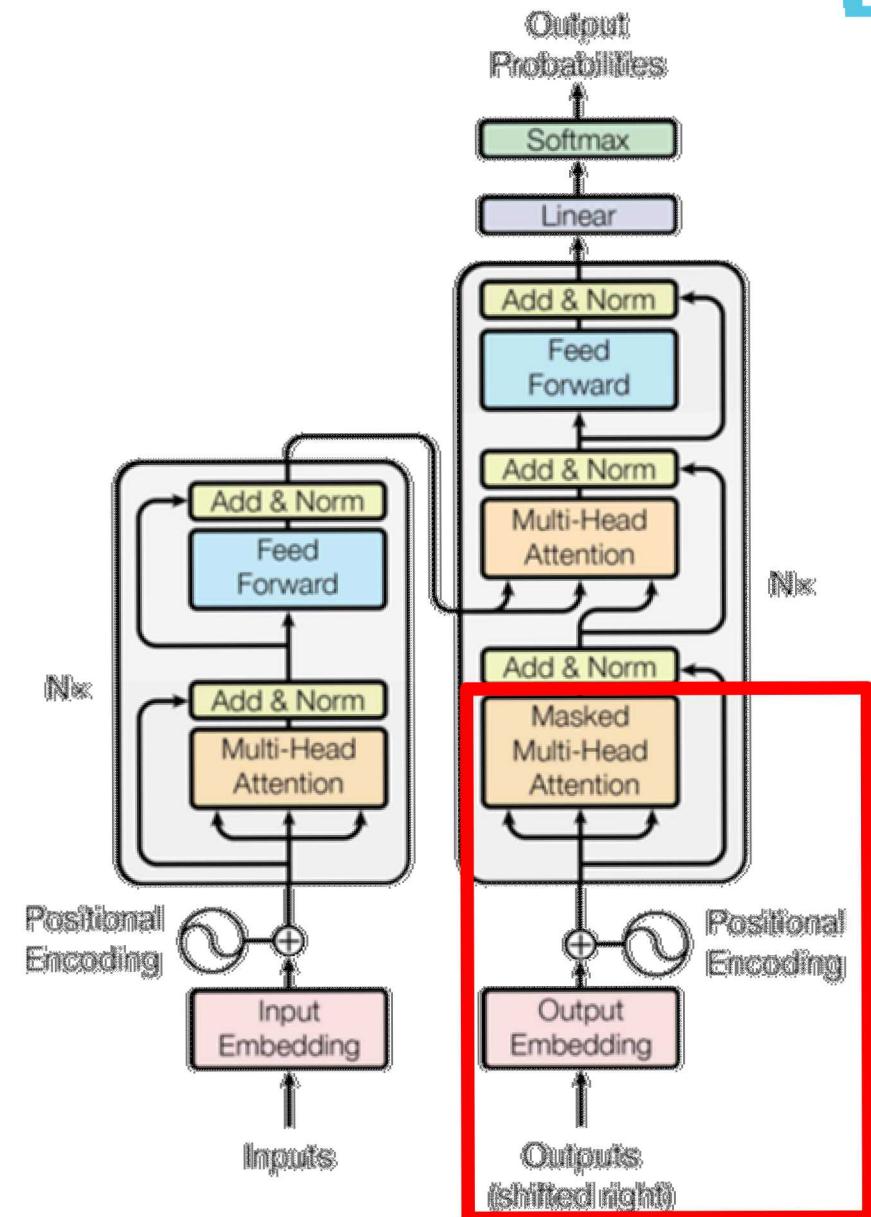
Encoder and Decoder Sublayers



Decoder Teacher Forcing and Masked Attention

Teacher forcing

- Want to be able to use previously seen words in the target sentence to inform future words
- During training, shift the target sentence right by one position (so we don't have information of future words)



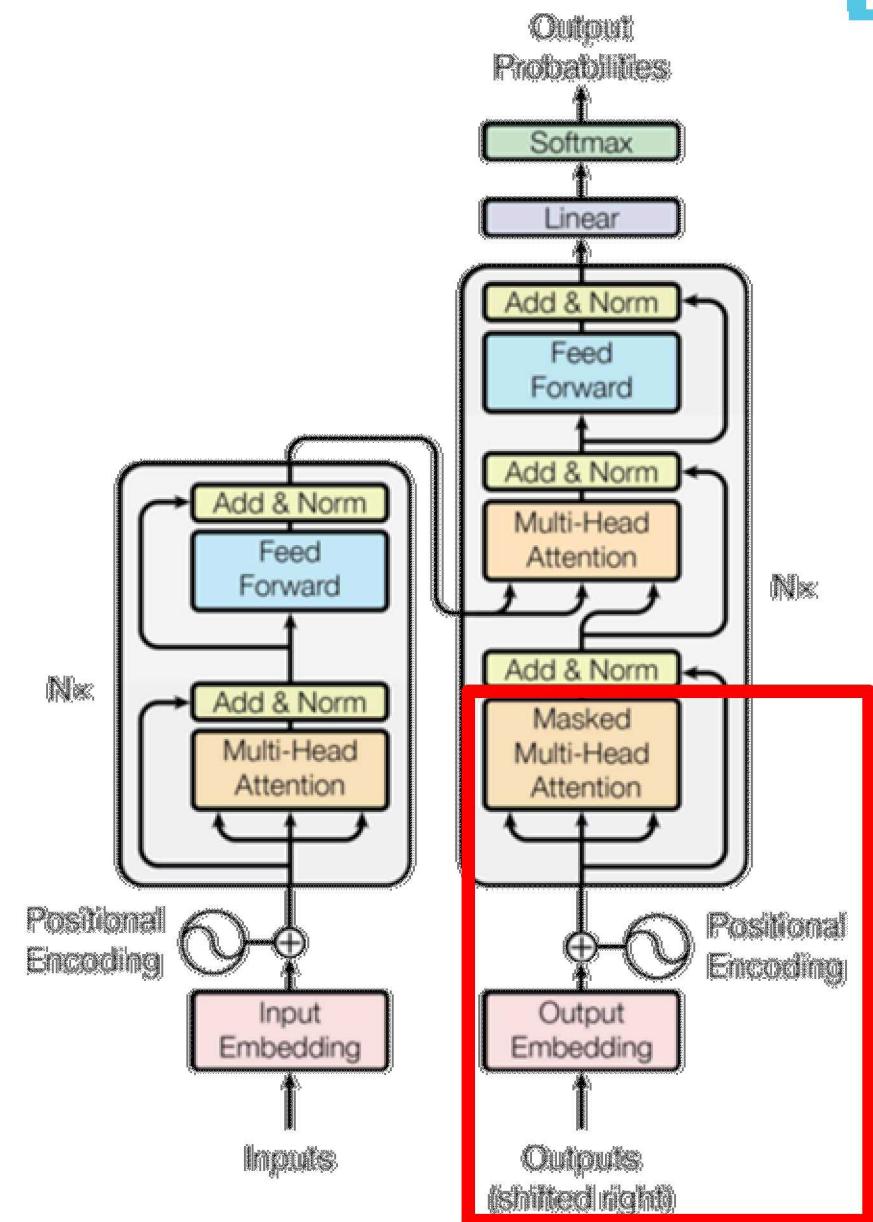
Decoder Teacher Forcing and Masked Attention

Teacher forcing

- Want to be able to use previously seen words in the target sentence to inform future words
- During training, shift the target sentence right by one position (so we don't have information of future words)

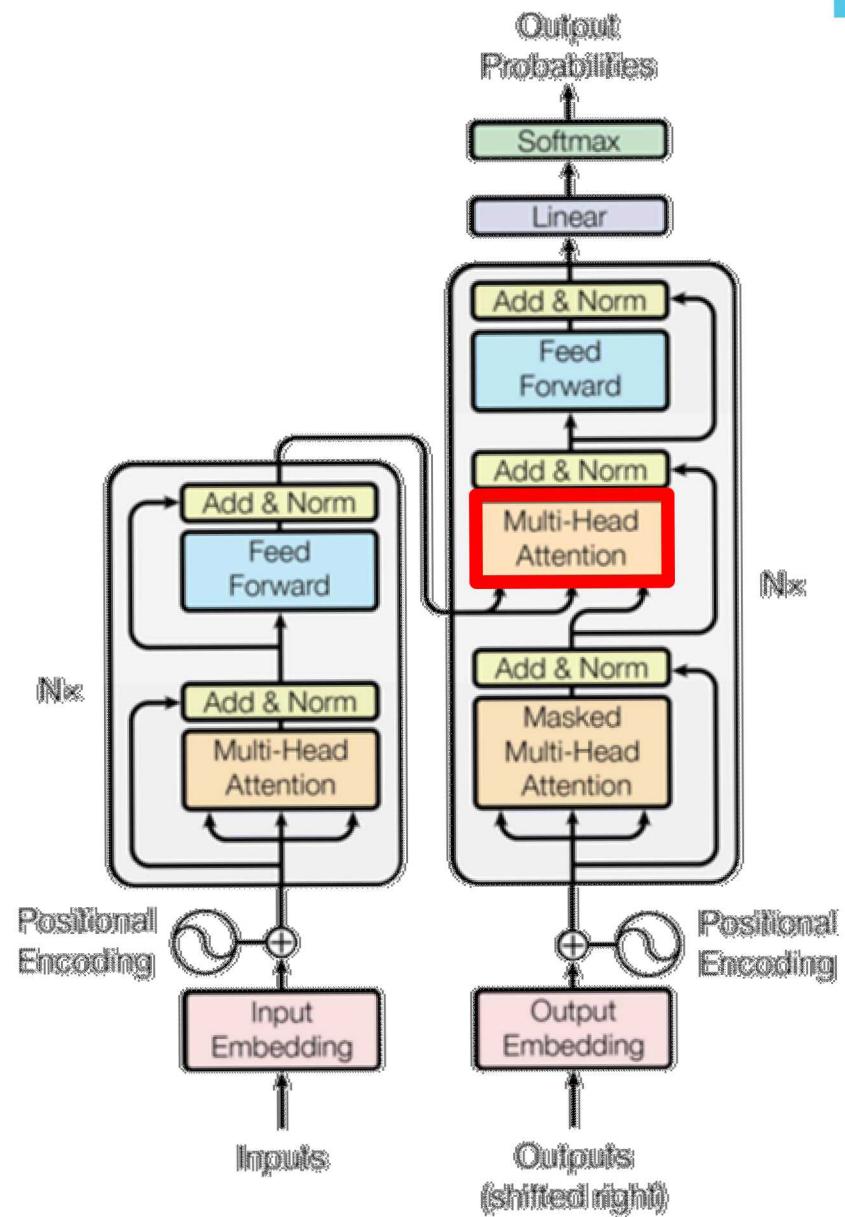
Masked attention

- Same process as encoder attention (Q, K, V based on teacher-forced target sentence), but masked so attention heads do not attend to future words



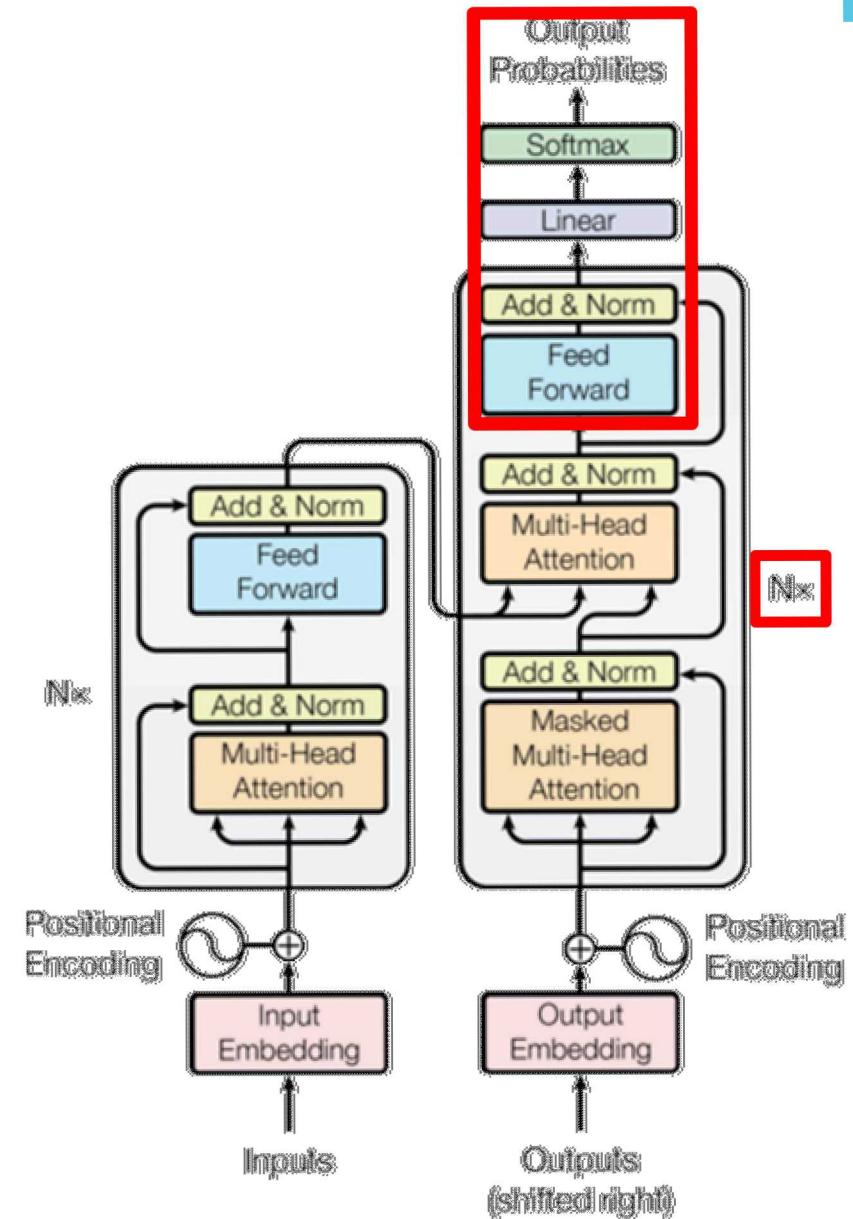
Encoder-Decoder Attention

- K, V are outputs from the final encoder sublayer
- Q is output from masked attention unit



Decoder Final Steps

- Encoder-decoder attention unit gets normalized, put into feed forward network (same dimensions as encoder FFN), repeated N times for each decoder sublayer
- Final output of decoder sublayer put through fully connected linear layer, into softmax over vocabulary



Model Training

Miscellaneous Training Details

Loss function

- Label-smoothed cross-entropy
- Rather than an output target of $[1, 0, 0, \dots, 0]$ (for k size vocabulary), set the target to $[1-e, e/(k-1), e/(k-1), \dots, e/(k-1)]$
- Form of regularization

Miscellaneous Training Details

Loss function

- Label-smoothed cross-entropy
- Rather than an output target of $[1, 0, 0, \dots, 0]$ (for k size vocabulary), set the target to $[1-e, e/(k-1), e/(k-1), \dots, e/(k-1)]$
- Form of regularization

Warmup and LR decay

- Adam optimizer
- $lr = d_{model}^{-0.5} * \min(stepnum^{-0.5}, stepnum * warmupsteps^{-1.5})$
 - Linearly increase LR for $warmupsteps$, decrease proportional to inverse square root of $stepnum$

Miscellaneous Training Details

Loss function

- Label-smoothed cross-entropy
- Rather than an output target of $[1, 0, 0, \dots, 0]$ (for k size vocabulary), set the target to $[1-e, e/(k-1), e/(k-1), \dots, e/(k-1)]$
- Form of regularization

Warmup and LR decay

- Adam optimizer
- $lr = d_{model}^{-0.5} * \min(stepnum^{-0.5}, stepnum * warmupsteps^{-1.5})$
 - Linearly increase LR for $warmupsteps$, decrease proportional to inverse square root of $stepnum$

Shared embedding weights in input, target, and output

Miscellaneous Training Details

Loss function

- Label-smoothed cross-entropy
- Rather than an output target of $[1, 0, 0, \dots, 0]$ (for k size vocabulary), set the target to $[1-e, e/(k-1), e/(k-1), \dots, e/(k-1)]$
- Form of regularization

Warmup and LR decay

- Adam optimizer
- $lr = d_{model}^{-0.5} * \min(stepnum^{-0.5}, stepnum * warmupsteps^{-1.5})$
 - Linearly increase LR for $warmupsteps$, decrease proportional to inverse square root of $stepnum$

Shared embedding weights in input, target, and output

Dropout at each sublayer output and embeddings

Model Prediction

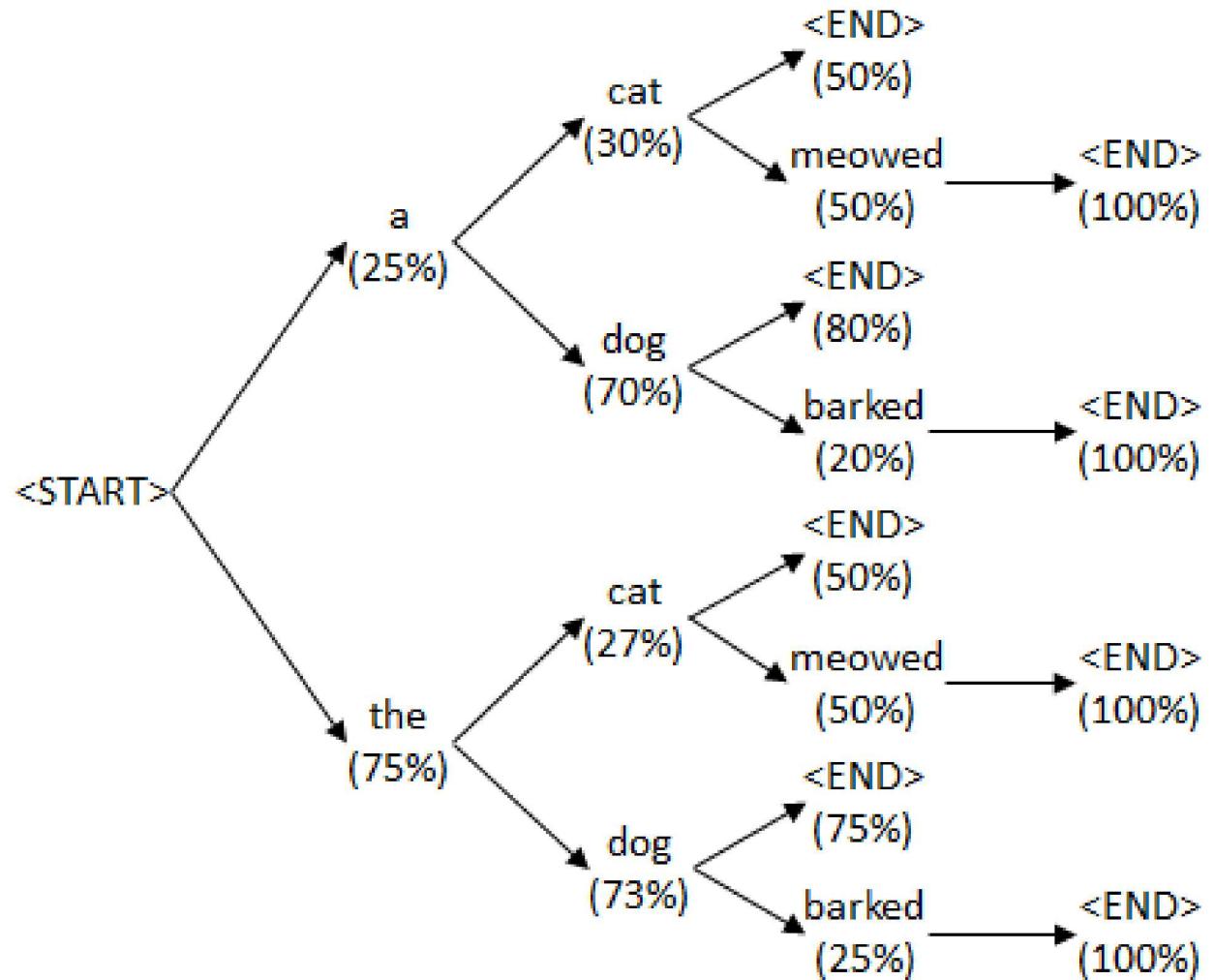
Determining Predicted Words

Greedy decoding

- Predict word that has maximum probability according to model

Beam search

- Expand all possible next word predictions, keep k most likely sequences generated. Continue until most probable sequence contains the <END> token.



Experimental Results

Translating C Source Code to English

Data

- C functions and associated comments extracted using clang
- ~1.4M train, 338k validation, 271k test
- Duplicates removed *prior* to preprocessing

Data

- C functions and associated comments extracted using clang
- ~1.4M train, 338k validation, 271k test
- Duplicates removed *prior* to preprocessing

Tokenization

- Source code: split on variable names, language keywords, operators, punctuators
- Comments: replace numbers with special token, remove punctuation, normalize whitespace

Data

- C functions and associated comments extracted using clang
- ~1.4M train, 338k validation, 271k test
- Duplicates removed *prior* to preprocessing

Tokenization

- Source code: split on variable names, language keywords, operators, punctuators
- Comments: replace numbers with special token, remove punctuation, normalize whitespace

Models trained

- LSTM, transformer, fconv, dynconv, transformer with back-translation

Data

- C functions and associated comments extracted using clang
- ~1.4M train, 338k validation, 271k test
- Duplicates removed *prior* to preprocessing

Tokenization

- Source code: split on variable names, language keywords, operators, punctuators
- Comments: replace numbers with special token, remove punctuation, normalize whitespace

Models trained

- LSTM, transformer, fconv, dynconv, transformer with back-translation

BLEU (bilingual evaluation underscore) as evaluation metric

- Best score: 18.26 using transformer

Source to English Model Results

```
ORIG: char getField ( struct board * target , int x , int  
y ) if ( x NUMBERTOKEN y NUMBERTOKEN x target width y  
target height ) return FIELDOUTOFCOMMITS ; return *  
calcFieldAddress ( target , x , y ) ;
```

TGT: Gets what is on a given field of the board returns
FIELDXYZ constant

HYP: Returns the value of the field at the given
coordinates

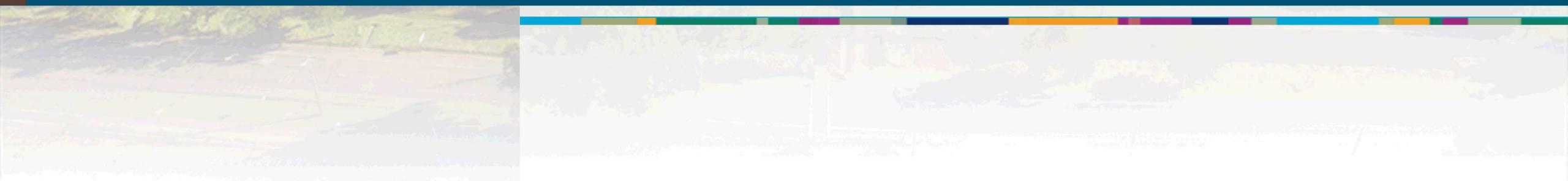
Source to English Model Results

```
ORIG: static void makedevice ( char * path , int delete )  
const char * devicename ; int major , minor , type , len ;  
int mode NUMBERTOKEN ; uidt uid NUMBERTOKEN ; gidt gid  
NUMBERTOKEN ; char * devmajmin path strlen ( path ) ; ...rest  
of code omitted for slide brevity
```

TGT: mknod in dev based on a path like sysblockhdahdal

HYP: mknod in dev based on a path like
sysblockhdahdahdahdahdahdahdahdahdahdahdal based on a
dev based on a dev based on a path like
sysblockhdahdahdahdal

Additional Resources



Open Source Implementations

<https://github.com/tensorflow/tensor2tensor>

<https://github.com/pytorch/fairseq>

<https://github.com/OpenNMT/OpenNMT-py>

<https://github.com/huggingface/pytorch-pretrained-BERT>

...

Additional Learning Resources

<http://jalammar.github.io/illustrated-transformer/>

<http://nlp.seas.harvard.edu/2018/04/03/attention.html>

<https://towardsdatascience.com/how-to-code-the-transformer-in-pytorch-24db27c8f9ec>