Transformers for Neural Machine
Translation and Beyond

PRESENTED BY
David Kavaler

SAND2019- 5079PE

© Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2 | Sequence to Sequence (Encoder-Decoder) Models

a little girl sitting on a bench holding an hE grazing on a lush green
umbrella. hillside.

w—d

a zebra standing next to a zebra in adirt a stainless steel oven in a kitchen with wood

a yellow plate toped with meat and
broccoli.

field. cabinets.

7 F}::" ~ | ; A 7
: . 4 a man riding a bike down a road next to a

two birds sitting on top of a tree branch. an elephant standing next to rock wall. o £ e _—
e v of water.

Lu et al. (2017)

3 | Sequence to Sequence (Encoder-Decoder) Models

https://vsubhashini.github.io/s2vt.html

4+ | Sequence to Sequence (Encoder-Decoder) Models
PROMPT:

In a shocking finding, scientist discovered a herd of unicoms living in a remote, previously
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicoms spoke perfect English.

https://openai.com/blog/better-language-models/#sample1

s | Sequence to Sequence (Encoder-Decoder) Models
PROMPT:

In a shocking finding, scientist discovered a herd of unicoms living in a remote, previously
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicoms spoke perfect English.

MODEL COMPLETION:

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

https://openai.com/blog/better-language-models/#sample1

I L | 5

s I Sequence to Sequence (Encoder-Decoder) Models
PROMPT:

In a shocking finding, scientist discovered a herd of unicoms living in a remote, previously
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicoms spoke perfect English.

MODEL COMPLETION:

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is
finally solved.

https://openai.com/blog/better-language-models/#sample1

I L | 5

7 1 Sequence to Sequence (Encoder-Decoder) Models

Deep learning models that take a sequence of items and outputs another sequence of
items

= Generic input-output (sequence-sequence) format

= Successful across disciplines (machine translation, image captioning, etc)

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

Je suis étudiant > ENCODER DECODER

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

s I Sequence to Sequence (Encoder-Decoder) Models

Deep learning models that take a sequence of items and outputs another sequence of
items

= Generic input-output (sequence-sequence) format

= Successful across disciplines (machine translation, image captioning, etc)

THE

—_— | | an a stude
RANSEORMER | am a student

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Oug
o | Transformer Architecti e

| Add & Norm h
Add & Norm :

Multi-Head || Muiti-Head
Attention : Attention

T_J [

Pasiimal £0y_ & Aoy Posions
Encoding W7 V) Ercoing
Embedding | Embedding |

] i

et dght

Tl
Pralalilises

Transformer Architectl
Softmax

Linear

Add & Norm
Feed
Forward

| I
(Add & Norm h

Muiti- Head
Attention

| Add & Norm H
Masked |

Multi-Head
Attention

==

i

A Ay Posiftensl
| Output |
| Embedding

5

Ouliputs
st i

p@ﬁ?ﬁé@m‘ll o
Encoring f&

11 | Transformer Architectl

Pasitionall g
Encmding ¥

Input
Embedding

]

Imm‘ﬁﬁ'

Ot
Prabiabilises

Cms)

| Add & Norm H

Add & Norm
Feed
Forward

| I
(Add & Norm Je=

Multi-Head !
Attention ‘

tsaﬁksz

Masked
Multi-Head
Attention

e

Positional
¥ A7 Encoding
Output

Embedding

m

Oulputs
it W)

Ol
2 | Transformer Architectl F’éﬁ%ﬁm

Multi-Head

t

(Bhiftes maht)

s | Transformer Architecti Pt
Softmanx
s)

Add & Norm
Feed ‘
Forward

| I
(Add & Norm h

Muiti-Head |
Attention \

| Add & Norm H
Masked |
Multi-Head ‘
Attention |

e

Pasitionall 27%

Engoding % po oy Posiions)

WP E;mﬁ;"@*ﬁt”ﬁﬁﬂ
Output
Embedding |

4

et Oulputs
(iiftes ight)

Dt

14 | Transformer Architecti Pralsatiiies

Add & Norm

Multi-Head
Attention

.

(e mght)

s | Transformer Architectl

Ot
Probabilites

[Linear |

Add & Norm

Feed
Forward

| I
(Add & Norm Je=

Multi-Head
Attention

(LAdd & Norm Je=y

Masked

Pasitional AN A
Encuding N\ ¥

Igtis:

N Positionsl

Y Encosing

ehiftel iight)

16 | Transformer Architecture Overview

DUTPUT[I am a student]
A
(F' {
ENCODER e DECODER
. e
& 4
f i
ENCODER DECODER
o .
& A
F i
ENCODER DECODER
. e
4 4
i i
ENCODER DECODER
o A
4 i
f f
ENCODER DECODER
. e
A A
F i
ENCODER DECODER
\ A\
_ A

suis étud‘ant]

17 1 Transformer Complexity

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional Ok -n-d?) O(1) O(logr(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r

s | Embedding and Positional Encoding

Standard embedding lookup (weight matrix vocabulary index)

= Embedding weights shared between encoder input, decoder teacher forcing, and tar_ > -8
sequence

19 1 Embedding and Positional Encoding

Standard embedding lookup (weight matrix vocabulary index) = [
= Embedding weights shared between encoder input, decoder teacher forcing, and tar_ = .=

sequence

Positional encoding
= RNNs have position encoded in architecture - forward feeding hidden state
= Want to encode information about word position in input sequence
= Want to handle variable length inputs, but be consistent across all sequences
= Want to be able to predict on sequences with length longer than anything seen in training |
|

20 I Embedding and Positional Encoding

Standard embedding lookup (weight matrix vocabulary index)

= Embedding weights shared between encoder input, decoder teacher forcing, and tar_ = .=
sequence

Positional encoding
= RNNs have position encoded in architecture - forward feeding hidden state
= Want to encode information about word position in input sequence
= Want to handle variable length inputs, but be consistent across all sequences
= Want to be able to predict on sequences with length longer than anything seen in training

PE pos,2i) = sin(pos/100002t/dmodet)
PE pos2i+1) = COS(pOS/lOOOOZi/dmodez)

21 | Embedding and Positional Encoding

Ll]

22 I Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

The animal didn't cross the street because it was too tired

23 1 Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

The animal didn't cross the street because it Was too tired

24 | Self-Attention

MMMMMM
Attention JIf

Core concept: words in a sentence are related to each other in a complex manner M@Q@ e

fopsss Demds

The animal didn't cross the street because it E. too tired

B I BB "B

25 | Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

by
ity

The animal didn't cross the street because it was too tired

26 1 Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

The animal didn't cross the street because it was too tired

27 | Self-Attention

Core concept: words in a sentence are related to each other in a complex manner == |

& N

The animal didn't cross the street because it was too tirel

| N

B I BB "B -

28 | Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

& N

The animal didn't cross the street because it was too tired

/

29 | Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

& N

The animal didn't cross the street because it was too tired

__j/

Self-attention is used to represent these complex dependencies

MMMMMM
Attention fIf

Erendien

The

didn’t
Cross
the

street

because
it

was

too

tired

The
animal
didn’t
Cross
the

because
it
was

The
animal
didn’t
Cross
the
street
because

was

too
tired

The
animal
didn’t
Cross
the
street

because

UOIU3lY-}I3S | ot

31 | Self-Attention

Intuition:

Query: current token

Key: tokens to
compare with (all
tokens in input
sequence)

Value: output (to be
scaled by softmax of
Q, K operation)

32 | Self-Attention: Intuition

Input

Embedding

Queries

Keys

Values

X4

Thinking

a1

k1

Vi

Machines

X2

gz

k2

V2

T
| U] ‘” 7”‘

NN
HEE

wVv

;3 | Self-Attention: Intuition

Input | Thinking Machines m%f %.Em
Embedding | X -
Queries | q -
Keys K K,
Values V .

Score qi* ki=112 q: * k2 =96

34 | Self-Attention: Intuition

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (v)

Softmax

X1

q1

K1

V1

Thinking

g1 ¢ ki=112

Machines
X2
qz
K2
V2
qi ® k2 =96

35 | Self-Attention: Intuition
Input
Embedding
Queries
Keys
Values
Score
Divide by 8 (v)
Softmax

Softmax
X
Value

Sum

Thinking

q1 L] kI = 4‘” 12

vi [T

z [HIEIE

Machines

x2 [
q: [T

k2 |:___|:|
v. [T

] =~

q1 L) kz =30

z, [

3% | Self-Attention: Matrix Form

X wa Q
X —

X WK K
b 4 —t

X WV Vv
» ““ | ==

;7 | Self-Attention: Matrix Form

Attention(Q, K, V) = softmax(2E_yv
ention(Q, K, V') = softmax
Vg
Q KT
V

softmax(I)

33 | Multi-Headed Attention

Single attention layer doesn’t allow for separate representations of word relationships
= E.g., want to represent word context, part of speech, constituency parse, etc.

Solution: multiple attention “heads”

39 I Multi-Headed Attention X

Thinking
Machines

Qo Q1
N
W@ + | W;@
Ko K1
WK WK
Vo V4
WoV W4V

s | Multi-Headed Attention

ATTENTION
HEAD #0

Thinking

Machines

\4

ATTENTION
HEAD #1

Calculating attention separately in
eight different attention heads

ATTENTION
HEAD #7

41 I Multi-Headed Attention

Zo 2Z1 £ Zy Is

4 I Multi-Headed Attention
X

Thinking
Machines

43 | Multi-Headed Attention: Implementation Details

Positional
Encoding

Multi-Head
Attention

Input
Embedding

Inputs

Encoder attention:

= Q, K, V matrices are all the same (different
weight matrices). For multiple heads,
reshape output from matrix multiplication

= |.e., if word embedding dimension is 512 and
there are 8 heads, calculate X\W™Q = Q
(dimension 512), reshape into 8 chunks
(result dimension 64 for each head)

= E.g., (seqg_len, 512) => (seq_len, 64, 8)

= Thus, embedding dimension must be
divisible by number of heads

44 | Layer Normalization

Batch Normalization

batch

Same for all
training examples

\

(| mean std

v

v

v

=GN
O|IIN|[I®|[|FI|IN]||W
= W=]|IN]|O

http://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/

=W WIN W
= INWWwW| o Ww

Layer Normalization

batch
A

=IO RO N
O NI OR[N W
=W L] O N O

mean |2 []|3]|3 Same for all
feature dimensions

I D e

s | Feed Forward, Encoder Sublayers

Results of multi-headed attention + layer normalization are fed to
fully connected feed forward network (2 layers)
= |nput/output dimension 512, inner dimension 2048

L

-

Feed
Forward

A
—

~>| Add & Norm |

Multi-Head
Attention
it

k_

1 N\
~>{ Add & Norm }

J

Positional D
Encoding

Input
Embedding

T

Inputs

s | Feed Forward, Encoder Sublayers

Results of multi-headed attention + layer normalization are fed to
fully connected feed forward network (2 layers)
= |nput/output dimension 512, inner dimension 2048

Encoder sublayers
= Ot sublayer, input is embedding of input sequence
= All other sublayers, input is output of feed forward network

L

e 1 N
~>{ Add & Norm }
Feed
Forward
-
.N>< —{Add & Norm)
Multi-Head
Attention
L
- y,
Positional D
Encoding }
Input
Embedding
Inputs

47 | Encoder and Decoder Sublayers

DUTPUT[I am a student]
A
(F' {
ENCODER e DECODER
. e
& 4
f i
ENCODER DECODER
o .
& A
F i
ENCODER DECODER
. e
4 4
i i
ENCODER DECODER
o A
4 i
f f
ENCODER DECODER
. e
A A
F i
ENCODER DECODER
\ A\
_ A

suis étud‘ant]

s | Encoder and Decoder Sublayers

Softmax)
3
Linear)
% 3
E DECODER #2
S P &
E Add & Normalize)
) : . (Feed Forward) (Feed Forward)
] RENELEEEE A---==mmmmmmmemeeee- A
(ip(Add & Normalize } o f*(Add & Normalize)
o 13 i . |) B
% E (Feed Forward) (Feed Forward) """" :'*(Encoder-Decoder Attention)
Ol ecencnan= B e 4 Yeateeae- | S 1
g ,»(Add & Normalize) ,Jp-(Add & Normalize)
“1 C [} [} Y C [R Y
. Self-Attention . Self-Attention
S nsaesss PRI 3 ~/ R S ———
T © ®
x1 [x2 [

Thinking Machines

Decoder Teacher Forcing and Masked Attention

Teacher forcing (uoifar)
= Want to be able to use previously seen words in the target ((Add&‘i\lorm J
sentence to inform future words B FFeedd
orwar
= During training, shift the target sentence right by one —/|
position (so we don’t have information of future words)) | [e |
— . Muilti-Head
Feed Attention
Forward T 7 7 M
S
Wi | —(Add & Norm) eSS
Masked
Multi-Head Muﬂi-Hgad

so | Decoder Teacher Forcing and Masked Attention

Teacher forcing

= Want to be able to use previously seen words in the target
sentence to inform future words

= During training, shift the target sentence right by one
position (so we don’t have information of future words)

Masked attention

= Same process as encoder attention (Q, K, V based on
teacher-forced target sentence), but masked so attention
heads do not attend to future words

Outipu
Protabilities

|

L_Softmax_J|
|

|_Linear J

3]

~+| Add & Norm }

\ | Add & Norm Je=,

| (Add & Norm Je~

Feed
Forward

e

Multi-Head
Feed Attention
Forward ¥ ¥ y)
—
Add & Norm
—| ﬁ-‘f-dd E-_Nmm J i T
Multi-Head Multi-Head
Attention Attention

Ml

51 1 Encoder-Decoder Attention _—
E?{rﬂﬁ%;@ﬁ%ﬁﬁ’ﬁa

ESoﬁ;rm)|

= K, V are outputs from the final encoder sublayer (Lir{ar)

= is output from masked attention unit [Bz fom)— |

Feed
Forward

e

—~>{_Add & Norm J |

Feed
Forward e

Nix 1 L Add & Norm Je=
ez p-.| Add & Norm | Maskedi
Multi-Head Muilti-Head
~ Attention | | Attention
A)

] s

- Encoding

2 | Decoder Final Steps

= Encoder-decoder attention unit gets normalized, put into
feed forward network (same dimensions as encoder FFN),
repeated N times for each decoder sublayer

= Final output of decoder sublayer put through fully
connected linear layer, into softmax over vocabulary

~>(Add & Norm) |

Multi-Head

Feed Attention
Forward T 77
((Add & Norm].T
Masked

Multi-Head
Attention

(e Oulpuls;

e -

O s

Model Training

s | Miscellaneous Training Details

Loss function
= | abel-smoothed cross-entropy

= Rather than an output target of [1, O, O, ..., O] (for k size vocabulary), set the target to [1-e,
e/(k-1), e/(k-1), ..., &/(k-1)]

= Form of regularization

s5 | Miscellaneous Training Details

Loss function
= | abel-smoothed cross-entropy
= Rather than an output target of [1, O, O, ..., O] (for k size vocabulary), set the target to [1-e,
e/(k-1), e/(k-1), ..., /(k-1)]
= Form of regularization

Warmup and LR decay

= Adam optimizer

—0.5 —1.5)

" lr = dyodel + min(stepnum %>, stepnum * warmupsteps
= Linearly increase LR for warmupsteps, decrease proportional to inverse square root of stepnum

s | Miscellaneous Training Details

Loss function
= | abel-smoothed cross-entropy

= Rather than an output target of [1, O, O, ..., O] (for k size vocabulary), set the target to [1-e,
e/(k-1), e/(k-1), ..., &/(k-1)]

= Form of regularization

Warmup and LR decay

= Adam optimizer

—0.5 —1.5)

" lr = dyodel + min(stepnum %>, stepnum * warmupsteps
= Linearly increase LR for warmupsteps, decrease proportional to inverse square root of stepnum

Shared embedding weights in input, target, and output

s7 I Miscellaneous Training Details

Loss function
= | abel-smoothed cross-entropy

= Rather than an output target of [1, O, O, ..., O] (for k size vocabulary), set the target to [1-e,
e/(k-1), e/(k-1), ..., &/(k-1)]

= Form of regularization

Warmup and LR decay

= Adam optimizer

—0.5 —1.5)

" lr = dyodel + min(stepnum %>, stepnum * warmupsteps
= Linearly increase LR for warmupsteps, decrease proportional to inverse square root of stepnum

Shared embedding weights in input, target, and output

Dropout at each sublayer output and embeddings

e -

R 2 A g

Model Prediction

5o | IModel Prediction Visualization

s I Determining Predicted Words

<END:>
oy (509%)
(30%) meowed <END=>
- (50%) (100%)

Greedy decoding

*(25%) <END>

= Predict word that has maximum dog (80%)

probability according to model (70%) ™~_ barked <END>
_—

Beam search G e

<END=>

= Expand all possible next word cat " (50%)
predictions, keep k most likely , {2?%}<' . o
sequences generated. Continue until // e —-'ZEDP:}E;
most probable sequence contains the e (50%) '[)

<END> token. (75%]) <END>
dog (75%)

(73%) ™ barked <END>
(25%) > (100%)

/\

https://geekyisawesome.blogspot.com/2016/10/using-beam-search-to-generate-most.html

” ») o e .‘ -~ -
T R R e T -

! o 2 1d 3%
A g Fhy

- v,

Experimental Results

Translating C Source Code to English

&2 I Source to English Model

Data
= C functions and associated comments extracted using clang

= ~1.4M train, 338k validation, 271k test
= Duplicates removed prior to preprocessing

3 I Source to English Model

Data
= C functions and associated comments extracted using clang

= ~1.4M train, 338k validation, 271k test
= Duplicates removed prior to preprocessing

Tokenization
= Source code: split on variable names, language keywords, operators, punctuators

= Comments: replace numbers with special token, remove punctuation, normalize
whitespace

s« I Source to English Model

Data
= C functions and associated comments extracted using clang

= ~1.4M train, 338k validation, 271k test
= Duplicates removed prior to preprocessing

Tokenization
= Source code: split on variable names, language keywords, operators, punctuators

= Comments: replace numbers with special token, remove punctuation, normalize
whitespace

Models trained
= | STM, transformer, fconv, dynconv, transformer with back-translation

s I Source to English Model

Data
= C functions and associated comments extracted using clang

= ~1.4M train, 338k validation, 271k test
= Duplicates removed prior to preprocessing

Tokenization
= Source code: split on variable names, language keywords, operators, punctuators

= Comments: replace numbers with special token, remove punctuation, normalize
whitespace

Models trained
= | STM, transformer, fconv, dynconv, transformer with back-translation

BLEU (bilingual evaluation underscore) as evaluation metric
= Best score: 18.26 using transformer

s I Source to English Model Results

v) 1f (x NUMBERTOKEN y NUMBERTOKEN x target width vy
target height) return FIELDOUTOFBOUNDS ; return *
calcFieldAddress (target , x , v) ;

TGT: Gets what i1s on a given field of the board returns
FIELDXYZ constant

HYP: Returns the value of the field at the given
coordinates

ORIG: char getField (struct board * target , 1int x , 1nt

s7 I Source to English Model Results

ORIG: static void makedevice (char * path , int delete)
const char * devicename ; int major , minor , type , len ;
int mode NUMBERTOKEN ; uidt uid NUMBERTOKEN ; gidt gid
NUMBERTOKEN ; char * devmajmin path strlen (path) ; ..rest
of code omitted for slide brevity

TGT: mknod 1n dev based on a path like sysblockhdahdal

HYP: mknod in dev based on a path like
sysblockhdahdahdahdahdahdahdahdahdahdahdahdahdal based on a
dev based on a dev based on a path like
sysblockhdahdahdahdal

o~ -

R G

Additional Resources

s I Open Source Implementations

https://github.com/tensorflow/tensor2tensor

https://github.com/pytorch/fairseq
https://github.com/0OpenNMT/0penNMT-py
https://github.com/huggingface/pytorch-pretrained-BERT

70 | Additional Learning Resources

http:/ /jalammar.github.io/illustrated-transformer/

http://nlp.seas.harvard.edu/2018/04/03/attention.html

https:/ /towardsdatascience.com/how-to-code-the-transformer-in-pytorch-
24db27c8f9ec

