Transformers for Neural Machine
Translation and Beyond

PRESENTED BY
David Kavaler

SAND2019- 5079PE

© Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.




2 | Sequence to Sequence (Encoder-Decoder) Models
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https://vsubhashini.github.io/s2vt.html



4+ | Sequence to Sequence (Encoder-Decoder) Models
PROMPT:

In a shocking finding, scientist discovered a herd of unicoms living in a remote, previously
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicoms spoke perfect English.

https://openai.com/blog/better-language-models/#sample1
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PROMPT:

In a shocking finding, scientist discovered a herd of unicoms living in a remote, previously
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicoms spoke perfect English.

MODEL COMPLETION:

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

https://openai.com/blog/better-language-models/#sample1
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s I Sequence to Sequence (Encoder-Decoder) Models
PROMPT:

In a shocking finding, scientist discovered a herd of unicoms living in a remote, previously
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicoms spoke perfect English.

MODEL COMPLETION:

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is
finally solved.

https://openai.com/blog/better-language-models/#sample1
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7 1 Sequence to Sequence (Encoder-Decoder) Models

Deep learning models that take a sequence of items and outputs another sequence of
items

= Generic input-output (sequence-sequence) format

= Successful across disciplines (machine translation, image captioning, etc)

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

Je suis étudiant > ENCODER DECODER

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



s I Sequence to Sequence (Encoder-Decoder) Models

Deep learning models that take a sequence of items and outputs another sequence of
items

= Generic input-output (sequence-sequence) format

= Successful across disciplines (machine translation, image captioning, etc)
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https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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11 | Transformer Architectl
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16 | Transformer Architecture Overview

DUTPUT[I am a student]
A
(F' {
ENCODER e DECODER
. e
& 4
f i
ENCODER DECODER
o .
& A
F i
ENCODER DECODER
. e
4 4
i i
ENCODER DECODER
o A
4 i
f f
ENCODER DECODER
. e
A A
F i
ENCODER DECODER
\ A\
\_ A

suis étud‘ant]




17 1 Transformer Complexity

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional Ok -n-d?) O(1) O(logr(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r




s | Embedding and Positional Encoding

Standard embedding lookup (weight matrix vocabulary index)

= Embedding weights shared between encoder input, decoder teacher forcing, and tar_ > -8
sequence
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Standard embedding lookup (weight matrix vocabulary index) = [
= Embedding weights shared between encoder input, decoder teacher forcing, and tar_ = .=

sequence

Positional encoding
= RNNs have position encoded in architecture - forward feeding hidden state
= Want to encode information about word position in input sequence
= Want to handle variable length inputs, but be consistent across all sequences
= Want to be able to predict on sequences with length longer than anything seen in training |
|



20 I Embedding and Positional Encoding

Standard embedding lookup (weight matrix vocabulary index)

= Embedding weights shared between encoder input, decoder teacher forcing, and tar_ = .=
sequence

Positional encoding
= RNNs have position encoded in architecture - forward feeding hidden state
= Want to encode information about word position in input sequence
= Want to handle variable length inputs, but be consistent across all sequences
= Want to be able to predict on sequences with length longer than anything seen in training

PE pos,2i) = sin(pos/100002t/dmodet)
PE pos2i+1) = COS(pOS/lOOOOZi/dmodez)
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22 I Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

The animal didn't cross the street because it was too tired
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Core concept: words in a sentence are related to each other in a complex manner

The animal didn't cross the street because it Was too tired
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Core concept: words in a sentence are related to each other in a complex manner
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Core concept: words in a sentence are related to each other in a complex manner == |
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Core concept: words in a sentence are related to each other in a complex manner
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The animal didn't cross the street because it was too tired
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29 | Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

& N

The animal didn't cross the street because it was too tired

__j/

Self-attention is used to represent these complex dependencies

MMMMMM
Attention fIf

Erendien




The

didn’t
Cross
the

street

because
it

was

too

tired

The
animal
didn’t
Cross
the

because
it
was

The
animal
didn’t
Cross
the
street
because

was

too
tired

The
animal
didn’t
Cross
the
street

because

UOIU3lY-}I3S | ot




31 | Self-Attention

Intuition:

Query: current token

Key: tokens to
compare with (all
tokens in input
sequence)

Value: output (to be
scaled by softmax of
Q, K operation)




32 | Self-Attention: Intuition
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;3 | Self-Attention: Intuition
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35 | Self-Attention: Intuition
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;7 | Self-Attention: Matrix Form

Attention(Q, K, V) = softmax(2E_yv
ention(Q, K, V') = softmax
Vg
Q KT
V

softmax( I )




33 | Multi-Headed Attention

Single attention layer doesn’t allow for separate representations of word relationships
= E.g., want to represent word context, part of speech, constituency parse, etc.

Solution: multiple attention “heads”
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s | Multi-Headed Attention

ATTENTION
HEAD #0

Thinking

Machines

\4

ATTENTION
HEAD #1

Calculating attention separately in
eight different attention heads

ATTENTION
HEAD #7




41 I Multi-Headed Attention

Zo 2Z1 £ Zy Is




4 I Multi-Headed Attention
X

Thinking
Machines




43 | Multi-Headed Attention: Implementation Details

Positional
Encoding

Multi-Head
Attention

Input
Embedding

Inputs

Encoder attention:

= Q, K, V matrices are all the same (different
weight matrices). For multiple heads,
reshape output from matrix multiplication

= |.e., if word embedding dimension is 512 and
there are 8 heads, calculate X\W™Q = Q
(dimension 512), reshape into 8 chunks
(result dimension 64 for each head)

= E.g., (seqg_len, 512) => (seq_len, 64, 8)

= Thus, embedding dimension must be
divisible by number of heads




44 | Layer Normalization

Batch Normalization
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s | Feed Forward, Encoder Sublayers

Results of multi-headed attention + layer normalization are fed to
fully connected feed forward network (2 layers)
= |nput/output dimension 512, inner dimension 2048
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s | Feed Forward, Encoder Sublayers

Results of multi-headed attention + layer normalization are fed to
fully connected feed forward network (2 layers)
= |nput/output dimension 512, inner dimension 2048

Encoder sublayers
= Ot sublayer, input is embedding of input sequence
= All other sublayers, input is output of feed forward network
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47 | Encoder and Decoder Sublayers
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s | Encoder and Decoder Sublayers
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Decoder Teacher Forcing and Masked Attention

Teacher forcing ( uoifar )
= Want to be able to use previously seen words in the target (( Add&‘i\lorm J
sentence to inform future words B FFeedd
orwar
= During training, shift the target sentence right by one —/|
position (so we don’t have information of future words) ) | [ e |
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so | Decoder Teacher Forcing and Masked Attention

Teacher forcing

= Want to be able to use previously seen words in the target
sentence to inform future words

= During training, shift the target sentence right by one
position (so we don’t have information of future words)

Masked attention

= Same process as encoder attention (Q, K, V based on
teacher-forced target sentence), but masked so attention
heads do not attend to future words
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2 | Decoder Final Steps

= Encoder-decoder attention unit gets normalized, put into
feed forward network (same dimensions as encoder FFN),
repeated N times for each decoder sublayer

= Final output of decoder sublayer put through fully
connected linear layer, into softmax over vocabulary
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s | Miscellaneous Training Details

Loss function
= | abel-smoothed cross-entropy

= Rather than an output target of [1, O, O, ..., O] (for k size vocabulary), set the target to [1-e,
e/(k-1), e/(k-1), ..., &/(k-1)]

= Form of regularization
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Loss function
= | abel-smoothed cross-entropy
= Rather than an output target of [1, O, O, ..., O] (for k size vocabulary), set the target to [1-e,
e/(k-1), e/(k-1), ..., /(k-1)]
= Form of regularization

Warmup and LR decay

= Adam optimizer

—0.5 —1.5)

" lr = dyodel + min(stepnum %>, stepnum * warmupsteps
= Linearly increase LR for warmupsteps, decrease proportional to inverse square root of stepnum
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Loss function
= | abel-smoothed cross-entropy

= Rather than an output target of [1, O, O, ..., O] (for k size vocabulary), set the target to [1-e,
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= Form of regularization

Warmup and LR decay

= Adam optimizer

—0.5 —1.5)

" lr = dyodel + min(stepnum %>, stepnum * warmupsteps
= Linearly increase LR for warmupsteps, decrease proportional to inverse square root of stepnum

Shared embedding weights in input, target, and output



s7 I Miscellaneous Training Details

Loss function
= | abel-smoothed cross-entropy

= Rather than an output target of [1, O, O, ..., O] (for k size vocabulary), set the target to [1-e,
e/(k-1), e/(k-1), ..., &/(k-1)]

= Form of regularization

Warmup and LR decay

= Adam optimizer

—0.5 —1.5)

" lr = dyodel + min(stepnum %>, stepnum * warmupsteps
= Linearly increase LR for warmupsteps, decrease proportional to inverse square root of stepnum

Shared embedding weights in input, target, and output

Dropout at each sublayer output and embeddings
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s I Determining Predicted Words

<END:>
oy (509%)
(30%) meowed <END=>
- (50%) (100%)

Greedy decoding

*(25%) <END>

= Predict word that has maximum dog (80%)

probability according to model (70%) ™~_ barked <END>
_—

Beam search G e

<END=>

= Expand all possible next word cat " (50%)
predictions, keep k most likely , {2?%}<' . o
sequences generated. Continue until // e —-'ZEDP:}E;
most probable sequence contains the e (50%) '[ )

<END> token. (75%]) <END>
dog (75%)

(73%) ™ barked <END>
(25%) > (100%)

/\

https://geekyisawesome.blogspot.com/2016/10/using-beam-search-to-generate-most.html
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Experimental Results

Translating C Source Code to English
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Data
= C functions and associated comments extracted using clang

= ~1.4M train, 338k validation, 271k test
= Duplicates removed prior to preprocessing
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Tokenization
= Source code: split on variable names, language keywords, operators, punctuators

= Comments: replace numbers with special token, remove punctuation, normalize
whitespace
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s I Source to English Model

Data
= C functions and associated comments extracted using clang

= ~1.4M train, 338k validation, 271k test
= Duplicates removed prior to preprocessing

Tokenization
= Source code: split on variable names, language keywords, operators, punctuators

= Comments: replace numbers with special token, remove punctuation, normalize
whitespace

Models trained
= | STM, transformer, fconv, dynconv, transformer with back-translation

BLEU (bilingual evaluation underscore) as evaluation metric
= Best score: 18.26 using transformer



s I Source to English Model Results

v ) 1f ( x NUMBERTOKEN y NUMBERTOKEN x target width vy
target height ) return FIELDOUTOFBOUNDS ; return *
calcFieldAddress ( target , x , v ) ;

TGT: Gets what i1s on a given field of the board returns
FIELDXYZ constant

HYP: Returns the value of the field at the given
coordinates

ORIG: char getField ( struct board * target , 1int x , 1nt




s7 I Source to English Model Results

ORIG: static void makedevice ( char * path , int delete )
const char * devicename ; int major , minor , type , len ;
int mode NUMBERTOKEN ; uidt uid NUMBERTOKEN ; gidt gid
NUMBERTOKEN ; char * devmajmin path strlen ( path ) ; ..rest
of code omitted for slide brevity

TGT: mknod 1n dev based on a path like sysblockhdahdal

HYP: mknod in dev based on a path like
sysblockhdahdahdahdahdahdahdahdahdahdahdahdahdal based on a
dev based on a dev based on a path like
sysblockhdahdahdahdal
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s I Open Source Implementations

https://github.com/tensorflow/tensor2tensor

https://github.com/pytorch/fairseq
https://github.com/0OpenNMT/0penNMT-py
https://github.com/huggingface/pytorch-pretrained-BERT




70 | Additional Learning Resources

http:/ /jalammar.github.io/illustrated-transformer/

http://nlp.seas.harvard.edu/2018/04/03/attention.html

https:/ /towardsdatascience.com/how-to-code-the-transformer-in-pytorch-
24db27c8f9ec




