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2 I Sequence to Sequence (Encoder-Decoder) Models

a little girl sitting on a bench holding an a herd of sfa grazing on a lush green
umbrella.

a yellow topped with meat and
broccoli.

two birds sitting on top of a tree branch.

a zebra standing next to a zebra in a dirt
field.

an elephant standing next to rock wall.

a close up of a fire hydrant on a sidewalk.

a stainless steel oven in a kitchen with wood
cabinets.

.-
a man ndmg a bike down a road next to a

Lu et aL (2017)

bc7dri of water.



3 Sequence to Sequence (Encoder-Decoder) Models

1 
Enna; stage Decoding stage

https://vsubhashini.github.io/s2vt.html



4 Sequence to Sequence (Encoder-Decoder) Models

PROMPT:

In a shocking &ding, scientist disco vered a herd of unicorns living in a remote, pre viously
unexp/ored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicorns spoke perfect Eng11:517.

https://openai.com/blog/better-language-models/#sample1
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In a shocking &ding, scientist disco vered a herd of unicorns living in a remote, pre viously
unexp/ored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicorns spoke perfect Eng11:517.

MODEL COMPLETION:

The scientist named the population, after their distinctive horn, Ovid's Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.
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6 Sequence to Sequence (Encoder-Decoder) Models

PROMPT:

In a shocking &ding, scientist disco vered a herd of unicorns living in a remote, pre viously
unexp/ored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicorns spoke perfect Eng11:517.

MODEL COMPLETION:

The scientist named the population, after their distinctive horn, Ovid's Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is
finally solved.

• • •

https://openai.com/blog/better-language-models/#sample1



7 Sequence to Sequence (Encoder-Decoder) Models

Deep learning models that take a sequence of items and outputs another sequence of
items

Generic input-output (sequence-sequence) format

Successful across disciplines (machine translation, image captioning, etc)

Je suis étudiant
_J

111111.

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

ENCODER DECODER

https://jalammargithub.io/visuafizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



8 Sequence to Sequence (Encoder-Decoder) Models

Deep learning models that take a sequence of items and outputs another sequence of
items

Generic input-output (sequence-sequence) format

Successful across disciplines (machine translation, image captioning, etc)
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I am a student

https://jalammargithubio/visuafizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



9 Transformer Architecti
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10 Transformer Architect!
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11 Transformer Architect!
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12 Transformer Architecti
 1

Masked
Mutti-Head
Attention

p11.5.7tly-ri

Output
bedding
.

Em  

C;s1'giu)-5,



1 3 Transformer Architect!
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14 Transformer Architecti
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16 Transformer Architecture Overview

OUTPUT I am a student
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17 Transformer Complexity

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention 0(7/2 • d) 0 (1) OM
Recunent 0(n • d2) 0 (TO 0 (n)
Convolutional 0 (k • n • d2 ) 0 (1) 0(logk(n))
Self-Attention (restricted) 0 (r • n • d) 0 (1) 0(n/r)



18 Embedding and Positional Encoding

Standard embedding lookup (weight matrix vocabulary index)
Embedding weights shared between encoder input, decoder teacher forcing, and tar,_

sequence



19 Embedding and Positional Encoding

Standard embedding lookup (weight matrix vocabulary index)
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sequence
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Positional encoding
• RNNs have position encoded in architecture - forward feeding hidden state

• Want to encode information about word position in input sequence

Want to handle variable length inputs, but be consistent across all sequences

Want to be able to predict on sequences with length longer than anything seen in training



20 Embedding and Positional Encoding

Standard embedding lookup (weight matrix vocabulary index)

ka.

Feed
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Embedding weights shared between encoder input, decoder teacher forcing, and tail,
sequence

Positional encoding
• RNNs have position encoded in architecture - forward feeding hidden state

• Want to encode information about word position in input sequence

Want to handle variable length inputs, but be consistent across all sequences

Want to be able to predict on sequences with length longer than anything seen in training
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21 I Embedding and Positional Encoding
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22 Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

The animal didn't cross the street because it was too tired
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27 Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

--.- -----
The animal didn't cross the street because it was too tire '



28 Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

--.- -----
The animal didn't cross the street because it was too tire '



29 Self-Attention

Core concept: words in a sentence are related to each other in a complex manner

--.- ------
The animal didn't cross the street because it was too tire '

Self-attention is used to represent these complex dependencies



The The

animal

didn't didn't

cross cross

the the

street street

because because

it

was was

too too

tired tired

e

anima

didn't

cross

the

street

because

it

was

too

wide

The

animal

didn't

cross

the

street

because

it

was

too

wide



31 I Self-Attention

Intuition:

Query: current token

Key: tokens to
compare with (all
tokens in input
sequence)

Value: output (to be
scaled by softmax of
Q, K operation)
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32 1 Self-Attention: Intuition
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33 Self-Attention: Intuition
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34 Self-Attention: Intuition
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35 Self-Attention: Intuition
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36 Self-Attention: Matrix Form
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37 Self-Attention: Matrix Form
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38 Multi-Headed Attention

Single attention layer doesn't allow for separate representations of word relationships
E.g., want to represent word context, part of speech, constituency parse, etc.

Solution: multiple attention "heads"



39 Multi-Headed Attention
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40 Multi-Headed Attention
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42 I Multi-Headed Attention
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43 Multi-Headed Attention: Implementation Details

Positional
Encoding

Multi-Head
Attention  1
Input

Embedding

Inputs

Encoder attention:
Q, K, V matrices are all the same (different
weight matrices). For multiple heads,
reshape output from matrix multiplication

l.e., if word embedding dimension is 512 and
there are 8 heads, calculate XWAQ = Q
(dimension 512), reshape into 8 chunks
(result dimension 64 for each head)

E.g., (seq_len, 512) => (seq_len, 64, 8)

Thus, embedding dimension must be
divisible by number of heads



44 I Layer Normalization

Batch Normalization 
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45 Feed Forward, Encoder Sublayers

Results of multi-headed attention + layer normalization are fed to
fully connected feed forward network (2 layers)

Input/output dimension 512, inner dimension 2048
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46 Feed Forward, Encoder Sublayers

Results of multi-headed attention + layer normalization are fed to
fully connected feed forward network (2 layers)

Input/output dimension 512, inner dimension 2048

Encoder sublayers
Oth sublayer, input is embedding of input sequence

All other sublayers, input is output of feed forward network
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47 Encoder and Decoder Sublayers

OUTPUT I am a student
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48 Encoder and Decoder Sublayers
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49 Decoder Teacher Forcing and Masked Attention

Teacher forcing
Want to be able to use previously seen words in the target
sentence to inform future words

During training, shift the target sentence right by one
position (so we don't have information of future words)
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50 Decoder Teacher Forcing and Masked Attention

Teacher forcing
Want to be able to use previously seen words in the target
sentence to inform future words

During training, shift the target sentence right by one
position (so we don't have information of future words)

Masked attention
Same process as encoder attention (Q, K, V based on
teacher-forced target sentence), but masked so attention
heads do not attend to future words
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51 Encoder-Decoder Attention

K, V are outputs from the final encoder sublayer

Q is output from masked attention unit
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52 Decoder Final Steps

Encoder-decoder attention unit gets normalized, put into
feed forward network (same dimensions as encoder FFN),
repeated N times for each decoder sublayer

Final output of decoder sublayer put through fully
connected linear layer, into softmax over vocabulary



Model Training



54 Miscellaneous Training Details

Loss function
Label-smoothed cross-entropy

Rather than an output target of [1, 0, 0, ..., 0] (for k size vocabulary), set the target to [1-e,
e/(k-1), e/(k-1), ..., e/(k-1)]

Form of regularization
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Loss function
Label-smoothed cross-entropy

Rather than an output target of [1, 0, 0, ..., 0] (for k size vocabulary), set the target to [1-e,
e/(k-1), e/(k-1), ..., e/(k-1)]

Form of regularization

Warmup and LR decay
Adam optimizer

lr = dmodel-CL5 * min (stepnum- °.5 , stepnum * warmup step s-1.5)

Linearly increase LR for warmupsteps, decrease proportional to inverse square root of stepnum
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Loss function
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57 Miscellaneous Training Details

Loss function
Label-smoothed cross-entropy

Rather than an output target of [1, 0, 0, ..., 0] (for k size vocabulary), set the target to [1-e,
e/(k-1), e/(k-1), ..., e/(k-1)]

Form of regularization

Warmup and LR decay
Adam optimizer

lr = dmodel-CL5 * min (stepnum- °.5 , stepnum * warmup step s-1.5)

Linearly increase LR for warmupsteps, decrease proportional to inverse square root of stepnum

Shared embedding weights in input, target, and output

Dropout at each sublayer output and embeddings



Model Prediction



59 Model Prediction Visualization



60 Determining Predicted Words

Greedy decoding
Predict word that has maximum
probability according to model

Beam search
Expand all possible next word
predictions, keep k most likely
sequences generated. Continue until
most probable sequence contains the
<END> token.

<START

the

(75%)

<END>

(100%)

barked <END>

(20%) (101:I%)

<END>

(50%)

meowed <END>

(50%) (100.%)

<END>

(75%)

barked <END>

(25%) (100%)

https://geekyisawesome.blogspot.com/2016/10/using-beam-search-to-generate-most.html
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Translating C Source Code to English



62 Source to English Model

Data
C functions and associated comments extracted using clang

-1.4M train, 338k validation, 271k test

Duplicates removed prior to preprocessing
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Data
C functions and associated comments extracted using clang
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Tokenization
Source code: split on variable names, language keywords, operators, punctuators

Comments: replace numbers with special token, remove punctuation, normalize
whitespace
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Duplicates removed prior to preprocessing

Tokenization
Source code: split on variable names, language keywords, operators, punctuators

Comments: replace numbers with special token, remove punctuation, normalize
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Models trained
LSTM, transformer, fconv, dynconv, transformer with back-translation



65 Source to English Model

Data
C functions and associated comments extracted using clang

—1.4M train, 338k validation, 271k test

Duplicates removed prior to preprocessing

Tokenization
Source code: split on variable names, language keywords, operators, punctuators

Comments: replace numbers with special token, remove punctuation, normalize
whitespace

Models trained
LSTM, transformer, fconv, dynconv, transformer with back-translation

BLEU (bilingual evaluation underscore) as evaluation metric
Best score: 18.26 using transformer



66 Source to English Model Results

ORIG: char getField ( struct _ooarc * tarc-et , int x , int

y ) if ( x NUMBERTOHEN y NUMBERTOKEN x tarc-et width y

tarc-et height ) return FIELDOUTOFBOUNDS ; return *

calcFieldAddress ( tarc-et , x , y ) •I

TGT: Gets what is on a given field of the ooarc returns

FIELDXYZ constant

HYP: eturns the value of the field at the given

coordinates



67 Source to English Model Results

ORIG: static void makedevice ( char * path , int delete )

const char * devicename ; int major , minor , type , len ;

int mode NUM3ERTOKEN ; uidt uid NUMBERTOKEN ; gidt gid

NUMBERTOKEN ; char * devmajmin Path strlen ( path ) ; ...rest
of code omitted for slide brevity

TGT: mknod in dev =oased on a path like sysolockhdahdal

HYP: mknod in dev based on a Path like

sysblockhdahdahcahdahdahdahdahdahdahdahdahdahdal based on a

dev based on a aev based on a path like

sysblockhdahdahcahda1
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69 Open Source Implementations

https://github.com/tensorflow/tensor2tensor

https://github.com/pytorch/fairseci 

https://github.com/OpenNMT/OpenNMT-py 

https://github.com/huggingface/pytorch-pretrained-BERT



70 Additional Learning Resources

http://jalammar.github.io/illustrated-transformer/ 

http://nlp.seas.harvard.edu/2018/04/03/attention.html 

https://towardsdatascience.com/how-to-code-the-transformer-in-pytorch-
24db27c8f9ec 


