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Current separation distances for liquid hydrogen systems in the U.S.
are based on consensus rather than a comprehensive scientific basis

Compressed H2 storage

• Previous work by Sandia led to science-
based gaseous H2 separation distances

Liquid H2 storage

• Even with credits for insulation and fire-
rated barrier wall, 75 ft. offset to building
intakes and parking make footprint large
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Sandia H2 Safety Codes and Standards research includes coordinated
activities that facilitate deployment of hydrogen technologies

• Hydrogen Behavior

— Develop and validate scientific models to accurately
predict hazards and harm from liquid releases, flames,
etc.

• Quantitative Risk Assessment, tools R&D

Develop integrated methods and algorithms enabling
consistent, traceable, and rigorous QRA (Quantitative
Risk Assessment) for H2 facilities and vehicles

• Enable Hydrogen Infrastructure through Science-
based Codes and Standards

— Apply QRA and behavior models to real problems in
hydrogen infrastructure and emerging technology

— Facilitate updates to NFPA 2 through deep technical
analyses
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A variety of validated physical models are used in HyRAM valid
models for LH2 are needed
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7-00„0,

helium

Our laboratory experiment uses a heat exchanger to liquefy hydrogen
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• Gaseous hydrogen is liquefied using
liquid nitrogen and liquid helium

• Flow rate is measured as a gas using
a thermal mass flow meter

• Nozzle pressure is controlled
upstream of heat exchanger

• Silicon diode temperature sensors
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We can reach nozzle temperatures below 40 K
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--w--
Moisture and air freeze on the nozzle as the temperature drops

Air and moisture icing around liquid H2 jet column — improves dispersion and

reduces hazard distance
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H2-N2 Raman imaging and particle imaging velocimetry are used to
measure concentration, temperature, and velocity of cryogenic H2
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The ColdPLUME model shows good agreement with the data
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The diagnostic will be modified to study LH2 vents and large-scale
experiments

- Demonstrated acceptable
signal to noise for large-scale
diagnostic

• Uniquely fast optics enable
collection of small Raman
signal

Imaged hydrogen from 40
foot standoff distance in the
laboratory

• Observed nearly 30 degree
field of view (20 ft scene from
40 ft distance)
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We have strategies for illumination of large-scale scene

• On-camera accumulation will provide a complete snapshot of the plume with
reasonable resolution

• Effective background light suppression is key (both sunlight and illumination source that
reflects off of condensed water vapor)

— Time gating

— Spectral gating

• High-powered light source required to
excite as many molecules as possible

- High-power laser scanning in space

- Concentrations measured along a series of
lines

- 1st generation: galvanometer scanning a
10 Hz laser

- 2nd generation: high speed polygonal
scanning using pulse-burst laser
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laser
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We are working with our colleagues at LLNL to perform LH2 vent stack
releases

• Additional temperature sensors along
vent stack to validate internal flow
model

• May require additional plumbing
changes

• Replacing bull-horn with single outlet to
enable model comparisons

• Variations in temperature, flow-rate,
and external conditions (e.g. wind) in
experiments

• Comparison to NREL sensor approach
for some tests

• Late summer 2019

Petitpas & Aceves, IJHE 43: 18403-18420: 
https://doi.org/10.1016/j.ijhydene.2018.08.097

➢ Heaters and pump enable a wide range of
flow rates and temperatures at vent stack

➢ Proximity to SNL enables experiments to be
run on short notice (when weather is right)
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Remaining challenges: Executing outdoor experiments and planning
additional large-scale experiments
Ensure safety when operating laser outdoors

• follow ANSI Z136 standard

• Non-visible (UV light) helps

Perform experiments during a range of weather conditions

• High- and low-wind conditions

• Humidity differences (potentially with precipitation)

Need experiments to characterize:

• Pooling

• Evaporation from LH2 pools

• Interactions of plumes with ambient

Solution:

• Well-controlled experiments at Sandia facilities

• Partner with others, applying diagnostic at remote locations (European colleagues)

YAWN- MST COMPLEX
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Ignited measurements (heat flux) are also important for calculating
safety we have studied round and non-round nozzles

Measuring whether the round nozzle is worst-
case scenario as assumed

Aspect Ratios: 2-64

• Nozzle pressures: 1.5-6 bar

• Nozzle temperatures: 48-295K
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Hydrogen flames have less visible emission than other fuels

These experiments were conducted at SRI International in collaboration with Sandia National Laboratories Combustion Research Facility
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The radiant fraction and heat flux from hydrogen flames is also lower than
for hydrocarbons

• Lab-scale measurements of
hydrogen heat flux for round and
non-round nozzles

• Supporting the CGA G-5.5 testing task
force measurements of LH2 vent stack
flames

— Calculation of heat flux from vent stacks in
CGA G-5.5 assumes high radiant fraction

— Radiant fraction for hydrogen much lower
than other gases (no carbon that makes
soot)

— Making measurements of vent stack
flames to improve heat flux calculations
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The ignition distance/light-up boundary is an important parameter for
safety need to keep ignition sources away from leaks

P = 1 bar, T = 290 K, distance = 85 mm P = 1 bar, T = 37 K, distance = 325 mm
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D = 01.901mm

Flow = 100slm H2 :;\\

A laser spark ignition is used to precisely determine the light-up
boundary
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The ignition distance for cryogenic hydrogen scales in the same
manner as for warm hydrogen

➢ for a given mass flow, ignition of cold H2
occurs much further from the release point

➢ a larger ignition distance is observed at a
lower mass flow rate of hydrogen for the
colder jets

➢ Ignition distance linearly varies as a
function of effective diameter (same as
literature reported room temperature
releases)
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A model for internal, phase-changing flow is necessary to calculate
plume/flame boundary conditions
• Flow out a vent stack is no longer at LH2 temperature

• Valves, piping, and other components represented as an electrical network in Sandia's MassTran
model

• Need details (heat transfer rate, component orifice sizes, etc.) to accurately calculate
conditions at release point
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The validated models tie into the QRA process for LH2 systems
gaps remain

some

• Selection of a typical system

• LtdIC ucnd ror 1_112 sysLems

• Calculation of leak frequency (function of size)

• Models for physical behaviors and consequences:

— Unignited dispersion

• ruum, g, vaporization

• Interaction with the environment (e.g. wind)

Ignited behavior

• Flame radiation

• Overpressure

• Harm models (from consequence models)

• Determination of acceptable risk

• Planning pooling and vaporization

experiments at well-controlled Sandia

facilities

• Collaborations welcome (take

diagnostics to other locations)
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Summary
W--

• Lab-scale experiment liquefies gaseous hydrogen with liquid nitrogen and liquid helium

• Cryogenic hydrogen dispersion measured using simultaneous Raman scattering and particle
imaging velocimetry

• Raman diagnostic being scaled for larger experiments

— Camera remains fixed

— Laser illumination scanned in space to create 3-D measurements of concentration

• Measurements of reacting hydrogen also made at lab and Iarger scale

— Ignition distance using Iaser spark

— Radiant fraction and heat flux

• Round and high aspect ratio nozzles at lab scale

• Liquid hydrogen vent stacks with CGA G-5.5 testing task force

• Validating an model for calculation of internal flows (e.g. from LH2 tank to vent stack)
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QUESTIONS?

Thanks for funding support from:
• United States Department of Energy, Energy Efficiency &Renewable Energy, Fuel Cell Technologies Office, Safety, Codes,

and Standards subprogram managed by Laura Hill

• Industry support including the OEM Group at the California Fuel Cell Partnership, Linde, and Shell

And thanks to the hydrogen research team at Sandia including:
• Jon Zimmerman (H2 program manager), Bikram Roy Chowdhury (experiments), Chris LaFleur (Risk, Codes & Standards) , Alice Muna

(Risk), Brian Ehrhart (H2FIRST), Gaby Bran-Anleu (H2FIRST), Scott Bisson (optics), Tony McDaniel (experiments), Rad Bozinoski

(modeling), Myra Blaylock (CFD), Chris San Marchi (materials/metal interactions with H2), Joe Ronevich(materials/metal interactions
with H2), John Reynolds (HyRAM), Nalini Menon (polymer interactions with H2)

• Previous researchers: Pratikash Panda, Joe Pratt, Katrina Groth, Isaac Ekoto, Adam Ruggles, Bob Schefer, Bill Houf, Greg Evans, Bill

Winters

W-
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Updated Python modeling packages (including CoIdPLUME)

• Release of HyRAM 2.0 as open

source software

• Validated version of CoIdPLUME

included

• Updated physics and QRA

submodules

• Python package implementation

with documentation

In [1]: from a1tRAM import phys

In [2]: H2 = phys.Gas(T = 40, P = 5e5);

air = phys.Gas(T = 295, P = 101325, species

['air']);

orifice = phys.Orifice(d = 0.001);

release = phys.Jet(H2, orifice, air);

release.solve(Ymin = .001);

release.plot_moleFrac_Contour();

solving for the plume... done.
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Schlieren imaging

• Measures gradients in density (1st derivative)

• For quantitative measurements:

— Calibrated schlieren — uniform light source, light intensity quantifies refraction angles

— Rainbow schlieren — color cutoff filter in place of knife edge, color quantifies refraction angles

— Diverging light background oriented schlieren (BOS) — pixel offset from original position determines
refraction angle

• BOS (using sunlight) possible for H2, however:

— Need semi-ordered background

— Density gradients caused by both temperature and composition

— Line-integrated, total refraction measured, extremely complex to quantify, even with tomography

— No symmetries for an open plume
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Schlieren imaging is used to characterize near-nozzle region and other
regions with high density gradients

exhaust hood

collimating
pulsed iris lens
LED

50 bar room temperature H2 release
1()

focusing 
6

collection lens E

lens knife / ICCD camera
edge

0
mean image

—4 —2 0 2

x (mm)

4 —4 —2 0 2 4

x (mm)



Sandia National Laboratories tFCHydrogen and Fuel Cells Program

Fluorescence
W—

• OH fluorescence possible, but only for flames, not unignited H2

• Unignited concentration measurement would require seeding hydrogen with fluorescent
tracer material (aliphatic ketones like acetone or 3-pentanone often used)

— For cryogenic H2, no gaseous or liquid options at LH2 temperatures

— Very challenging to get solid particles dispersed in liquid, and get them to follow gas flow during
phase change
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Absorption

• H2 lacks strong absorption features (unlike CH4)

• Would require illumination and light collection on opposite sides of plume (or mirror to reflect
light)

• Line-integrated absorption, to quantify, requires multiple angles, tomography
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Rayleigh scattering
H2 Rayleigh cross-section :•-• 10-27 cm2

• Planar laser Rayleigh scattering used at Sandia for
atmospheric temperature hydrogen releases

• Scatter proportional to number density; variations are
caused by both composition and temperature

• For warm releases, always measured in atmospheric
temperature region to eliminate this variable and enable
composition quantification

• Not feasible to wait until cryogenic plume has warmed
back to atmospheric temperature

• Rayleigh imaging will have signal overwhelmed by Mie
scattering off of condensed entrained moisture in
cryogenic plume

• Filtered Rayleigh has insufficient Mie scattering
(condensed, entrained moisture) light suppression (0a=3)

exhaust hood

Nd:YAG Laser
wavelength

sheet
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Planar Raman imaging works in a lab setting
H2 Raman cross-section 10 3° cm2

Signals are low

— High powered light source required (-700
mJ/pulse @ 532nm, 12mm tall sheet)

— Fast optics for collection (F/1.2)

• Large Raman shift enables higher optical
density filters to remove unwanted Mie
scatter

— 10 nm FWHM bandpass filters at
wavelengths of interest

OD of 12 @ all wavelengths

OD of 18 @ 532 nm

• Signals for other Raman lines (rotational,
etc.) low at cryogenic temperatures

Nd:YAG (Raman)
laser (532 nm)

PIV laser

//sheet forming and
beam combining optics
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& 532nm notch
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--\, PIV camera

m n
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\

lascr shcct

beam dump

H2: shift of 4161 cm-1 (532nm 683 nm, 355nm 416 nm)

N2: shift of 2331 cm-1 (532nm 607 nm, 355nm 387 nm)
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Quantification of Raman signals

• Signal is proportional to number density of 4 IH2
Eq. 1: = = K -

, XH2+ unknown 1

molecules /0 H2 T + unknown 2

• We use the ideal gas law to relate temperature measured values calibration constants

2 T
and mole fraction to number density Eq. 2: 

/N2 
= ...,b. XN21- unknown 3

ntoraPc = PtotalEx /0 
" 

based on the
V RT I composition of air

— other equation of state could be used but may not Eq. 3: 1 = xH2 + 1.28.xN2
have analytical solution

• Cross-section dependence matters for high-T
(flames), but not low-T (cryogenic)
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Raman has been used in a lab-scale campaign to measure releases
from =1 mm orifices
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