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Notices

This is a technical presentation that does not take into account the contractual limitations
under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level
Radioactive Waste (Standard Contract) (10 CFR Part 961). Under the provisions of the
Standard Contract, DOE does not consider spent nuclear fuel in canisters to be an
acceptable waste form, absent a mutually agreed-to contract amendment. To the extent
discussions or recommendations in this presentation conflict with the provisions of the
Standard Contract, the Standard Contract provisions prevail.

Disclaimer: This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any agency thereof,
nor any of their employees, makes any warranty, expressed or implied, or assumes any
legal Iiability or responsibility for the accuracy, completeness, or usefulness, of any
information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S.
Government or any agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the U.S. Government or any agency thereof.
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Outline

• Background on DPCs in the U.S.

• Previous DPC disposal feasibility studies

• DPC disposition R&D and implementation strategy

• Approach to injectable fillers

• Exclusion of postclosure criticality on low-
consequence, background
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Background on DPCs in the U.S.
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DPC Terminology

• Canister E Sealed, unshielded vessel containing spent fuel, for use with
various overpacks. Typically welded closure.

• Dual-Purpose Canister E Dry storage canister that has been, or can be,
licensed by the NRC for transportation also. Three major U.S. vendors:
Transnuclear/Orano, Holtec, and NAC International.

• Storage Cask E Shielded container for stationary storage. Typically
stationary, with bolted closure.

• Transportation Cask E Shielded container for transporting SNF in
canisters (or as "bare" fuel assemblies). Bolted closure.

• Transfer Cask E Used locally to transfer unshielded canisters from fuel
pools to storage casks, or from storage casks to transport casks.

• Multi-Purpose Canister E A canister that can be licensed for storage,
transportation, and disposal.
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Typical DPC Canister/Cask System NUHOMS®

• NUHOMS® (TransNuclear/Orano) horizontal storage systems

• -1/3 of existing U.S. DPC fleet

• NUHOMS line varies with capacity, PWR & BWR fuel types

• Shell is welded SS304; basket and plug materials vary

Guide Sleeve

Spacer Disc
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\ Support Ring — 
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\. / — Support Rod

Vent and
Siphon Port

Vent and
Siphon Plugs

Top Shield
Plug
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Cover
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Cover
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Typical, Recent Large DPC System
Designs — Magnastor®

• Magnastor® DPC system (NAC
International)

• Capacity 37-PWR (or BWR equiv.)

• Thermal limits: 35.5 kW
storage/24 kW transport

• Fuel cool time >4 yr out-of-reactor

• Design basis: burnup credit
analysis, heat rejection features,
transport needs.

Pictures and data from
NAC International
website
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TSL-CALVIN* Projection of SNF Accumulation
in Pools and Dry Storage (MTU)
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Assumptions:

• Life extensions (to 60 yr) for
the current operating fleet

• Plant closures as currently
announced

• Future DPCs are same types
used in 2018

DPCs > 50% of
Total SNF by -2023
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Year
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* Nutt et al. 2012. Transportation storage Logistics Model — CALVIN (TSL-CALVIN). FCRD-NFST-2012-000424.
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Potential Benefits from Direct Disposal of
SNF in DPCs of Existing Designs

• Less collective worker dose
— Up to —250 mrem/canister to load DPCs

— Also re-packaging by analogy

• Less LLW produced (DPC hulls, -12 m3 each)

• Reduce the complexity of fuel management operations
— Additional facilities

— More transport

— Staging and re-blending of spent fuel in new canisters

• Reduce risk from fuel damage after prolonged storage

• Significant financial savings up to $20B in the U.S.
— 10 to 20% of overall geologic disposal cost for commercial SNF
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DPC Direct Disposal Cost Perspective
(Rough-Order-of-Magnitude)

• "Sunk" cost (present and future):
- Procure, load and store DPCs $100,000/MTU

- Additional cost to continue through -2055 $11B

• Future costs for re-packaging all fuel:
- Unload DPCs $10,000/MTU

- Dispose of DPC hulls (-8,000 total) $150,000 each

- Re-canister for disposal (minimum) $100,000/MTU

- Disposal overpack savings (average) $25,000/MTU

- Total for 140,000 MTU -$20B

Substantial cost savings could be achieved by: 1) direct disposal
of all DPCs; or 2) direct disposal of some DPCs and early

transition to multi-purpose disposable canisters. 
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Previous DPC Disposal Feasibility Studies
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DPC Direct Disposal Concepts

• Shaft or ramp transport
• ln-drift emplacement
• Extended aging or repository

ventilation (except salt)
• Backfill before closure (except hard

rock unsaturated)
• Postclosure criticality control

• (not shown) Unsaturated hard rock
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Engineering Challenges Can Be Met

• Handling/Packaging: Use Current
Practices

• Surface-Underground Transport
— Spiral ramp (-10% grade, rubber-tire)

— Linear ramp (>10% grade, funicular)

— Shallow ramp ( 3% grade, standard rail)

— Heavy shaft hoist

• Drift Opening Stability Constraints
— Salt (a few years, or longer with maintenance)

— Hard rock (> 50 years with little maintenance)

— Sedimentary (50 years may be feasible, or
longer depending on geologic setting)
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Heavy Shaft Hoist Technology

• Hoist R&D at Gorleben,
Germany: Design and testing
for 85 MT capacity (BGE Tec)

• Payload of 175 MT also
studied for German "DIREGT"
concept, similar to DPC +
overpack + shielding + cart

Friclion
Pulley

Counter
Weight

(Multi Rope)
Friction Winder

Hoisting
Cable(s)

Cage

Single Drum
Winder

— Koepke friction hoist, 6 cables (each 66 mm (I))

— Counterweight 133 MT

— 1 m/sec hoist speed with 800 kW winder

— Order-of-magnitude cost about $30M for equipment
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Thermal Management for DPC Disposal Concepts

• SNF burnup (black
curves) crossing
points give aging time
to meet peak
temperature targets for
32-PWR size
packages

• Heat dissipation is
best for salt and
unsaturated/
unbackfilled concepts

• Backfill constraints
dominate (where
backfill is used)
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AgingAnalysis for 10 kW
Emplacement Power Limit

• TSL-CALVIN*
logistics simulator

• 10 kW limit would be
typical for salt and
unbackfilled concepts

• 1,700 MTHM/yr
throughput would
keep pace with
cooling to 10 kW

• Disposal of >98% of
project SNF by 2130
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* Nutt et al. 2012. Transportation storage Logistics Model — CALVIN (TSL-CALVIN). FCRD-NFST-2012-000424.

E.L. Hardin - ENRESA - DOE/SNL Visit, May 2019



Postclosure Nuclear Criticality Control

• Disposal Environment

— Groundwater availability
— Chloride in groundwater

• Moderator Exclusion

— Overpack integrity

• Moderator Displacement

— Fillers

• Add Neutron Absorbers

— Fillers (e.g., B4C loaded)
— Disposal control rods
(new DPCs only)

• Criticality Analysis Methodology

— Burnup credit, as-loaded, stylized
degradation cases

— Peak reactivity occurs at —25,000 years

actinide-only (set 1) • • -0-- • actinide+fission product (set 2) full (set 3)
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Reactivity Scoping Analysis (Site "A")

Model array representing

Westinghouse 17x17

standard assembly in

cross-section.

Guide Tubes
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• Numerical Model of TSC-24 Canisters

• ORNL Database "UNF-ST&DRDS"

— Software/Data

— SCALE code system (ORNL 2011)

— Details: Clarity and Scaglione (2013)

Neutron absorber location

Flux Trap Region

Fuel assembly

Heat transfer disk

Support disk

Fuel tube

References:

ORNL (Oak Ridge National Laboratory) 2011. ORNL/TM-2005/39 Version 6.1.

Clarity, J.B. and J.M Scaglione 2013. ORNL/LTR-2013/213.
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Basket Configurations for TSC-24 System
("Site A")

intact Basket
With Loss of
Neutron Absorber
Plates

Collapsed Basket,
(with loss of
neutron

absorbers)
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Fuel-tube type basket
(e.g., TSC-24)

Boral sheets attached
with thin-gauge SS
sheathing (welded)

References:

Clarity, J.B. and J.M Scaglione 2013. ORNL/LTR-2013/213.

Hardin et al. 2012. FCRD-UFD-2012-000219 Rev. 2.
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Criticality Scoping Analysis Results ("Site A")

• Analyzed as-Ioaded,
with burnup credit

• Higher chloride brine
strength —> less
reactivity (saturated
NaCI ptd, 6 molal)

• Note: keff>1 results
signify DPCs for
which additional
control measures
might be used, e.g.,
re-packaging

keff

1.1
Hypothetical degraded basket
configuration (with loss of
absorber), representative canister

1.05 flooded with fresh water

1

0.95

0.9

0.85

0.8

0.75

ken = 1.0

„_

*WM * * *4***

0

1 
1 molal NaCI

2 molal NaCI

Fresh water, loss

of absorber only

Flooded with fresh water, aIl 37 canisters
analyzed, intact configuration

100 300 700 1500
Years Since Discharge

TSC-5 Nominal

TSC-5 Failed Basket

TSC-5 Failed Basket with 2 m NaCI

5000 6500

1SC-5 Loss of Absorber
TSC-5 Failed Basket with 1 m NaCI

E.L. Hardin — ENRESA — DOE/SNL Visit, May 2019



Criticality Analysis for High-Reactivity Stylized
Case NaCI Brine

15

24

1-3 -

1.2 -

1

0.9

0.8

4' Seawater 2 m NaCI
0.7 I • • . •

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Critical Limit

5 wt% Enrichment

—6-4 wt% Enrichment

5 wt% Enrichment + 10 GWD/MTIJ

- 5 wt% En rich ment + 20 GWID/MTIJ

5 wt% Enrichment + 30 GWD/MTU

Saturated NaCI Brine (20°C)

131:1m

(Hardin et al. 2014. FCRD-UFD-2014-000069 Rev. 0)

High-reactivity case:

• Hexagonal array of

8617 PWR fuel rods

(W17x17WL)

• Rods from slightly

more than 32

assemblies, in a

32-PWR DPC

E.L. Hardin — ENRESA — DOE/SNL Visit, May 2019 21



Summary: Previous Studies (Low Probability)

• Technical evaluation results:
- Safety of workers and the public

- Engineering feasibility

- Thermal management

- Postclosure criticality control 1
 No implementation barriers
although many existing
DPCs could require
treatment of repackaging

• Most favorable concepts: salt and hard rock-unsaturated
- Mainly due to postclosure criticality control  (thermal strategy for

any medium can be developed)

• Additional considerations important for direct disposal:
- Disposal overpack reliability estimates can be improved

- DPC design features will impact structural longevity

- Investigate DPC modifications for criticality control (e.g., fillers)

- Investigate screening postclosure criticality on low consequence
(instead of low probability)
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DPC Disposition R&D and
Implementation Strategy
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DPC Disposition Strategy

N 8,100 U.S. DPCs (total) "as-loaded":

Yes
Low consequence?

No
(Abandon

low-consequence
approach

FOR ALL N)

* Includes a
repository in
salt

IMPLEMENT FOR N

For each DPC of existing design:

X: Reactivity margin* gets keff « 1

Y: Fillers get keff « 1 OR

(N-X-Y): Repackage

OR

For each future DPC of modified design:

Z: Modified DPC design gets keff « 1

(N-X-Y-Z): Repackage

OR
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Notional DPC Disposition System Endpoints for
Low-Probability Screening Approach
Salt Repository, No Changes
to Existing DPC Designs

Reactivity
Margin

Transition to Modified Designs,
with Fillers (non-salt)

Reactivity
Margin

Future DPCs
with Modified Fillers

Designs

Minor
Repackaging

Filler Strategy, No Change to
Existing DPC Designs

Reactivity
Margin

Fillers

Transition to Modified Designs,
No Fillers (non-salt)

Repackaging

Future DPCs Reactivity
with Modified Margin

Designs
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Approach to Injectable Fillers
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Perspective on Treatment Options for
Existing (Sealed) DPCs

• Cut Lids Off Existing DPCs?
— Skiving (wet) selected among various methods (DOE-ORNL study)
— Could fill with steel shot (Cogar 1996), other particles such as glass
beads (AECL; Forsberg 1997)

— Could install disposal control rods (EPRI 2008) or rearrange assemblies
(Alsaed 2019)

— Filling must be done dry, and weld-resealing the canister must be dry

• Alternative: Injectable Fillers
— Cut off small covers over existing DPC vent/drain ports

Cogar, J. 1996. Waste Package Filler Material Testing Report. BBA000000-01717-2500-00008 Rev 01. OCRWM.

Forsberg, C.W. 1997. Description of the Canadian Particulate-Fill Waste Package (WP) System for Spent Nuclear Fuel
(SNF) and its Applicability to Light-Water Reactor SNF WPs with Depleted Uranium Dioxide Fill. ORNL/TM-13502.

EPRI (Electric Power Research Institute) 2008. Feasibility of Direct Disposal of Dual-Purpose Canisters: Options for
Assuring Criticality Control. #1016629.

Alsaed, H. 2019. Comparative Cost Evaluation of DPC Modifications for Direct Disposal. SAND2019-4070. Sandia National
Laboratories, Albuquerque, NM.
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Background: Yucca Mountain Project Steel-Shot
Particulate Filler Test (Framatome-Cogema)

• Steel-shot test: poured into open mockup fuel assemblies

- SAE S230 & S330 sizes; nom. 600-850 pm and 850-1,180 pm diameter

- As-poured density -4.6 glcm3

- Thermal conductivity -0.4 W/m•K

• Basis for selecting steel shot:

- Ease of handling and placement ("flow")

- Commercial availability and low cost

- Cathodic protection of SNF
Cogar, J. 1996, WASTE PACKAGE FILLER

- Chemical buffering MATERIAL TESTING REPORT, BBA000000-

- Moderator displacement 01717-2500-00008 REV 01

- Thermal conductivity

• Dummy PWR assemblies (15 x 15 and 17 x 17), polycarbonate cell

• Eight tests (2 assemblies, 2 shot sizes, with/without vibration)

• Results: 94% fill ratio (void space minus "excess" porosity)
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Background: AECL Particulate Filler Tests (1/2)

• Glass beads poured into open assemblies
— Industrial 20 to 300 pm and 0.8 to 1.2 mm dia.

— Density 1.6 (small) to 1.9 (large) g/cm3

— Structural support (10 MPa hydrostatic)

— Titanium-shell package

• Single-cell filling test
— Two dummy CANDU assemblies

— Shaker table

• Mockup package test
— 19 x 2 ceramic basket

— Vibratory compaction

— Weld-sealed

— Hydrostatic testing

Forsberg, C.W. 1997. DESCRIPTION OF THE CANADIAN
PARTICULATE-F1LL WASTE-PACKAGE (WP) SYSTEM FOR
SPENT-NUCLEAR FUEL (SNF) AND ITS APPLICABILITY TO
LIGHT WATER REACTOR SNF WPS WITH DEPLETED
URANIUM-DIOXIDE FILL, ORNL-TM-13502.
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Background: AECL Particulate Filler Tests (2/2)

HOPPER SPOUT
(FOR PARTICULATE)

LINEAR

BEARING

CONTAINER WITH USED
FUEL IN BASKET

ORNL DWG 97A-377

HOT CELL ROOF

— CONTAINER SUPPORT
FRAME

ACTUATOR

 El

/

CONTAINER FILLER AND VIBRATORY COMPACTOR

Vibratory compaction apparatus — full scale. Hydrostatic testing vessel, AECL/Whiteshell

Flgures from Forsberg (1997)
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Injectable Filler Needed Attributes
(Liquid or Slurry Emplaced)

• Injectable - -6,000 L through a 15 - 20 mm d) drain tube in a few hours

• Void Filling - Penetrate limber holes, assemblies, baskets

• Compatible - Limited gas generation or chemical attack (especially
radiolysis of organics and moisture)

• Durable - 10,000+ yr chemical/physical lifetime befor after waste
package breach (natural analogues)

• Reactivity Control - Displace ground water or incorporate neutron
absorber, or both

• Safe - Does not endanger workers or members of the public (e.g., no
additional Pb, Cd)

• Practical - Reasonable weight, possibility of retrieving fuel assemblies
by removing filler

• Low Cost - Relative to other DPC disposition alternatives (e.g.,
repackaging)
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Background: Ordinary Portland Cement (OPC)

Ordinary Portland Cement
= CaCO3 + Clay + Gypsum + Heat = CaO-Silicates/Aluminates

The Good

Reactions well understood
Many antique analogues
Inexpensive

The Bad

High pH bad for corrosion
High pH bad for RN solubility, sorption

An Alternative — Phosphate Cements

Lower pH decreases corrosion potential
Strong binder of RNs; used for reactive barriers, separations
Many natural analogues; fossil bone, teeth.
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Background: Chemically Bonded Ceramics

• Process and Nomenclature

.4 4.)

Dissolution
of Metal-

Oxide Base
in Acid-

Phosphate
Solution

1=>

Gelation and
Precipitation

Crystallization
(chemically
bonding paste

phase to
undissolved
particles)

Ceramic <— Crystalline
Cement <— Low temperature
Chemically Bonded <— Paste phase chemically bonded to remaining

undissolved crystalline particles
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Nomenclature: Ceramic vs. Cement vs.
Chemically Bonded Cement

Attributes: Ceramics Cements Chemically Bonded

How they are
commonly
produced

Fuse compacted
powders at high-T

Hydraulic
(water-based)

Acid-base reactions in
slurries*

Bonding lonic or covalent
Hydrogen and van der

Waals bonding
Mostly ionic or covalent

Porosity
Low (-1%, except

sinters)
High

(typ. 15 to 20%)
Moderate to high

Service
Temperature

Very high T Ambient to low T Moderate

Corrosion
Resistance

Wide pH range
Attack by strong acids

and caustics;
amorphous phases

Wide pH range,
crystalline

Cost Limiting Bulk applications Bulk and specialty

Examples Porcelain OPC

Phosphate-bonded
cements (dental

cements, Ceramicrete®

& ThermaLock®)
* Does not include chemical (liquid) grouts.
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Technical Questions
Injectable Filler Behavior and Durability

• Temperature
— Early time during filling, and during aging in a repository

• Thermal Expansion
— Filler expansivity vs. canister, basket, and fuel

• Radiolytic Gas Generation
— Gamma (fission products)
— Neutron (spontaneous fission and (a, n) reactions)
— Reactions with organics, moisture —> gases
— Removal of moisture from filler before sealing

• Chemical Gas Generation
— Reaction of Al shunts and absorber plates with moisture —> H2 gas

• Filler Cracking or Bond Failure
— Allow moisture penetration after package breach

• Filler Dissolution and Alteration
— Before/after package breach (incl. wedging, galvanic corrosion)
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Exclusion of Postclosure Criticality on Low
Consequence, Background
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Background Criticality Onset Analysis for Low-
Probability Screening

• Electric Power Research Institute

YM Post-Closure Criticality— 2007 Progress Report (EPRI 1015128)

Feasibility of Direct Disposal of DPCs: Options for Assuring Criticality
Control (EPRI 1016629)

• Yucca Mountain License Application

— Screening of Criticality FEPs for LA (ANL-DSO-NU-000001 REVOOA)

— CSNF Waste Package Misload Analysis (CAL-WHS-MD-00003 REVOOA)

— CSNF lgneous Scenario Criticality (ANL-EBS-NU-000009 REV00)

— CSNF Loading Curve Sensitivity Analysis (ANL-EBS-NU-000010 REV 00)

• Criticality Analysis for Direct Disposal of SNF in DPCs

— Summary of lnvestigations on Technical Feasibility of Direct Disposal of
DPCs (SFWD-SFWST-2017-000045)
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Background: Previous Simulations of
Waste Package Criticality

• Example Calculations:
— Criticality Consequence Analysis Involving Intact PWR SNF in a

Degraded 21-PWR WP (BBA000000-01717-0200-00057 REV 00)

— Sensitivity Study of Reactivity Consequences to Waste Package
Egress Area (CAL-EBS-NU-000001 REV00)

Waste Package Power vs.
Time from RELAP5

Analysis of Fission Power
Histories for Prompt

Reactivity Insertion Rate
(0.148 $/sec)

Parameterized by Waste
Package Breach Area

(CAL-EBS-NU-000001,
Figure 6-5)
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Reference Coupling Scheme
(Current State of the Art)

r-H

//
N - M

n-Absorber
Degradation

Criticality
Event

Fuel/Basket
Degradation

Moderatior)

- - - -► Dashed lines signify ad hoc input or loosely coupled processes
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