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Overview

■ This work seeks to develop a path toward a high resolution room temperature
gamma detector through the use of anticorrelation of scintillation and charge
measurements of Hg2Br2 and CdMgTe.

■ How work came about



Higher resolution provides greater information content in each
collected gamma ray

• Improved resolution

requires fewer counts for the same level of
information

Allows for discriminating between similar
isotopes which would not be possible with a
low resolution detector
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Higher resolution room temperature
detectors have numerous applications

• Improved resolution
• requires fewer counts for the same level of information
• Allows for discriminating between similar isotopes which would not be possible with a low resolution

detector Iodine
(Medical)

• Applications
• National Security
• Surveying
• Laboratory
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Radiation Detection is Requires use of
Semiconductors
• Detection of gamma spectrum is relies on the use of semi-conductors for both scintillation and charge

collection mechanisms
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Material Properties Influence the Information
Content of Absorbed Radiation

• Key spectral features (photoelectric peak,
Compton continuum, pair production) vary with
the atomic number of the detection material.

• High Z number preferred for collection
efficiency as well as photoelectric peak
production.
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Scintillation Detectors: Desired Process

Absorbed radiation excites electron to conduction band
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Scintillation Detectors: Desired Process

Excited electron relaxes (via phonons) to lowest
energy of conduction band
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Scintillation Detectors: Desired Process

Electron drops to valence band and emits a photon
which will be measured
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Scintillation Detectors: Desired Process

Emitted Photons are then converted to
photoelectrons in the photocathode of a PMT.
(peak efficiencies for PMT cathodes -25%)

Photoelectrons are then amplified (on order of 1-
10 E6) in the dynodes of the PMT to achieve
measurable signals at the anode.
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Scintillation Detectors Use Doping to
Increase Light Yield and Resolution

• Doping (order of 1/1000th) has been found to increase light yield, or us used to
place emission wavelength in a range which is more efficiently collected.
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Poisson Statistics Limit Theoretical Limit of
Scintillation Detectors

• Scintillator detectors are limited by Poisson statistics

• Theoretical best full width at half maximum (FWHM) is

limited to 2.35 x V# photo electrons
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Charge Collection Detectors: Overview

1. Absorbed energy excites electrons into conduction band in quantities proportional to absorbed energy
2. Applied bias migrates electrons and holes to opposing material faces
3. Moving charge is measured (and is proportional to absorbed radiation)
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Charge Collection Measurement Loss
Sources

■ Moving charges will be lost to collection by two primary mechanisms:

- Trapping: Electron-holes may get fixed in lattice locations due to impurities in
the lattice and are no longer free to migrate through

- Recombination: Electron-holes may recombine before reaching the electrodes
of the material



Conduction of Semiconductors Is
Dependent Upon Temperature

• Population of the conduction band
is a function of the:

Fermi energy of the mat

temperature of the matE

Density of states of the
material

• The highest resolution comm
detectors (HPGe) require cryc
temperatures
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Dual Mode Work: Scintillation and Charge Measurements are
Inversely Related

• Electron-hole pairs which are collected in charge collection will not produce
scintillations.

• Electron-hole pairs which migrate to the electrodes will not produce scintillation

• Increasing the bias improves charge collection efficiency (due to reduced
recombination and trapping) but reduces scintillation yield

N„1 Q(E)/
S(E) 1+ Ni Qo 
So 1 + Nex/Ni — X

So: the charge yield normalized to the charge at infinite electric field.
x: the fraction of electrons which do not recombine even at zero field
S(E): is the scintillation emission collection at a given electric field strength, E .

Nex/Ni: the ratio of excitons to ion pairs produced.

Q(E): the collected charge at a given electric field.
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Prior Work Showed Improved Resolution from Combined
Measurements

• Prior work by Aprile et. al. demonstrated
simultaneous spectra on liquid Nitrogen and
liquid Argon capable of improved resolution
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Experimental Setup for Prior Dual Mode
Collection Work
• Prior work
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Dual Mode Collection

• Two room temperature materials have been noted to exhibit properties of simultanious
scintillation and charge collection but have not yet been characterized for this purpose.

- Mercurous Bromide, Hg2Br2

- Cadmium Magnesium Telluride, Cd(i_x)MgxTe



Mercurous Bromide, Hg2Br2

■ Mercurous Bromide was developed for for Opto-Acoustical applications as early as
the 1970s

■ Demonstrated growth of high purity samples to several cubic inches dimensions.

■ Later measurements demonstrated that this material can be used in radiation
detection applications



Mercurous Bromide, Hg2Br2

• Preliminary radiation measurements for charge collection have show resolutions as
low as 0.48% for gamma measurements

• Initial scintillation spectrum show resolutions -20%

From [9]



Cd MgTe

• Cd.92 g.08 - M Te:u.. 

- Ge and In doped samples have achieved resolutions as low as 15%

- Opaque and cannot be used for dual mode collections

• Cd.6MgATe and Cd.55Mg.45Te:

- transparent

- display scintillation properties

- will be investigated for dual collection applications



Experimental Setup

■ Measurements will be made in 3 states

Scintillation only

Charge only

Dual

■ After material properties are understood, the combination of scintillation and charge
will be carried out



Experimental Setup: Scintillation

Sample

/
- Reflector

• Samples will be placed directly on the face of a PMT
with a reflective backing applied.

• Preamplifiers and shaping amplifiers will be used as
needed to achieve higher resolution spectra.

LV/

Control
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PMT 2520AN

Sample 9113B Base
Shaping/ Oscilloscope
Amplifier



Experimental Setup: Scintillation
• Initial scintillation spectra have been obtained on 5mm x 5mm x lmm samples

of Hg2Br2 showing resolution —15 - 25%

• This is the first scintillation spectrum to be obtained from this material
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Experimental Setup: Charge

• Charge measurements will be made in a low noise
fixture.

• Expected bias vary with material :

- on order of 100 V/cm CdMgTe

- on the order of 5-10 kV/cm for Hg2Br2

• Methods of pulse shape discrimination will be applied
where possible.
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142
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Experimental Setup: Dual Mode

• A prototype fixture for the collection of dual
mode measurements has been constructed
which will allow for high light collection (dual
PMTs) and close positioning of charge
preamplifier.

• Further development will likely be required for
this fixturing

Charge Collection Connection

Scintillation Collection PMTs



Experimental Setup: Dual Mode

■ All signals will be simultaneously recorded on
an oscilloscope.

- Allows for post processing of pulse shape
discrimination

- Allows for synchronization from multiple
data channels
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Experimental Setup: Analysis

■ Several methods of aggregating the data will be explored.

■ Each measured waveform will have several summary measurements applied:

- Maximum

- Integral Area

- Rise Time

- Fall Time

- Goodness of fit to exponential decay

■ Histograms from these measurements will then be made in order to obtain spectrum



Combined Resolution Estimates for Hg2Br2
The combined resolution is only dependent upon 0 and psq

R,2
Estimates were can be made with Rs and Rq estimates
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Summary

■ This work will investigate room temperature dual mode collection radiation detection
materials which could provide a path to state of the art room temperature radiation
detectors.



Questions/Discussion
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