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Overview

m This work seeks to develop a path toward a high resolution room temperature

gamma detector through the use of anticorrelation of scintillation and charge
measurements of Hg,Br, and CdMgTe.

m How work came about




Higher resolution provides greater information content in each
collected gamma ray

Improved resolution

— requires fewer counts for the same level of

information

— Allows for discriminating between similar
Isotopes which would not be possible with a

low resolution detector
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Higher resolution room temperature
detectors have numerous applications

* |mproved resolution
* requires fewer counts for the same level of information
* Allows for discriminating between similar isotopes which would not be possible with a low resolution

lodine
detector (Medical)

* Applications
* National Security Plutonium
* Surveying
* Laboratory
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Radiation Detection is Requires use of
Semiconductors

m Detection of gamma spectrum is relies on the use of semi-conductors for both scintillation and charge
collection mechanisms
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Material Properties Influence the Information
Content of Absorbed Radiation

m Key spectral features (photoelectric peak,

Compton continuum, pair production) vary with ol 1 VIO T T T T T T
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Scintillation Detectors: Desired Process

Absorbed radiation excites electron to conduction band
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Scintillation Detectors: Desired Process

Excited electron relaxes (via phonons) to lowest
energy of conduction band

Bandstructure for Nal
20.0

17.5 Bhongns




Scintillation Detectors: Desired Process

Electron drops to valence band and emits a photon
which will be measured
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Scintillation Detectors: Desired Process

Photomultiplier Tube
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Scintillation Detectors Use Doping to
Increase Light Yield and Resolution

m Doping (order of 1/1000%") has been found to increase light yield, or us used to
place emission wavelength in a range which is more efficiently collected.
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Poisson Statistics Limit Theoretical Limit of
Scintillation Detectors

m Scintillator detectors are limited by Poisson statistics

m Theoretical best full width at half maximum (FWHM) is
limited to 2.35 X \/# photo electrons

Buergy Resolution @ 662 keV (FWHM)
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Charge Collection Detectors: Overview

1. Absorbed energy excites electrons into conduction band in quantities proportional to absorbed energy
2. Applied bias migrates electrons and holes to opposing material faces
3. Moving charge is measured (and is proportional to absorbed radiation)
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Charge Collection Measurement Loss
Sources

m Moving charges will be lost to collection by two primary mechanisms:

— Trapping: Electron-holes may get fixed in lattice locations due to impurities in
the lattice and are no longer free to migrate through

- Recombination: Electron-holes may recombine before reaching the electrodes
of the material




Conduction of Semiconductors Is
Dependent Upon Temperature

m Population of the conduction band
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Dual Mode Work: Scintillation and Charge Measurements are
Inversely Related

m Electron-hole pairs which are collected in charge collection will not produce
scintillations.

m Electron-hole pairs which migrate to the electrodes will not produce scintillation

m Increasing the bias improves charge collection efficiency (due to reduced
recombination and trapping) but reduces scintillation yield 1
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Prior Work Showed Improved Resolution from Combined

Measurements

m Prior work by Aprile et. al. demonstrated
simultaneous spectra on liquid Nitrogen and
liquid Argon capable of improved resolution
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Experimental Setup for Prior Dual Mode
Collection Work

Opening for Pumping and Gas Filling
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Dual Mode Collection

m [wo room temperature materials have been noted to exhibit properties of simultanious
scintillation and charge collection but have not yet been characterized for this purpose.

- Mercurous Bromide, Hg,Br,
- Cadmium Magnesium Telluride, Cd , x,MgyTe




Mercurous Bromide, Hg,Br,

m Mercurous Bromide was developed for for Opto-Acoustical applications as early as
the 1970s

m Demonstrated growth of high purity samples to several cubic inches dimensions.

m Later measurements demonstrated that this material can be used in radiation
detection applications




Mercurous Bromide, Hg,Br,

m Preliminary radiation measurements for charge collection have show resolutions as
low as 0.48% for gamma measurements

m [nitial scintillation spectrum show resolutions ~20%

From [9]




CdMgTe

m Cdg,Mggle:
- @Ge and In doped samples have achieved resolutions as low as 1.5%
- Opaque and cannot be used for dual mode collections

m CdgMg,Te and Cd ;Mg ,sTe:
— transparent
— display scintillation properties
— will be investigated for dual collection applications




Experimental Setup

m Measurements will be made in 3 states
- Scintillation only
- Charge only
- Dual

m After material properties are understood, the combination of scintillation and charge
will be carried out




Experimental Setup: Scintillation

m Samples will be placed directly on the face of a PMT
with a reflective backing applied.

m Preamplifiers and shaping amplifiers will be used as
needed to achieve higher resolution spectra.
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Experimental Setup: Scintillation

m Initial scintillation spectra have been obtained on 5bmm x bmm x 1mm samples
of Hg,Br, showing resolution ~15 - 25%

m This is the first scintillation spectrum to be obtained from this material
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Experimental Setup: Charge

m Charge measurements will be made in a low noise
fixture.

HVPS

m Expected bias vary with material :
- on order of 100 V/cm CdMgTe

Sample

Ortec
142

- on the order of 5-10 kV/cm for Hg,Br,

m Methods of pulse shape discrimination will be applied

where possible. ,
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Oscilloscope




Experimental Setup: Dual Mode

m A prototype fixture for the collection of dual
mode measurements has been constructed
which will allow for high light collection (dual
PMTs) and close positioning of charge
preamplifier.

m Further development will likely be required for
this fixturing
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Experimental Setup: Dual Mode

m All signals will be simultaneously recorded on
an oscilloscope.

- Allows for post processing of pulse shape

discrimination Lv/
Control
- Allows for synchronization from multiple ]
data channels Ortec 672
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Experimental Setup: Analysis

m Several methods of aggregating the data will be explored.

m Each measured waveform will have several summary measurements applied:
- Maximum
- Integral Area
- Rise Time
- Fall Time
- (Goodness of fit to exponential decay

m Histograms from these measurements will then be made in order to obtain spectrum




Combined Resolution Estimates for Hg,Br,

The combined resolution is only dependent upon 6 and pg, sin 62 R2 + cos 62 R2 + sin 0 cos 6 R.R,p
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Summary

m This work will investigate room temperature dual mode collection radiation detection
materials which could provide a path to state of the art room temperature radiation
detectors.




Questions/Discussion
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Backup: Frisch Grid Description
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