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Motivation )=,

= Automated hexahedral element meshing is elusive
= Manual hexahedral element meshing is time consuming (55)

= Automated tetrahedral meshing is available, however
standard linear tetrahedral elements perform poorly in solid
mechanics applications

= Some higher order element, mixed formulation solutions
exist, however production environment largely displacement




Objectives UL

= |mprove analysis throughput

® Provide an adequate alternative to hexahedral elements
= Accuracy
= Efficiency
= Robustness

= Feature integration (contact, coupled physics, user output, etc...)

= Explore tetrahedral formulations to relieve the meshing
burden

= Jay Foulk’s talk covers this and more ...




What else do analysts need? UL

= Accuracy under nearly incompressible
material behavior

= Conservative & sharp estimate of stable time
step in explicit time integration




FORMULATION FOR NEARLY
INCOMPRESSIBLE MATERIAL
BEHAVIOR




Review of formulation ) e,

CT comprises 12 linear subtetrahedra

QO(X) — Na(X)Soa € Up,
F(X) = )\(X)F, €V,
P(X):= ) (X)P, €V,

pelU, = {v c [H'(B)]? ‘ U|subtets of 7 € P1(subtets of T'), T € 72}

F,PeV,={Ve[l*B)"| V| PT).T € T}

Thoutireddy, P., et al. "Tetrahedral composite finite elements." International Journal for Numerical Methods in Engineering 53.6
(2002): 1337-1351.
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Review of formulation

bl F, P] ::/BA(F)dVJr/BP:(F—F)dV
—/RB-godV— T . odS,
B orB

Stationary points yield discrete formulation:

§p® = 0 — B,(X), discrete gradient operator

67® = 0 — P, stress projection onto V},

0,® =0 — R,(p) =0, weak form of equilibrium

-BadV—/ RBN.dV — [ TN,ds
Q or(2




Goals for nearly incompressible T
formulation

= Project pressures into a lower order space to avoid locking

= Maintain symmetry of stiffness matrix — conjugate gradient is
the workhorse linear solver in our production code

= Preserve displacement FEM formulation to fit existing code
architecture




Five-field formulation for nearly
incompressible behavior

7| Netora

o, F,P.J" 5] — |

B

A(({;)W)F) dV+/BP:(F—F)dV+/Bﬁ*(J—J_*)dV

—/RB-cpdV— T . ds,
B

o1 B

Piecewise constant T, 5" € Wi ={ce LAB) | clr € Po(T).T € Ti}
approximation -

Stationarity wrt pressure leads to Jacobian projection:

B 1 B
5. =0 J*:—/JdV,
P - VQ Q

This defines modified gradient operator:

— \1/3 — \1/3
_ J* _ — % J* _ — g
’ (J) (J) 2B




Five-field formulation for nearly
incompressible behavior

Let P .= OW(F)
OF

=k

F=F

Stationarity wrt Jacobian defines projection of pressure:

1 tr(J
507 =00 = L [

— x =%

P F
3

)dV

Stationarity wrt deformation defines weak equilibrium:

=% =+ = x—T

% 1 =k —k
Ra(go):/<P — (P FOF T Iy F T)-Badv—Ffft:o

Q
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Test: Cook’s Membrane e,

= Volume averaging the
volumetric response
alleviates locking

converged
reference
solution
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Application — Large Deformation

Large deformation and
necking of stainless steel
304L

€p o Po

1.200e+00 1.480e+09 6.925e+08
9.000e-01 1.117e+09 3.813e+08
9000001 6.000e-01 7.544e+08 7.010e+07
6.000e-01 3.000e-01 3.916e+08 -2.411e+08
0/0008+00 0.000e+00 2.887e+07 -5.523e+08

Pressure solution is “noisy”

_ without volume averaging
-5.523e+08 12




Affect on rank sufficiency .

= Deficiency or degree 3 introduced on an isolated element

= Assemblies of elements possess full rank in all configurations
tested

= No global hourglassing modes observed

= Local mode may be excited in certain situations




ESTIMATION OF STABLE TIME STEP
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Critical Time Step .

= Characteristic element length is computed from smallest of
subtet inradii

M = X+ 2p  longitudinal modulus

M
c= 4]/ — P-wave speed
0
/¢ =2 r;, min subtet inradius
_cr

Atcm’t i

c
C' ~2 (empirical)




Timestep sharpness & conservatism @&

= Numerical experiments on 10,000 randomly generated tets

= Compare estimated timestep to exact critical timestep (from

spectral analysis)
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= Global spectrum typically more compressed, adding extra
conservatism 16




Conclusions and Future Work ) 2=

= Nearly incompressible formulation
= New variational formulation for pressure & Jacobian projection
= Smooth pressure fields obtained in tests
= Local to elements, no new global fields added
= Numerical inf-sup testing needed

= Critical timestep estimation
= Simple estimate based on easily computed geometric data

= Numerical testing suggests estimate is conservative for reasonable
meshes

= Work continuing to identify simple higher-order shape metric to
sharpen estimates

= .. particularly for elements with kinked edges
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