
Software Resilience using
Kokkos Ecosystem

J"

PRESENTED BY

Jeff Miles, Nicolas M. Morales, Keita Teranishi, Christian T

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-4836PE

2 I Background

DOE Applications must be robust and resilient to hardware failures
o Reduce cost attributed to failed application runs

o Reduce cost attributed to incorrect results

o Minimize catastrophic failure occurrences

Resilience methodology
o Checkpoint / Restart

o Periodically save execution state and restart from last good state when failure is detected.

O Also used for pipelining and visualization

o Redundant Execution paths

o Spawn multiple execution paths and choose the correct results from collection

3 I Checkpoint/Restart

Leverage Kokkos View data structure and deep_copy semantics to enable transfer of
data to and from persistent storage

Memory Space for each persistent storage architecture
o HDF5Space, StdFileSpace
o Data cannot be accessed/indexed via view directly.
o Deep_copy is the only way to store and access data

Checkpoint mirror - maintain a list of views which are checkpoint candidates.

Checkpoint operation transfers all candidates to persistent storage

Restore operation can be collective or a single view.

4 I Checkpoint Example

typedef Kokkos::LayoutLeft Layout;
typedef Kokkos::DefaultExecutionSpace::memory_space

defaultmemSpace; // default device
typedef Kokkos::FilememSpace fileSystemSpace; // file system

fileSystemSpace fs;
typedef Kokkos::view<double*, Layout, defaultmemSpace> local_view_type;

local_view_type A("view_A", N); local_view_type B("view_B", N);
local_view_type::Hostmirror h_A = Kokkos::create_mirror_view(A);
local_view_type::Hostmirror h_B = Kokkos::create_mirror_view(B);

auto F_A = Kokkos::create_chkpt_mirror(fs, h_A);
auto F_B = Kokkos::create_chkpt_mirror(fs, h_B);

fileSystemSpace::restore_all_views(); // restart from existing...
for (; ;) 1

Kokkos::deep_copy(A, h_A); Kokkos::deep_copy(B, h_B);
Kokkos::parallel_for (N, KOKKOS_LAMBDA(const int j) {

A(J) = j; B(J) = j*2;
1);

Kokkos::deep_copy(h_A, A); Kokkos::deep_copy(h_B, B);

if !consistency_check() {
fileSystemSpace::restore_view("view_A"); // restore data
fileSystemSpace::restore_view("view_B"); // restore data
else {
fileSystemSpace::checkpoint_views(); // save result

5 I Automatic Checkpointing

Leveraging scalable checkpointing libraries such as VeloC https://github.com/ECP-VeloC/VELOC
o Provide automatic determination of whether a checkpoint is needed by finding the last restore point

We are interested in automatically checkpointing Kokkos views:

Kokkos::Experimental::checkpoint("test_checkpoire, iter, [view, dim0, diml](){
Kokkos::parallel_for(dim0, KOKKOS_LAMBDA(int i) {
for (int j = 0; j < diml; ++j)
view(i, j) = 3.0;

});
}, checkpoint);

This will generate a checkpoint with the name "test_checkpoint" for iteration iter
o If the checkpoint exists it will not execute the lambda and instead restart from the checkpoint for that iteration

. All views capture by value in the lambda will be checkpointed

. Supports grouping multiple parallel executions into one checkpoint

6 I Resilient Execution Model

Duplicate Parallel Execution (x3)
O Duplicate Captured views prior to executing

O Recombine results when complete.

o Const data views are captured normally (views all point back to same const data)

Resilient CUDA Execution space + Resilient CUDA Memory Space
O Use streams to separate duplicate execution patterns

O Use Single parallel_for to recombine the results

O Recombine operation takes any 2 results that are the same and writes back to original view

o Comparison operation is type sensitive

o Types are not pre-defined, but user must "enabled" types used (via Kokkos macros)

7 I Replicate — Execute - Combine

typedef Kokkos::view< double*, Kokkos::Rescudaspace > view_type;
view_type m_data ("data", N);
typename view_type::Hostmirror v = Kokkos::create_mirror_view(m_data);
Kokkos::RangePolicy<Kokkos::Rescuda> rp (O,N);

Kokkos::parallel_for(rp,K0KKOS_LAMBDA(const
m_data(i)=i;

});
Kokkos::fence();

Kokkos::deep_copy(v, m_data);

int i){

Calling Function

l Functor
c

1

const View V1,-

(---
View V2

Resilient Cuda
Memory Space

V

 > parallel_for(const Functor a, F, ...

V ParallelFor (const Functor a F, ...)

const Functor a m_functor

i71.1 :I a "i:
iik4or um

IS*
414 6"

....1.1", 4,

',...____ ,...."

e--,.....

.

4,
4

,

V2'"

.
:
/

.

.

al

Resilient
Duplicates

.

Replicate execution]
ParalletFor (const Functor Et F, ...)

t‘ m functor. t ala it •44 —

% ‘

♦
%Ir i wet

%I.
tom ram

•
• %• • , %

Iii. l'aVam in.
%

X

. •\ m_functor
..

IN\

 •

V2

Resilient Cuda
Execution Space

CudaParallelLaunch(const ParallelFor a. D, ...
a)
>

1
..(2 1 driver()
(L)0 m functor V1

.._,_,..„_,
V2

....................

ParallelFor (const\unctor Et F, ...)
t

I

.

V2

.
.. 'was °""' a I

....0•11

CudaParallelLaunch(const ParallelFor Et D, ...
a)

.5
a)
ci

driver()

\ c.2...._._...

m functor V1 V2

wasva,

I
4
%

.
v. go' 11.so la

 %
ParalletFor (const Functo/Vt F, ...)

• CudaParallelLaunch(const ParallelFor a. D,

m_functor

. . .

•
V2

• • •

•

a)
 o•
• 5
• a)
• 0• .

-

l driver()
m functor V1

.._.„,_,..„.,
V2

9 I Resilient Cuda Execution Space (RCES)

Kokkos::parallel for invokes RCES ParallelFor

RCES ParallelFor replicates the Cuda Execution Space ParallelFor

o Use the same Execution Policy for each duplicate

o Associate different stream with each instance

O m_functor in RCES is a reference to the original (not a copy) — copies are contained/created in Cuda Execution
Space ParallelFor

O Non-const views are duplicated with Functor copy construction (managed similar to ref-counts)

O Internal list of duplicated views maintained for recombination step

On-Device access to non-const views point to the duplicated memory locations

After execution is complete — Combine Resilient Memory space duplicates into originals, and free
memory associated with duplicates

10 Conclusions

Checkpointing through Kokkos View adds a seem-less point of data integration
o Serialize data to persistent storage

o Publish data to workflow interface

o Kokkos provides automatic or manual interface giving users selective control over implementation

O Able to integrate with existing checkpoint libraries

Kokkos execution resilience able to minimizes execution cost and data latency
o takes advantage of available hardware concurrency through streams

O provide automatic data replication and recombination using parallel execution when possible

Section Break Slide

