SAND2019- 4836PE

PRESENTED BY

Jeft Miles, Nicolas M. Morales, Keita Teranishi, Christian Trott

— — Qi

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2 | Background

DOE Applications must be robust and resilient to hardware failures
> Reduce cost attributed to failed application runs
> Reduce cost attributed to incorrect results

> Minimize catastrophic failure occurrences

Resilience methodology
° Checkpoint / Restart

° Periodically save execution state and restart from last good state when failure is detected.

> Also used for pipelining and visualization

> Redundant Execution paths

> Spawn multiple execution paths and choose the correct results from collection

3 I Checkpoint/Restart

Leverage Kokkos View data structure and deep_copy semantics to enable transfer of
data to and from persistent storage

Memory Space for each persistent storage architecture
> HDF5Space, StdFileSpace

° Data cannot be accessed/indexed via view directly.

> Deep_copy is the only way to store and access data
Checkpoint mirror - maintain a list of views which are checkpoint candidates.
Checkpoint operation transfers all candidates to persistent storage

Restore operation can be collective or a single VIEW.

| w

4 | Checkpoint Example

typedef Kokkos::LayoutLeft Layout;
typedef Kokkos::DefaultExecutionSpace::memory_space

defaultMemspace; // default device
typedef Kokkos::FileMemSpace fileSystemSpace; // file system

fileSystemSpace fs;
typedef Kokkos::view<double*, Layout, defaultMemSpace> Tocal_view_type;

Tocal_view_type A(“view_A”, N); Tlocal_view_type B(“view_B”, N);
Tocal_view_type::HostMirror h_A Kokkos: :create_mirror_view(A);
Tocal_view_type::HostMirror h_B Kokkos: :create_mirror_view(B);

auto F_A
auto F_B

Kokkos::create_chkpt_mirror(fs, h_A);
Kokkos::create_chkpt_mirror(fs, h_B);

fileSystemSpace::restore_all_views(); // restart from existing..
for C 5 5) {
Kokkos: :deep_copy(A, h_A); Kokkos::deep_copy(B, h_B);
Kokkog::paqa]]e]Tfor gN, KOKKOS_LAMBDA(const int j) {
S\(J) = J; B(J) = 3*2;

Kokkés::deep_copy(h_A, A); Kokkos::deep_copy(h_B, B);

if l!consistency_check() {
fileSystemSpace: :restore_view(“view_A"); // restore data
fileSystemSpace: :restore_view(“view_B”); // restore data
} else {
fileSystemSpace: :checkpoint_views(); // save result

5 | Automatic Checkpointing

Leveraging scalable checkpointing libraties such as VeloC https://github.com/ECP-VeloC/VELOC

° Provide automatic determination of whether a checkpoint is needed by finding the last restore point

We are interested in automatically checkpointing Kokkos views:

Kokkos::Experimental::checkpoint("test_checkpoint", iter, [view, dim0, dim1](}{
Kokkos::parallel_for(dim0, KOKKOS_LAMBDA(inti){
for (intj=0;j<dim1; ++)
view(i, j) = 3.0;
} cﬁeckpoint);

This will generate a checkpoint with the name “test_checkpoint™ for iteration iter
o If the checkpoint exists it will not execute the lambda and instead restart from the checkpoint for that iteration
o All views capture by value in the lambda will be checkpointed

o Supports grouping multiple parallel executions into one checkpoint

6 | Resilient Execution Model

Duplicate Parallel Execution (x3)
° Duplicate Captured views prior to executing
> Recombine results when complete.

> Const data views are captured normally (views all point back to same const data)

Resilient CUDA Execution space + Resilient CUDA Memory Space
o Use streams to separate duplicate execution patterns
o Use Single parallel for to recombine the results
> Recombine operation takes any 2 results that are the same and writes back to original view
> Comparison operation 1s type sensitive
° Types are not pre-defined, but user must “enabled” types used (via Kokkos macros)

7 | Replicate — Execute - Combine

typedef Kokkos::view< double*, Kokkos::ResCudaSpace > view_type;
view_type m_data ("data", N);

typename view_type::HostMirror v = Kokkos::create_mirror_view(m_data);
Kokkos: :RangePol1icy<Kokkos: :ResCuda> rp (0,N);

Kokkos::parallel_for(rp,KOKKOS_LAMBDA(const int 1i){
m_data(i)=1;

P;

Kokkos::fence();

Kokkos: :deep_copy(v, m_data);

parallel_for()

parallel_for()

parallel_for()

combine_results

parallel_for()

|
Calling Function | L > parallel_for(const Functor & F, ...) Resilient Cuda I

ParallelFor (const Functor & F, ...) Execition Space I
Replicats exacUtiBh const Functor & m_functor
--.‘~~~ N
Functor ‘ V1 E_:Sg.\ ParallelFor (const Functor &F, ...) | cydaParallelLaunch(const ParallelFor & D, ...) |‘
N I (0] |
[§ m_functor[v1][V2] $ [driver()
_ =2

CudaParallelLaunch(const ParallelFor & D, ...)

<

: S
const View V1 _— - - ¥ = m_functor [V1][V2 J
=
” V2 ‘?_‘::.‘ ~ o ~ j
[View V2 --------------- _____———/ . ‘
i : -_: . N\ L
> I FA
.

=
] : :
V2” ST,
Resilient Cuda| ‘- i
Memory Space| |

VZ”’ & A
St » m_functor[v1][V2]“\
N\

()

2 | driver()
Resilient : i o | S m_functor! V1 H V2 | .
Duplicates - _ _ Se O = =

driver()
m_functor[V1]' VZJ

f)n-Device

ParallelFor (const Functo}\& o)
\

9 I Resilient Cuda Execution Space (RCES)

Kokkos::parallel_for invokes RCES ParallelFor
RCES ParallelFor replicates the Cuda Execution Space ParallelFor

> Use the same Execution Policy for each duplicate
o Associate different stream with each instance

> m_functor in RCES is a reference to the original (not a copy) — copies are contained/created in Cuda Execution
Space ParallelFor

> Non-const views are duplicated with Functor copy construction (managed similar to ref-counts)

o Internal list of duplicated views maintained for recombination step
On-Device access to non-const views point to the duplicated memory locations

After execution is complete — Combine Resilient Memory space duplicates into originals, and free
memory associated with duplicates

10 | Conclusions

Checkpointing through Kokkos View adds a seem-less point of data integration
o Serialize data to persistent storage
° Publish data to workflow interface
> Kokkos provides automatic or manual interface giving users selective control over implementation

> Able to integrate with existing checkpoint libraries

Kokkos execution resilience able to minimizes execution cost and data latency
o takes advantage of available hardware concurrency through streams

° provide automatic data replication and recombination using parallel execution when possible

Section Break Slide

