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Motivation




+| Filled Room Closure vs. Empty Room Closure
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s| Fracturing Around Empty Rooms

1. Controls the size and character of the rubble pile.
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Borns, D.J. and J.C. Stormont. (1989) (Modified)



Room Shape affects Creep Closure
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71 Rubble Pile Compaction

Porosity reduction due to break
down and rearrangement of

1. Important Processes
a. Rubble reorganization
0. Rubble fracture
c. Creep
I. Dislocation
Il. Pressure solution

v T
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Porosity reduction due to plastic
deformation of grains

Spangenberg (1998) (Modified)

2. Impact
a. Compaction processes control flow pathways
I. Two samples with same porosity can have different permeability
b. Rubble pile supplies back pressure to surrounding rock formation
I. Larger rubble likely compacts slower than smaller rubble




s| Filled Rooms Creep Closed More Slowly
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9‘ Crushed Salt vs. Rubble Pile

Rubble Piles

Crushed Salt

Bechthold, W., et. al. (2004). Backfilling and Sealing
of Underground Repositories for Radioactive Waste
in Salt (BAMBUS Il Project), Final Report. European
Commission, EUR 20621 EN
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Research Plan Outline




11 Plan

1. Creep closure

d.

Already partially validated by room D, G, and Q data

2. Roof falls

d.

b.

Attempt to predict size and shape of roof falls
I.  Stochastic distribution of defect sites?

Validate against lab-scale room collapse experiments and
observations at WIPP

3. Rubble pile compaction

d.

Flow channels

I. Explicitly represent macroflow channels

ii.  Implicitly represent microflow channels
Ignore healing for now

Validate against crushed salt experiments
I. Vary grain size distribution

. Vary temperature and compaction pressure
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Potential Numerical Approaches




131 Potential Numerical Methods

1. Fundamental issue: we are trying to capture a discrete crack
with a continuum level model
2. Potential numerical issues
a. Mass loss
0. Mesh structure dependence
c. Mesh size dependence

3. Candidate numerical methods
a. Finite elements with element death
b. Finite element with interelement cracks
c. Particle methods
d. Meshless methods




14‘ Element Death

Mesh Structure Dependence

(mm)
100.0 : . ;
(a)
80.0 - 1
—
Mass Loss v
o 60.0 - 70.0 ]
—
—— 0ar i
[
200 - 1
Crack [ —— Experiment |
0.0" 1 4 5 L
Deleted y 0.0 200 400 600 800 100.0 (mm)
elements (.
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Local Stress-Strain Behavior
o

15‘ 1D Example of Strain Softening Instability
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61 Interelement Crack Method

Cohesive Zone Element Insertion
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171 Particle Methods

Particle-to-Particle Interactions Particle Method Fracture

Normal

Shear




18| Material Point Method (MPM)

1. Descendent from Particle in Cell (PIC) method.
2. First published paper in 1994. Cited 943 times.

3. Codes
. MPM Sim (Commercial)
ii. Anura3D (International Collaboration)
iil. Uintah (Open Source)

4. Miscellaneous
I. Used heavily by the computer graphics community

ii. Fern, J., et al. The Material Point Method for Geotechnical
Engineering: A Practical Guide. 2019. CRC Press




9‘ Material Point Method (MPM)

Evaluate material model Solve equations Map accelerations Update positions of
and map info to nodes of motion to material points material points
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Rohe, A., Pinyol, N., Ceccato, F., Yerro, A., Fern, J., and Chmelnizkij, A., Modelling large deformation and soil-water—structure interaction with Anura3D,
GiD Convention Workshop, UPC Barcelona, 2018 (Modified)




20| Reproducing Kernel Particle Method (RKPM)

1. Descendent from Smoothed Particle Hydrodynamics (SPH)
2. First published paper in 1996. Cited 828 times.

3. Codes
a. LS-DYNA has a RKPM capability
b. Sierra has a fledgling RKPM capability

4. 1500 has two staff who studied RKPM for their doctorate




211 Reproducing Kernel Particle Method (RKPM)

RKPM

Shape Functions

Finite Element Method
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Littlewood, D., Hillman, M., Yruex, E., Bishop, J., Beckwidth, F., Chen, J.S., Implementation and Verification of RKPM in the Sierra/Solid Mechanics Code.

ASME IMECE Conference. 2015. (Modified)



221 Meshless Methods

1. Primary advantages

a.
b.

~ o Qo0

Designed to handle severe deformation (>100 % strain)

Inherently captures normal contact without expensive
interface tracking

Regularization techniques are relatively easy to implement
Adaptive particle insertion and deletion is relatively easy
Can utilize classical continuum material models

Healing just needs to be added to the material model

2. Primary drawbacks

a.
b.
C.

Potential longer run times
Sliding contact is challenging
Surfaces must sufficiently separate to stop interacting

3. Sandia’s nuclear weapon program will likely continue to invest
in meshless methods
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Assessment of Meshless Methods




2| Project Scope

1. Goal: Assess whether meshless methods are well suited to the
simulation empty underground room closure in rock salt.

a. ldentify which approaches work and which do not

2. Capability demonstration, not intensive code development
a. Minor code development is OK

3. Collaborate with Sandia to incorporate successful approaches into
Sandia code(s).

a. Approaches should be implemented with an eye on production




25| Problem #1: Creep Closure

1. Supplied by Sandia:
a. Creep material model
0. Initial boundary value problem
c. Finite element results

2. Assess whether a chosen meshless method can accurately
simulate 2D room closure due to creep alone (no fracturing)

a. Show discretization convergence
0. Record total CPU time

3. Compare discretization converged meshless simulation against
a finite element simulation

a. Horizontal and vertical closure histories
0. Room porosity histories




Strain Decomposition

|sotropic, Linear, Hypoelasticity

Associated Flow Rule

von Mises Equivalent Stress

Equivalent Viscoplastic Strain Rate

2| Simple Odqgvist Creep Model
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27| Creep Closure Simulation Setup

Lower Horizon Disposal Room
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28| Finite Element Solution

Horizontal and Vertical
Closure Histories
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2| Problem #2: Fracturing and Roof Falls

1. Supplied by Sandia:
a. Damage material model
0. Initial boundary value problem

2. Assess whether a chosen meshless method can simulate 2D
fracturing around a room and roof falls

a. Show discretization convergence
0. Record total CPU time

3. Demonstrate 3D fracturing around a room and roof falls
a. Record total CPU time




20| Tentative Simple Damage Model
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311 Problem #3: Rubble Pile Compaction

1. Supplied by Sandia:
a. Initial boundary value problem

2. Assess whether a chosen meshless method can simulate 2D
rubble pile compaction due to room closure

a. Show room porosity discretization sensitivity
0. Record total CPU time

3. Demonstrate 3D rubble pile compaction
a. Compute room porosity history
b. Record total CPU time
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Meshless Method (Pre-)Preliminary Results




331 MPM Team (Pre-)Preliminary Results




| MPM Team (Pre-)Preliminary Results




51 RKPM Team (Pre-)Preliminary Results

Homogeneous Material:
Continuum Damage + Drucker-Prager Plasticity




s 1 RKPM Team (Pre-)Preliminary Results
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71 RKPM Team (Pre-)Preliminary Results

Drucker-Prager Plasticity _

Linear Elastic
Py Material




3] RKPM Team (Pre-)Preliminary Results

k; =5x 1073 k; =1x 1072
damage damage
0.000e+00 0.5 1.000e+00 0.000e+00 0.5 1.000e+00
Ll 1 |1l 1 111l L1 || |1 LUt

“‘IIIIII | IIII;“ wullll | Illl,ﬂ“




RKPM Team Ported and Verified M-D Model
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Triaxial Compression
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Tentative Project Schedule




+1 1 Rough Project Schedule

1. Numerical method
a. Investigation: April — September 2019
I. One day workshop in ABQ during week of Sept 234?
0. Implementation: April 2019 — April 2020

2. Continuum damage model
a. Preliminary model: May 2019
0. New model development: June — December 2019
c. New model implementation: January — April 2020

3. Empty room demonstration simulations
a. Proof-of-concept: June 2019 — April 2020
b. Semi-polished: April 2020 — ?

4. Crushed salt validation simulations
a. Proof-of-concept: June 2019 — April 2020
b. Semi-polished: April 2020 — ?




42

Extra Slides




43‘ Upper vs. Lower Horizon

Lower Horizon

Upper Horizon
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x| Empty Rooms Close More Slowly

1. Fracturing around room

a. Changes the room cross-section
from a rectangle to a more
enduring, stable shape

b. Controls the size and character
of the rubble pile

2. Rubble pile compaction

a. Involves reorganization,
fracturing, and creep

b. Compaction processes control
flow pathways

c. Rubble pile supplies back
pressure to surrounding rock
formation
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Porosity reduction due to break
down and rearrangement of

Porosity reduction due to plastic
deformation of grains

Spangenberg (1998) (Modified)




45‘ Typical Fractures on Lower Horizon

Low-angle
fractures

Schematic Fracture Pattern at Lower Horizon
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46‘ Typical Fractures on Upper Horizon

Schematic Fracture Pattern at Upper Horizon
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47‘ Fallen Block Shapes (Lower Horizon)
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48‘ Crushed Salt Laboratory Testing

Triaxial compression

Specimen while measuring permeability
preparation

Permeability vs.
Void Ratio (Porosity)
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Roof Fall on Upper Horizon




Estimation of Excavation Damaged Zone

-\ Undisturbed
: Damaged

Time 0.0 years

Herrick, C.G., et al. (2009). Estimating the Extent of the Disturbed Rock Zone around a WIPP Disposal Room.
Paper ARMA 09-82. 43rd US Rock Mechanics Symposium, Ashville, NC. June 28 — July 1, 2009.




52 ‘ Scale Effects

Permeability (m?)

Permeability Scale Effect
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53‘ Speeding up the Viscoplasticity
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54‘ Scaling Ramp Rate Selection
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