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EIGER Overview

Electromagnetics Interactions GenERalized — EIGER

Initially developed collaboratively by SNL & University
of Houston (Bill Johnson, Roy Jorgenson, Don Wilton)

Masstvely parallel (MPI), three-dimensional

Frequency-domain, boundary-element, Method of
Moments

Custom feature set for Sandia use cases

* Ability to rigorously model very high-quality-factor (QQ) cavities

* Ability to handle non-ideal (dissipative) materials

* Wire and slot subcell models for high-fidelity coupling calculations
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EM Coupling Simulations Using EIGER—Workflow

J Pre-processing:
o Significant level of effort required in preparing the model and mesh
> Mechanical joints are key features for calculating EM leakage into a system
° The leakage is often dominated by the electrical contacts at the mechanical joint

o Resolving the mesh to capture the geometrical details and electrical lengths is critical

L ‘J%@gﬁ@%‘ ) E’gm: |%@@@@%ﬂa‘ L>

Problem. Setup . Post-Processing
(BC's, frequencies, materials) Solve

CAD De-featurization
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Gemma: A Next-Generation EM Code

Lol

Complicated

Ly YVorkflow
(D Integral-Equation

Formulation Only
RWG Basis Functions

Specialized Sandia
Features

Low-Frequency
Instability

eiym

\
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Gemma

Integrated Workflow

Algorithmic

Flexibility/Choices

Higher-order Basis Functions

Extensions to Specialized

Features

Low-Frequency Capability
Abstracted Models

Flexible Solver Techniques

11

Gemma
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Gemma Goals (@)

> Modern development environment
> C++ 11 (driving toward newer C++ standards)

° git + cmake environment supporting multiple target compilers and architectures

Gemma

11

° Templated implementation for code readability and maintenance

° Scrum process enabling increased communication and transparency among team members

> Integrated, flexible, extensible physics

> Frequency-domain, full-wave EM method-of-moments simulation code (core EM functionality)
° Alternative methods for flexibility and extensibility

> Capability to couple EM to other domains, such as mechanical, thermal, and circuits



Libraries

Kokkos: Code Development for Heterogeneous Compute Environments
Trilinos

6
Applications
f Sil.INOS

Gemma
I

Kokkos abstraction layer

y ,
CPU+GPU

Many-Core
Kokkos is the cornerstone for performance portability across next generation HPC architectures at

Multi-Core
multiple DOE laboratories and other organizations.
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FORTRAN
MPI Paradigm <
(EIGER)

Heterogenous
Paradigm <
(Gemma)

) Ideal Development: me

> Writing architecture independent source code

> Using multicore technology efficiently

e MPI inter- and intranode parallelism

e High processor clock speed
g p p m KNC Card

« High memory per processor v g
S

Processor

e MPI internode parallelism

e Threading intranode parallelism —

 Low processor clock speed o]
« Low memory per processor 2= 563 GooR ey

=

Gemma

B 8.8 68

" NVIDIAS NVLnk™
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Gemma: Early Activities (FY |8)

Gemma

11

~

* Integral-Equation (IE) Implementation

* CPU/GPU Performance

* Team Study and OSU Collaboration on Alternative Algorithms
* Multiphysics Coupling: Circuits, Mechanical, etc.

* Embedded Model Abstractions

Motivation: \
> Retain EIGER core capability

> Extend algorithmic capability for flexibility

\_ ° Allow for breadth in analysis needs (quick to highly rigorous sims) W,
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Gemma: Present Activities (FY19) Gemma

11

|dentify Plan Forward on Gemma UI/UX

MPI Implementation and Demo on CPU/GPU/MIC

First Demo of Representative Coupling Simulation
Implement time history of unit test coverage/regression test
timing

Iterative Physical Optics (IPO) Implementation and Demo

~

/1 Motivation:
> Establish physics capabilities for Sandia use cases

> Establish V&V early in code lifecycle
> Enable parallel simulations across multiple nodes/GPUs

\_ ° Demonstrate candidate alternative modeling methods

AN
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Gemma

Gemma: FY |9 Recent Progress

11

* Initial implementations for multiple regions and dielectrics have been completed paving the way for
initial coupling simulations.

* MPI version of Gemma being developed and close to a working version for CPU and MIC (Pliris
direct solver does not support GPUs yet).

* Initial IPO code implementation is complete. It is now being tested to verify correct results and
limitations.

* Integrated Workflow (IWT) 1s proceeding with EIGER testing for both serial and parallel
simulations. This activity will inform the Gemma UI/UX development.

|
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Gemma: FY20 Roadmap

Gemma

11

Verification and Validation for coupling use case \
Implement analytic deep-slot formulation

Begin to implement selected OSU models

Exercise IPO capability on Sandia use case

Implement analytic power-balance formulation

Begin implementation of Ul

k|

First code release to select user-set and document feedback /

1 L e OB " r I EeEeEEm == |
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exp( joot) time harmonic conventior

13 I Maxwell’s Equations in the Frequency Domain
Faraday : V X E = —jwB
Ampere — Maxwell : VxH=J+ jwD

: electric field [V /m]

: magnetic field [A/m]

: electric flux density [C/m?]
: magnetic flux density [T = Wb/m?|
: electric current density [A/m?]

Electric Gauss: V-D =p
Magnetic Gauss: V-B =10

-~ « W0 @O-

: volume charge density [C/m?]

b Magneticfield  E=E X+ E y+E,Z
o E(x,y,zt) = RE{ej Wt }

Constitutive relations:

i D =¢E € : permitivity [F/m]
D B=pH  p: permeability [H/m]
J=0E  o: conductivity [S/m]

Direction



14 | Integral Equation, Method of Moments

J Boundary Condition on Surface:

L() = —Ef3" = Eqy,

J The currents are expanded in terms of the Rao-Wilton-Glisson basis functions:

J(r)=) L f(r)
n
J Test the integral equation with the basis functions:

(F L)) = j f -L(J)ds

surface

Z1=V

v

m Excitation
Unknown
Currents

Impedance
Matrix

T Ol B 00000 |
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Overview

e Analysis techniques

e Power Balance
e Slot Model
e Homogeneous Regions

e Simulation using boundary element methods |

e Coupling problems i

e PMCHWT and Miiller formulations

e Status of coupling simulation in Gemma



Gemma: Next-Generation Electromagnetics Simulation Software




Gemma: Next-Generation Electromagnetics Simulation Software

e Successor to Sandia's EIGER (Electromagnetic Interactions GenERalized) code
suite
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e Successor to Sandia's EIGER (Electromagnetic Interactions GenERalized) code |
suite

e Presently uses method of moments (MoM) with Rao-Wilton-Glisson (RWG) basis
functions




Gemma: Next-Generation Electromagnetics Simulation Software [@_:

e Successor to Sandia's EIGER (Electromagnetic Interactions GenERalized) code "‘
suite

e Presently uses method of moments (MoM) with Rao-Wilton-Glisson (RWG) basis
functions

e Use of Kokkos abstraction enables compilation for multiple different platforms |
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e Successor to Sandia's EIGER (Electromagnetic Interactions GenERalized) code ”?
suite w

Presently uses method of moments (MoM) with Rao-Wilton-Glisson (RWG) basis
functions

Use of Kokkos abstraction enables compilation for multiple different platforms
Currently being tested for OpenMP, MPI, and Cuda |



Gemma: Next-Generation Electromagnetics Simulation Software [@-:

e Successor to Sandia's EIGER (Electromagnetic Interactions GenERalized) code |
suite

e Presently uses method of moments (MoM) with Rao-Wilton-Glisson (RWG) basis
functions

e Use of Kokkos abstraction enables compilation for multiple different platforms

e Currently being tested for OpenMP, MPI, and Cuda |

Uses linear algebra algorithms from Sandia’s Trilinos library



Coupling Simulations

I {5

Motivation:

e Devices in high-Q cavities vulnerable
to EM interference coupled through
small apertures

e Particularly at resonant frequencies

e Shielding effectiveness (SE) prediction
becomes important design step

DEVICE




Coupling Simulations
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Motivation:

e Devices in high-Q cavities vulnerable
to EM interference coupled through
small apertures

e Particularly at resonant frequencies

e Shielding effectiveness (SE) prediction
becomes important design step

Methods being investigated:
e Analytic
e Power balance
e Full-Wave

e PMCHWT formulation

[J. Poggio and Miller, 1973]
e Miller formulation [Miiller, 1969]
e Slot model




Coupling Problems: Bounding with Power Balance

e Upper bound on shielding effectiveness
obtained using statistical EM

S;
S,
J\ﬁ»\”

40

e Transmitted power (P;) equated to
dissipated power (P;)

%]
(=]

e Shielding effectiveness calculated as
ratio between power density of
incident wave S; and power density in
cavity S [Hill, 2009]

SE(r) = 10 logy, (SCS(T))

1

o

N
(=]

Shielding effectiveness (dB)
' y o
[=}

D
(=]

%
S

1 1.5 2 2.5
Frequency (GHz)

|
|
|



Coupling Problems: Full Wave Analysis

Single Region

e ()7 includes inside,
outside, gap

e Fails to capture coupling
accurately

Slot Region

0 N

Qo

e Mesh slot volume as

separate region

e Fewer interactions
between inner/outer

regions

o Still accurately capture

slot geometry

Slot Model

M
2

e Model slot as
transmission line
connecting 1, Q9

e Same mesh can be used
to test different slot
parameters



BEM Solution of Multi-Region Problems

Enforce tangential continuity of E and
H on boundary

Convenient to define

(J*,MF) =-(J~,M")

Yields combined field formulation

EFIE* + aEFIE™
MFIE™ + SMFIE~

Choice of «, 8 affects accuracy,
conditioning
e a= [ =1 gives PMCHWT
formulation
o a= z—’;—,ﬂ = %:; gives Miiller

formulation



Reference Solutions

e Scattering from spherically symmetric
objects described by Mie
series[Harrington, 1961]

= COSQD < ) (kr) + anJy, )P,%(cos@)

F. =E 5”;;0 nz;l (cnﬁff)(kr) + anjn> P(cosb)

()

e Applicable to
e Conducting sphere
e Homogeneous dielectric sphere
e Piecewise homogeneous sphere with
multiple dielectric/conducting layers

y




Comparison of PMCHWT and Miiller Formulations

e PMCHWT
e No %I term
e Better accuracy with higher-contrast
materials
e Poorly conditioned




Comparison of PMCHWT and Miiller Formulations

e PMCHWT |

e No %I term
e Better accuracy with higher-contrast

materials ‘
e Poorly conditioned

e Miller

o Singularity reduction in £

e Better accuracy with low contrast
materials

e Well-conditioned




Comparison of PMCHWT and Miiller

e PMCHWT

e No %I term

e Better accuracy with higher-contrast
materials

e Poorly conditioned

e Miller

o Singularity reduction in £

e Better accuracy with low contrast
materials

e Well-conditioned

Figure: Near-field scattering of 3 x 107 Hz
plane wave from homogeneous dielectric sphere
characterized by e,.

Formulations
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Comparison of PMCHWT and Miiller Formulations

e PMCHWT

e No %I term

e Better accuracy with higher-contrast
materials

e Poorly conditioned

e Miller

o Singularity reduction in £

e Better accuracy with low contrast
materials

e Well-conditioned

Figure: Near-field scattering of 3 x 107 Hz
plane wave from homogeneous dielectric sphere
characterized by e,.

Relative RMS error
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Comparison of PMCHWT and Miiller Formulations

e =1
. €r = 1.01
L,
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@i,
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e Sphere meshed with 3598 flat triangles
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Comparison of PMCHWT and Miiller Formulations

e =1
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Comparison of PMCHWT and Miiller Formulations

e =1
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Gemma Multi-Region Results: 3-layer Sphere

E™| [v/m]
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Gemma Multi-Region Results: 4-layer Sphere
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Coupling Problems in Gemma

e At present Gemma solves dielectric problems with
non-intersecting boundaries




Coupling Problems in Gemma

e At present Gemma solves dielectric problems with
non-intersecting boundaries

e Correct solution obtained for 1-5 region problems




Coupling Problems in Gemma

e At present Gemma solves dielectric problems with
non-intersecting boundaries \

e Correct solution obtained for 1-5 region problems

e Coupling problems contain junctions

|
|
|

Figure : Multi-Region Junction with closed
PEC. Currents represented by arrows
correspond to same DOF.



Coupling Problems in Gemma

e At present Gemma solves dielectric problems with
non-intersecting boundaries

e Correct solution obtained for 1-5 region problems
e Coupling problems contain junctions

e PMCHWT and Mieller require specific handling of
different junction types [Yl3-Oijala et al., 2005]

Figure : Multi-Region Junction with thin
PEC (black). Different color arrows
correspond to different DOF. (cf.
[YI&-Oijala et al., 2005, Fig. 6] |



Current Status

e Done
e PMCHWT and Miller formulations implemented on GPU w
e Multiple-region logic tested for 2-3 regions

e Remaining
e Address MFIE integration accuracy |

o Generalize for arbitrary number and arrangement of regions (incl. junctions)
e Incorporate slot model into Gemma and compare to meshed slot
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Slot Model

Slot geometry can be replaced by transmission line
[Warne and Chen, 1990]

_ d?
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EM Boundary Element Equations for Homogeneous Regions

The equivalence principle [Harrington, 1961] gives us the integral equations on the |
surface S bounding region ,, [Yl4-Oijala and Taskinen, 2005]: |

e EFIE,:

T [cnLn(Tn) + Kn(M,)] — = ( x T)-M,, = T-E" (5) fi

N —

e MFIE,: |
T [dnLn(Mp) — K (Jn)] + %(ﬁ X T)dy = T-H;;‘C (6)



EM Boundary Element Equations for Homogeneous Regions

The equivalence principle [Harrington, 1961] gives us the integral equations on the
surface S bounding region ,, [Yl4-Oijala and Taskinen, 2005]:

e EFIE,:

N —

e MFIE,:
T [dnLn(My) — Kn(Jn)] + %(ﬁ x T)-J, = T-H" (6)

o Let Jo = —J; and My = —M;. Solve combined system

OélEFlEl — OQEF'EQ
B1MFIE; — B,MFIEy




EM Boundary Element Equations for Homogeneous Regions

The equivalence principle [Harrington, 1961] gives us the integral equations on the
surface S bounding region €, [Y13-Oijala and Taskinen, 2005]: |

e EFIE,:

N —

e MFIE,: 1
T [dnLn(My) — Kn(Jn)] + §(ﬁ x T)-J, = T-H" (6)

e Let Jo = —J; and My = —M;. Solve combined system
OélEFlEl — OQEF'EQ I
B1MFIE; — BoMFIEs

e Galerkin PMCHWT formulation: |
ap=az=p =p=1"T,=B, |



EM Boundary Element Equations for Homogeneous Regions

The equivalence principle [Harrington, 1961] gives us the integral equations on the
surface S bounding region €, [Y13-Oijala and Taskinen, 2005]: |

e EFIE,:

N —

e MFIE,: |
T [dnLn(My) — Kn(Jn)] + %(ﬁ x T)-J, = T-H" (6)

Let Jo = —J; and My = —M;. Solve combined system |

OélEFIEl — OQEF'EQ
B1MFIE; — BoMFIEs
Galerkin PMCHWT formulation: |
ap=ay=p1 =5 =1 T, =B, |
N-Miiller formulation:
Q] = €1, Q2 = 61"2761 = ,url,ﬂ2 = HUr2, T, =B, x1n,



Rational Interpolation

e Frequency sweeps for
complex/electrically large
cavities expensive.

e Rational interpolation
algorithm provided by OSU
enables accurate and efficient
resolution of SE peaks

o

50

—— 3 points (step 1) 20

40 - 5 points (step 2) <
——— 7 points (step 3)

a6 FEKO result 15 - 1

0
1.1295e+09 1.1296e+09 1.1297e+09

20l0go(|E,V/IEjl)

20 +

= E/ : ]
-40 i i i

1.124e+09  1.126e+09  1.128e+09 1.13e+09 1.132e+09  1.134e+09  1.136e+C
f[Hz]

Figure : SE plot for cylinder using Eiger with rational
interpolation algorithm. Comparison with Altair FEKO
sweep across 46 uniformly spaced points.

|

W



Efforts toward Next Generation
Platforms: Kokkos and Kokkos Kernels

VY ]

PRESENTED BY
Vinh Dang

SHFLETREET

e — ENERGY NJISA

I

\

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.






3

Minimizing Effort for Running Fast on Desired Architectures

Everybody Performance

wants to be Run “fast enough” for
here. scientific discovery.

Productivity

Minimize effortin
developmentand
maintenance.

= Performance / Productivity
Enable domain scientists to write high-
performance codes with minimal tuning

= Performance / Portability
Enable applications to run at different
facilities, on different machine types

= Portability / Productivity
Enable developers to program in one
shared language/programming model

John Pennycook, Charlene Yang, and Jack Deslippe, “Quantitatively Assessing Performance Portability
with Roofline”, NeRSC. https://ideas-productivity.org/events/hpc-best-practices-webinars/#webinar025
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Performance Portability Defined

( |H|
1
CP(aapa H) = 4 Zz’EH e,;(a,,p)
L0 otherwise
Pi(a' p)

Application 1 — PP(a,p,H) = 23.30%

100.00%

> >
e e
$ 80.00% &
2 '©
o 60.00% o
8 8
O 40.00% .
o o
g 20.00% g
Da"_a 0.00% i éT_:
A B c D E F
Platform

N Efficiency e PP

Application 2 — PP(a,p,H) = 20.00%

100.00%
80.00%
60.00%
40.00%
20.00%

0.00%

if 7 is supported Vi € H

A REEE

A B C D
Platform

N Efficiency e PP

E

e;(a,p) = efficiency of application a for
input problem p.

“The harmonic mean of an application’s
performance efficiency on a set of
platforms for a given problem.”

Application 3 — PP(a,p,H) = 36.92%

100.00%

>

e

S 80.00%

S

= 60.00%

3

S 40.00%

(3]

E 2000%

O

éT_a 0.00% L

F A B G D E F

Platform

EE Efficiency e PP

John Pennycook, Charlene Yang, and Jack Deslippe, “Quantitatively Assessing Performance Portability
with Roofline”, NeRSC. https://ideas-productivity.org/events/hpc-best-practices-webinars/#webinar025




5 I Architectural vs Application Efficiency

Architectural Efficiency Application Efficiency
4096 600
2048 500 ° Best-Known
@f Achievable
1024 400
g 512 é Ob d
™ o Observed T 200 serve
O O
256 200
128 100
64 0
1/8 1/4 1/21 2 4 8 16 32 64 128 1 2
Arithmetic Intensity Implementation
Represents how well an application utilizes Represents whether an application uses

each platform’s resources appropriate algorithms on each platform

John Pennycook, Charlene Yang, and Jack Deslippe, “Quantitatively Assessing Performance Portability
with Roofline”, NeRSC. https://ideas-productivity.org/events/hpc-best-practices-webinars/#webinar025






Theoretical and Empirical Rooflines for KNLs and V100s B
KL ) Theoretical FMA: 2457.6 GFL( 30/' 10%vi00 . Theoretical FMA: 7833.6.GF 100/'
_ Empirical FMA: 2390.1 GFL ° Empirical FMA: 7068.9 GF e
o | S Theoretical No-FMA; 1228.8 GFLQP:<] > A Theoretical No-FMA: 3916.8 GFf-oe/=!
é 10%; Empirical No-FMA: 9595 GFL{ 22 2 § Empirical No-FMA: 3535.8 GF_10%
B 3 10%)
5 S 5
£ | FL :
£ &8 £
3] INA , - ) : -
a @Q -------- Theoretical Ceiling a IS e Theoretical Ceiling
W —— Empirical Ceiling —— Empirical Ceiling
101 10° 10 102 103 104 10° 10° 10° 10 102 10° 10 10°
Arithmetic Intensity [FLOPs/Byte] Arithmetic Intensity [FLOPs/Byte]
2390.1 7068.9
KNL FMA: ——— FLOPs/byte =~ 7 FLOPs/byte V100 FMA: —— FLOPs/byte = 8.5 FLOPs/byte
959.5 3535.8
KNL no FMA: 3ais FLOPs/byte =~ 2.8 FLOPs/byte V100 no FMA: P FLOPs/byte =~ 4.3 FLOPs/byte

John Pennycook, Charlene Yang, and Jack Deslippe, “Quantitatively Assessing Performance Portability with Roofline”, NeRSC. https://ideas-

productivity.org/events/hpc-best-practices-webinars/#webinar025
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Required Arithmetic Intensities for Using Main Memory

*Haswell CPU
° Theoretical bandwidth from system memory: 68 GB/s

° Theoretical max FMA FLOPs: 185.6 GFLOPs/s
° Required arithmetic intensity to load from system memory: 2.7 FLOPs/Byte

*V100
> Empirical bandwidth from global memory: 828.8 GB/s
> Empirical max FMA FLOPs: 7068.9 GFLOPs/s
° Required arithmetic intensity to load from global memory: 8.5 FLOPs/Byte

*KNL
> Empirical bandwidth from high bandwidth memory: 341.8 GB/s
> Empirical max FMA FLOPs: 2390.1 GFLOPs/s
° Required arithmetic intensity to load from high bandwidth memory: 7 FLOPs/Byte

Intel, Intel Xeon Processor E5-2698 v3. https://ark.intel.com/content/www/us/en/ark/products/81060/intel-xeon-processor-e5-2698-v3-40m-
cache-2-30-ghz.html

Intel, Export Compliance Metrics for Intel Microprocessors Intel Xeown Processors.
https://www.intel.com/content/dam/support/us/en/documents/processors/APP-for-Intel-Xeon-Processors.pdf

John Pennycook, Charlene Yang, and Jack Deslippe, “Quantitatively Assessing Performance Portability with Roofline”, NeRSC.
https://ideas-productivity.org/events/hpc-best-practices-webinars/#webinar025

@
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Kokkos Overview

Kokkos is a productive, portable, performant, shared-memory programming
model.

J is a C++ library, not a new language or language extension.
J supports clear, concise, thread-scalable parallel patterns.
J lets you write algorithms once and run on many architectures

e.g. multi-core CPU, NVidia GPU, Xeon Phi, ...

J minimizes the amount of architecture-specific implementation details
users must know.

J solves the data layout problem by using multi-dimensional arrays with
architecture-dependent layouts

https://github.com/kokkos/kokkos-tutorials/blob/master/Intro-Short/Slides/KokkosTutorial_ATPESC I 8.pdf
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Kokkos — Node Design

Target machine:

On-Package
Memory

Network-on-Chip

AN

NUMA Domain

=3
—
D
=
Q
Q
@

109UU02JBIU| [BUIBIXT
MIOM}ISN [euialx]

On-Package
Memory

Christian Trott, “Kokkos: Capabilities Overview”. https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf




12 I An Abstraction Layer to Prevent Rewriting an Entire Code

GEMMA

LAMMPS Trilinos Sierra Albany O O

Multi-Core Many-Core APU

Christian Trott, “Kokkos: Capabilities Overview”. https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf



13 | Kokkos Data Management and Execution

Execution Policies Patterns

¢ : b . parallel_for (N, [=] (const size_t i) {
Data Structures Parallel Execution /* loop body */
ION

double totallntegral = O0;

Memory Spaces (“Where”) Execution Spaces (“Where”) Pt (nunbe st Intervals),
. [=] (const size_t i, double & valueToUpdate) {
- Multlple-LeveIs - N-Level valueToUpdate += function(...);

- Logical Space (think UVM vs explicit) - Support Heterogeneous Execution ,
= totallntegral);

Memory Layouts (“How”) Execution Patterns (“How")
- Architecture dependent index-maps - parallel_for/reduce/scan, task spawn
- Also needed for subviews - Enable nesting parallel_outer (

TeamPolicy <>(number0OfTeams , teamSize, vectorLength),

- Memory Traits ' Execution Policies KOKKOS_LAMBDA (const member_type & teamMember [, ...]) {
/* beginning of outer body */

- Access Intent: Stream, Random, ... - Range, Team, Task-Dag parallel_middle(
- Access Behavior: Atomic - Dynamic / Static Scheduling Tt"e;imihreadlianse (teamMember, thi7TeamS??n%eSize) ;
. . q ; = const int indexWithinBatch/, ...
- Enables special load paths: i.e. texture - Support non-persistent scratch-pads U s ikl baskr
1 2 3 4 0 1 2. 3 parallel_inner (
: ThreadVectorRange (teamMember , thisVectorRangeSize),
1 [=] (comnst int indexVectorRange[, ...J) {
/* inner body */
2 Y, oo.o..);
/* end middle body x/
3 P sssd )i
/% end of outer body x/
A: Column-major order (Fortran-style) B: Row-major order (C-style) } [ PR ] ),'

Christian Trott, “Kokkos: Capabilities Overview”. https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf
Intel. Developer Guide for Intel Math Kernel Library for Linux. https://software.intel.com/en-us/node/528573
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Kokkos Kernels

KokkosKernels is a library for node-level, performance-portable,
computational kernels for sparse/dense linear algebra and graph
operations, using the Kokkos shared-memory parallel
programming model.

J  Kokkos Kernels is available publicly both as part of Trilinos
and as part of the Kokkos ecosystem

\dh)

Science and Engineering Applications

Trilinos

J  Can be building block of a solver, linear algebra library that uses
MPI and threads for parallelism, or it can be used stand-alone in

an application.

J Generic implementations for various scalar types and data
layouts

. Interfaces to Intel, NVIDIA and other vendor provided kernels
available in order to leverage their high-performance libraries

Kokkos EcoSystem \
Kokkos Kernels

Kokkos Core

-/

J Several new kernels are being added as needed by the

v

applications
= E.g: Distance-2 Coloring, Deterministic coloring, dense linear system ﬁ @_ @_
solver, ...

J Expand the scope of BLLAS to hierarchical implementations. Multi-Core
d Download at https://github.com/kokkos/kokkos-kernels

Many-Core APU

" CPU+GPU
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Kokkos Kernels — Capabilities (1/2)

T

« BLAS-1: abs(), axpy(), axpby(), dot(), fill(), mult(), nrm2(), scal(), ...
« BLAS-2: gemv() (matrix-vector multiplication)
« BLAS-3: gemm() (matrix-matrix multiplication)

« BLAS-1 functions are available as multi-vector variants
- Extended BLAS: dense linear system solver (MAGMA Third-Party Library (TPL))

( gparse )

CSR-Sparse Matrix Class providing fundamental capabilities

SPMV: Sparse Matrix Vector Multiply

SpGEMM: Sparse Matrix Matrix Multiply; separate symbolic and numeric phase
GS: Gauss-Seidel Method using graph coloring: symbolic, numeric, solve phases

( gatcﬁea st Kg )

« DGEMM: matrix-matrix multiplication
« DTRSM: triangular system solve
« DGETREF: LU factorization

|

T Ol
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Kokkos Kernels — Capabilities (2/2)

rap

« Distance-1 and Distance-2 graph coloring
« Triangle enumeration for graph analytics
« Using SpGEMM + Visitor Pattern: can be used to represent large problems

( Mlcro B‘ER§ )

« Hierarchical Hardware requires hierarchy of function support

« Provide BLAS / SparseBLAS interface with hardware handles

« Example use-case: each CUDA block or KNL tile runs its own independent CG-Solve

« Team-level BLAS: abs(), axpy(), axpby(), dot(), mult(), nrm2(), scal(), update(), gemv(), ...
« Kernel uses a CUDA block or all threads sharing a common L2 cache

 Utilization of local scratch

|
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cuBLAS and MKL TPLs Support in Kokkos Kernels )

J BLAS functions (Level-1, -2, and -3): KokkosKernels allows calling cuBLLAS or
MKL tunctions through KokkosKernels interfaces

= cuBLAS: axpy, axpby, dot, nrm1 (asum), nrm2, nrm_inf (Ixamax), scal, gemv, gemm.

More will be added when necessary

=  MKL: not yet, will be added soon (needed for Pliris)

J Example:

KokkosBlas: :gemm (“"N” 6 “N ,alpha,w,beta,(l':)

“N”’: non-transpose
“I: transpose

“C”: conjugate transpose Kokkos::Views

performs matrix-matrix multiplication
Cl[i,J] = beta*C[i,]J] + alpha*SUM k(A[i,k]*B[k,]J])

Equivalent cuBLLAS functions: cublasSgemm, cublasDgemm, cublasCgemm, cublasZgemm
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MAGMA TPL Support (GESV) in Kokkos Kernels (1/2)

|

J MAGMA is a collection of next generation linear algebra libraries for

heterogeneous GPU-based architectures of multi/manycore CPUs and multi-
GPUs.

J Key Features:

Multiple precision arithmetic support (S/D/C/Z)
Hybrid algorithms using both multicore CPUs and GPUs
Hybrid LAPACK-style functions:

> Matrix factorizations: LU, Cholesky, QR, eigenvalue, SVD, ...

» Solve linear systems and linear least squares, ...

> Neatly all are synchronous: return on CPU when computation is finished

> Matrix-vector multiply, matrix norms, transpose (in-place and out-of-place), ...

» Most are asynchronous: return immediately on CPU; computation proceeds on GPU

GPU BLAS and auxiliary functions:

Wrappers around CUDA and cuBLAS:

BLAS routines (gemm, symm, symy, ...)

Copy host < device, queue (stream) support, GPU malloc & free, ...

Nvidia Tensor Cores version of |
linear mixed-precision solver

that 1s able to provide an FP64
solution with up to 4x speedup
using the fast FP16 Tensor

Cores arithmetic



19 I MAGMA TPL Support (GESV) in Kokkos Kernels (2/2) @
MAGMA GPU interface:  fnt ‘main( InEoarge. charee argv ) MAGMA TPL support in KK:
d Column-major layout oaga L) d calling MAGMA functions through
int n = 100, nrhs = 10; KK interfaces

] Solve AX =B
J Example:

Double precision, GEneral
matrix SolVe (DGESV)

d Input & output matrices in
GPU device memory

Note:

= Set GPU stride (Idda) to
multiple of 32 for better
performance

= 1ptv still in CPU memory

s

int ldda = magma_roundup( n, 32 );

int lddx = magma*roundu?( n, 32 J);
intx ipiv = new iInt[ n ];

double *xdA, *xdX;

magma_dmalioc( &dA, lddaxn );
magma_dmalloc( &dX, lddxxnrhs );
assert( dA !'= nullptr );

assert( dX !'= nullptr );

// ... fill in dA and dX (on GPU)

// solve AX = B where B is in X
int info;
magma_dgesv_gpu( n, nrhs,
, ldda, ipiv,
_ . dX, lddx, &info );
if (info != 0) { _
throw std::exception();

// ... use result in dX
magma_free( dA );
magma_free( dX );
delete[] ipiv;

magma_finalize();

Source: ECP 2018 Annual Meeting Tutorials
https://icl.utk.edu/projectsfiles/magma/tutorial/ecp20 | 8-magma-tutorial.pdf

d taking Kokkos::View instead of raw
pointers

J initializing and finalizing MAGMA,
allocating ipiv under the hood

KokkosBlas: :gesv (“I;I” ,1},}‘()

“Y”: partial pivoting
“N’: no pivoting

Kokkos::Views

Note: Used for solving problem fitin a
single node in GEMMA



20 I MAGMA ZGESV Performance Evaluation )

J Evaluation was performed
through a Kokkos framework

only ZGESV (NxN) (P100 GPU, KNL)
: : 4,500
J Will redo with Kokkos Kernels
TPL support when it gets %0
merged 3,500
J Matrix A and vector B are 3,000
rapdomly generated as Kokkos % 2,500 L
Views O MAGMA
© 2,000
1 MAGMA.: -=-MAGMA_NOPIV
1,500 ~=KNL
magma_zgesv_gpu,
magma_zgesv_nopiv_gpu 1,000
(on a single P100 Nvidia GPU, c00
OMP_NUM_THREADS=064)
0 MKIL: LAPACKE_zgesv (on AR E NS NNNEAENEAEAAAEAELELS ‘
KNL, Matrix size (N)

OMP_NUM_THREADS=068) GFLOPS: Giga Floating Point Operations Per Second — The higher the better M
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Generic Framework

MPI_Init()

Rank 1

Kokkos::initialize()

Get mesh data

Construct partial

[Z]

A

Construct partial
partial RHS [V]

v

Solve for [/]

Get solution

vector [/]

Kokkos::finalize()

l |Comm.ﬁ .

Comm.

|

Comm.

|

Rank n

Kokkos::initialize()

Get mesh data

Construct partial

[Z]

A

Construct partial
partial RHS [V]

4

Solve for [/]

Get solution

vector [/]

Kokkos::finalize()

MPI_Finalize()







24 I Pliris: Parallel Dense Solver Package

J Performs LU factorization and solves a dense matrix equation on parallel computers using
MPI

J The matrix is torus-wrap mapped onto the processors(transparent to the user) and uses
partial pivoting during the factorization of the matrix

= since the input matrix is not torus-wrapped, permutation of the results is performed to “unwrap the
results”

J Each processor contains a portion of the matrix and the right hand sides determined by a
distribution function to optimally load balance the computation and communication during
the factorization of the matrix

" no processor can have no more(or less) than one row or column of the matrix than any other processor

J Use old C-programming style with pointets and can run only on CPUs

https://github.com/trilinos/Trilinos/tree/master/packages/pliris



25 | Pliris — Example of Workload Distribution

Total number of processors = 6
Number of processors for a row = 3
Number of right-hand sides = 2
Sub-block column id

1 2
.
‘ Sub-block row 1d
. .
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Next-Gen Pliris (in progress)

J C++ 11 (driving toward newer C++ standards)
J Templated implementation for code readability and maintenance

J Supporting multiple target compilers and architectures
= Re-factor Pliris for use on MIC and GPU processors
= Use Kokkos and Kokkos Kernels

J Non-even distribution may be necessary for load balancing in the future
applications
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MoM EFIE Arithmetic Intensity when Considering Triangle Pairs

o

*Fills 1/4™ of 9 EFIE matrix entries: Compute the 4D integral [[ G(AT - AS + V - AT x V7 - A®)
over an triangle pair where T and S loop through the 3 half-basis functions on each triangle.

*Assume the triangle pair requires loading 520 bytes = 6 vertices (18 doubles) + eps & mu (2
complexes) + connectivity information (14 ints) + 9 matrix contributes (18 complexes since atomic)

*With some reuse of data, the arithmetic intensity is 25373; FLOPs/byte = 4.5 FLLOPs/byte

add, sub, mul div exp, sincos, estimated | Total for 3x7 points and 3
(1 FLOPs) (4 FLOPs) | sqrt (8 FLOPs) FLOPs half-basis
16 7 720 (=

A(r) = FLOPs x 10 x 3)
V-A 1 4 12 (= FLOPs x 3)
G(r,7") 7 2 3 39 819 (= FLOPs x 21)
GAT-AS + V7 -AT xV - AS) 8 8 504 (= FLOPs x 21 x 3)
Elemental mapping 28 28 280 (= FLOPs x 10)

Total 59 5 3 108 2335



29 I Considering Triangle Pairs via Quadrature Inner Product

*Inner product over quadrature to form a 3x3 block of matrix

G171 o Gy A3
contributions: A = [A] -+ AL]| : 5 : |- '
Gs1 v Gaz]|A7)
*3x3 block of complexes 4 is scattered to nonconsecutive
matrix entries. It contains 18 doubles, i.e., 144 bytes. Mesh data & matrix
“[AT], [AS], [V - A1, [V - AS], [Gy ] vectors and matrix ’

contain 162 doubles, i.e., 1296 bytes.
Kokkos scratch level 1
*Requires 1528 bytes of Kokkos scratch level 0.

*GPU details: Only 1 triangle pair considered by a warp.

Kokkos scratch level O

1 triangle pair, [A{], [G; ], 4, etc.




Considering Triangle Pairs via a Loop over Triangle Pairs

“Instead of storing the [AT], [AS 1. [G;,j] vectors and matrix

G110 Gy AS
required for A = [AT -+ AL]| : : 3 '
G310 Gag||AS .
compute them on the fly. DeviceSpace
*Requires 7424 bytes of Kokkos scratch level 0 and 4608 bytes Mesh data & matrix

of Kokkos scratch level 1.

Total FLOPs per triangle |
pair Kokkos scratch level 1

A(r) 1512 (= FLOPs x 21 x 3)
VA 252 (= FLOPs x 21 x 3) ’
G(r,r") 2457 (= FLOPs x 21 x 3)
GT-AS+V-AT+V-AS) 504 (= FLOPs x 21 x 3)
Elemental mapping 1764 (= FLOPs x 21 x 3) 32 triangle pairs

Total 6489



31 I Considering Triangle Pairs via a Loop over Triangles

Thread 0 1 2 2 4 5 6 7 8 9 10

Test Unknown 40 41 42 43 44 45 46 47 40 41 42 '
Source Unknown 620 620 620 620 620 620 620 620 621 621 621 )
DeviceSpace

*Instead of loading 32 triangle pairs, load 8 test and 8 source triangles to make Mesh data & matrix

04 triangle pairs on the fly. '
*Reduces memory use in Kokkos scratch level O by reducing the required
number of vertices, but maybe not the other information. Kokkos scratch level 1
* Previous slide’s 32 triangle pairs require 192 vertices, which 1s 576 doubles or 4608
bytes.

* This slide’s 16 triangles require 48 vertices, which is 144 doubles or 1152 byes.

*Required FLOPs largely unaffected.

Kokkos scratch level O

16 = 2 x 8 triangles




22 I Considering Triangle Pairs while Storing the Matrix in HostSpace

7 oy : . . Matrix
*Send A to HostSpace with instructions on where to put it in the matrix.
°A is 3x3 and each entry goes to a different location in the matrix. '
*Information required by the host to scatter A is 216 bytes = 9 entries of A (9
complexes) + 9 matrix coordinates (18 ints). e
*GPU details:
* Data reuse: the algorithm requires 2335 FLOPs. Its arithmetic intensity is

2335
% FLOPs/byte ~ 10.8 FLOPs/byte. i m—

* No data reuse: the algorithm requires 6489 FLOPs. Its arithmetic intensity is

A
67418?9 FLOPs/byte = 30 FLOPs/byte.
* Feasible if (the GPU max FL.LOPs divided by the GPU-HostSpace bandwidth) is "

less than the arithmetic intensity. _
Kokkos scratch level O

16 = 2 x 8 triangles

John Pennycook, Charlene Yang, and Jack Deslippe, “Quantitatively Assessing Performance Portability with Roofline”, NeRSC. https://ideas-
productivity.org/events/hpc-best-practices-webinars/#webinar025



33 I MoM EFIE Arithmetic Intensity when Considering Basis Pairs

Source
basis:

*Fills EFIE matrix entry (T, §): Compute the 4D integral [[ G(AT - A> + V - AT * V - A®) over 4 triangle
pairs, 2 of which support basis T and 2 of which support basis S.

*Assume for 4 triangle pairs, the triangle pair requires loading 652 bytes = 12 vertices (36 doubles) + eps &
mu (2 complexes) + connectivity information (16 ints) + 1 matrix contributes (1 complex)

*With some reuse of data, the arithmetic intensity is 50— FLOPs/byte = 7.7 FLLOPs/byte

add, sub, mul div exp, sincos, | estimated | Total for 3x7 points and
(1 FLOPs) (4 FLOPs) sqrt (8 FLOPs) FLOPs 2x2 triangles

A(r) 480 (= FLOPs x 10 x 2)

V-A 1 4 16 (= FLOPs x 4)
G(r,7") 7 2 3 39 3276 (= FLOPs x 21 x 4)
GAT-AS + V7 -AT xV - AS) 8 8 672 (= FLOPs x 21 x 4)
Elemental mapping 28 28 560 (= FLOPs x 10 x 2)

Total 59 5 3 108 5004



34 I Considering Basis Pairs without Reuse

*Since each basis pair 1s supported by 4 triangle pairs,
32 basts pairs requires 128 triangle pairs, i.e., 20864
bytes in Kokkos scratch level 0.

*With T and S fixed for a single edge of each element

> nth edge

. . G%,1 G%,7 A3 P
(A7 - A3l | Mesh data & matrix
Gz1 - G37]|A7 '
Total FLOPs per basis
pair (no reuse) Kokkos scratch level 1
A(r) 2016 (= FLOPs x 21 x 4)
V-A 336 (= FLOPs x 21 x 4)

G(r,r") 3276 (= FLOPs x 21 x 4) '
GAT - AS + 7 - AT %7 - AS) 672 (= FLOPs x 21 x 4) Kokkos scratch level 0

Elemental mapping 2352 (= FLOPs x 21 x 4) 128 triangle pairs
Total 8652




35 I Considering Basis Pairs Making Triangle Pairs on the Fly

°If not reusing data, consider the 4 triangle pairs supporting the basis pair simultaneously and make
triangle pairs on the fly.

* 16 triangles require 48 vertices = 144 doubles = 1152 byes.
* 128 triangle pairs require 768 vertices = 2304 doubles = 18432 bytes.

Thread 0 1 2 3 4 5 6 7 8 9 10
Test Unknown 6 6 6 6 Z 7 V4 7 8 8 8
nth edge I
Test Element - - + - + - + - + - +
Source Unknown 600 600 600 600 600 600 600 600 600 600 600 DeV]CeSpace
Source Element + + - - + + - - + + - MeSh data & matr'ix

I
Voe—

16 = 2 x 8 triangles




3¢ I Considering Basis Pairs via an Outer Product of Bases

HostSpace
*Instead of loading Basis pairs, load 32 test and 32 source

bases to make 1024 basis pairs on the fly.

* Loading 1024 basis pairs requires 24576 vertices = 73728
doubles = 589824 bytes.

* Loading 64 bases requires 768 vertices = 2304 doubles = '
18432 byes.
“Fills a 32x32 block of the system matrix. DeviceSpace

*GPU details: Load the information for 1 test basis and all Mesh. matrix
32 source bases for a given warp. This is broadcasting and ’

coalesced memory access, respectively. '

Thread 0 1 2 3 4 5 6 7 8 9 10

Kokkos scratch level 1 or O

Test Unknown 6 @ 8 9 10 1 12 13 14 15 16

Source Unknown 600 600 600 600 600 600 600 600 600 600 600

32 test & 32 source full-bases




37 I Considering Basis Pairs via Precomputing and Calling BLAS

Precalculate A(?)

* Precompute A & G.

* Use BLAS to perform a contraction over some of the
dimensions of the following tensors:

Ti,Sj TiL,Sj1[.si]
G G1,7 A1]

1,1 l
[ATE o AT ; : DeviceSpace
GTi,Sj

G. A
| U3 LRI | A, G(?), element quadrature(?)

 AT' is a matrix. 1t dimension: (x,y,z) coordinates. 27 dimension:

Full-basis [Ti]. Same for all other A. Full-bases [Ti] and [S]] .

. 017_: ll’S] s a 3-dimensional tensor. 15t dimension: real and
imaginary parts. 2°4 and 3" dimensions: Kokkos scratch level 1

* Contract over the shown quadrature point dimension and the
(x,y,2) coordinates of the As.

* For N test full-basis and IN source full-basis, fills a continuous

NxN block of the system matrix. I
* The G tensor contains 41N ? doubles and the As contain 30 Kokkos scratch level 0

SON, where BLAS lkes large N. Blocks of A and G as BLAS sees fit

* Opting for instead precomputing quadrature points and basis
requires 60N instead of 41N% + 30N.




Question: Arithmetic Intensity
in an MPIl Environment?




39 I What if Bound by MPI Communication Instead of Memory Bandwidth!?

*MPI scatter can be expensive; when is it appropriate?

*MLFMA example

* Has O(N log N) complexity and O(N) storage requirement, but that means the complexity is C * N log N
for some constant C. If C is a function of MPI bandwidth when the algorithm is implemented, C can be

quite high.

=

T Ol B 00000 |



|ldeas for increasing Arithmetic
Intensity




o
d & il
A s

#1 | ldea |: Decrease Working Precision

Block Diagonal Preconditioner

*Helps because it lowers the number of bytes o
Schur-PCA Preconditioner

but keeps the number of FLOPs constant

*Example:
> CUBIT default output has error of 1*10™-6
> Consider the slotted cylinder

o Matrix has a condition number of 1.1 x 10”7. An LU solver
needs double precision to get 5 digits

GCR residue

> Schur-PCA solver might only need single precision to
obtain etror of 10 -

o Fill with full RWG can lose 1 significant digit I

due to subtraction after calculating integrals over
each element 10° \ 5
[ | 26 iterations ]

> Should we use single precision until we scatter
to the system matrix? Can we perform the solve 108

in single precision? 0 200 400 600 800 1000 1200
iterations

Jin-Fa Lee and Chung Lee, “Schur PC with Octree ”, 4/9/2019.



42

ldea 2: Decrease Memory Requested / Increase the FLOPs

*Reduce accuracy to reduce bytes loaded

* Low accuracy solution and far coupling calculation require only 1 quadrature point (centroid) on each
triangle

* Store element centroid instead of 3 vertices

*Reuse data stored in the cache to reduce bytes loaded
¢ Classical approach: Loop by elements instead of by unknowns

* More recent: sort unknowns in an FMM like way to increase chance of reuse, but have to avoid bank
conflicts

*Use high order basis to increase the FLOPs performed

> More computationally demanding for loading same element data

> Don’t need to obtain exponential convergence of p-refinement in order to increase arithmetic intensity; just
need to do as well as h-refinement

|

T Tl



Fin
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Required Bytes

*Previously stored in a cache: 3 test quadrature points and 7
source quadrature points

*Input: 188 bytes = 23 doubles = 6 vertices (18 doubles) + eps
(1 complex) + mu (1 complex) + wavenumber (1 complex)

*Output: 16 bytes = 2 doubles (1 complex)
= [JGAT -A°> + V- AT %V - A°)

Total bytes read and written for one element pair: 204



46 | N's FLOPS

__Tr=vy _ (Tx»ry»rz)—(VOx»UOy;voz)
“Ao(r) =

|hol |hol
) |h0| _ 2xarea _ 2x|egxe|
leol leol

(ler vly' vlz)
> A cross product requires 3 subtractions and 6 multiplications

where €o = (VZx» vzy, vZZ) —

° Ao (T) requires 9 subtractions, 7 multiplications, and 2 divisions
> Counting division as 4 flops, Ao () requires 24 flops
2
QV ° A —_— —
O |hol
oV « Ay requires 1 division given |hg| from Ag(7)
oV« Ay requires 4 tlops
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G’s FLOPS
N e jkir-7']
G(r,r) =
(r,7) at|r—r']
o 2 divisions: e ~JkIr—r"] — re(eJKIT=T"l) 4 j im(e=JkIT=T"l)
" 4m|r—r'| ATt|r—1'|

> 1 exp and 1 sincos: e JkIT=—7"l = ere(_jk|r_r'|)(cos(im(—jklr —r'])) +
j sin(im(—jk|r —r'[))

° 2 multiplications: —jk|r —r'| = im(k)|r —r'| — jre(k)|r — 1]

° 2 multiplications: 4m|r — 1’|

o 3 subtractions and 1 square root: [r —r'| = \/(Tx, Ty, T‘Z) — (T'x, T'y, r'Z)

° G(r, ") requires 3 subtractions, 4 multiplications, 2 divisions, 1 exponential, and 1
square root

> Counting exp and sincos as 8 flops, G(r, ") requires 31 flops
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Kernel FLOPS

GAT A5 + V- AT %7 - AS)
° 2 multiplications: G * x = (re(G) + j im(G)) * x
> 2 additions and 3 multiplications: AT - A> = ALAS + A731,A‘§, + ATAS
> 1 multiplication: V - AT % 7 - AS
° The kernel requires 2 additions and 6 multiplications, i.e., 8 flops

*Single quadrature point / weight
° 6 additions and 9 multiplications: Elemental mapping {gvg + &1V + &0,
° 3 subtractions and 6 multiplications: Jacobian |ey X eq|
° 4 multiplications: kernel * quadrature weights * Jacobian

° Calculating point / weight information requires 6 additions, 3 subtractions, and
19 multiplications, 1.e., 28 FLOPS.



49 I Integral Arithmetic Intensity

*Evaluating G(AT - A> + V - AT % 7 - A°) at a quadrature point
on the element and multiplying by the corresponding weight
requires 8 additions, 15 subtractions, 36 multiplications, and 5
divisions, 1 exponential, and 1 square root, i.e., 95 FLOPS

*Repeating this for 3 test and 7 source points, [[ G(A" - A



Example: Arithmetic Intensity
Matrix Multiplication




Matrix Multiplication Arithmetic Intensity

*For two 1x1 matrices, one must load 2 doubles and store 1 double to perform the

matrix-matrix multiplication. 1 FLOP i1s performed. The arithmetic intensity 1s Pyl

0.04 FLLOPs/Byte.

*For two NxN matrices, 3N* doubles (8 bytes each) are moved. Each entry of the
resulting matrix requires N multiplications and N — 1 additions, 1.e., 2ZN — 1
FLOPs. Doing this for all N entries of the result, the arithmetic intensity is

2(N—
T = (N - 1)/24 FLOPs/Byte.

*For sutticiently large N, the algorithm is compute bound. Is there enough cache to
make a large enough N? No.

*For example, consider a V100 GPU with 96 KB of shared memory. Assuming all of
it can be used for the three matrices, 96000 = 24N?, which oives N < 63.

Limiting ourselves to this size, the best arithmetic intensity for this matrix-matrix

multiplication algorithm on a V100 is — = 2= & 2.6 FLOPs/Byte.
24 24
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2 I TheV&V Process

= An iterative process with feedback between V&V elements
= Uncertainty Quantification

= Geometric/Representation Fidelity
= Errors atise in using a model/mesh to approximate continuous structures

* Defeaturine, for example. will introduce gceometric fidelity errors
g, ple, g

= Physics Models

= How close are the equations to the physically realized solution?

* Code Verification

= How well does the code represent the physics model?

* Solution Verification
= Does the solution converge to the right answer?

= If so, how rapidly does it converge?

= Validation

= Comparison of simulation results to experimental data

Geometric
Representation
Fidelity

Application Context

Application

- - Requirements
Validation o ,
Test-CompSim

Integration

Derived CompSim
Requirements

Solution
Verification

ﬁ'ﬁ
Edl



3 I Overview of RCS Calculations

Scattered Field Eg
x t Incident Field E;

Transmitter

Figure by MIT OCW. | 2

E
RCS = LIM 4 7 r2 [Es

=0 |E;|2

(Unit: Area)

Radar Cross Section (RCS) is the hypothetical area, that would intercept the
incident power at the target, which if scattered isotropically, would produce
the same echo power at the radar, as the actual target.




4 | Overview of RCS Calculations (2)

(Near-Field) Target, size, shape,

material, orientation

<\
Polarization
Frequency
Scattering
Direction
(Monostatic) (Bistatic)

(Far-Field)

= Image from Ref. [1]

= Presented results are for
CHH?
= H polarized input

= H polarized return

= Two problems are
considered

= Cone-sphere
= Mie Sphere

"More left to the future
= NASA almond

= Double ogtve
= Ogtve

= Business card




5 I RCS Problem 2: Mie Sphere ®

= A perfect PEC sphere with a radius of 1 meter is meshed at different densities to test convergence of the numerical
estimate of the RCS value.

= An analytical solution for the Mie Sphere scattering problem exists and will be used, in this case, as our benchmark.

= Most cases do not have an analytical solution and rely on a) a densely meshed structure and/or b) experimental data

= Useful for identifying numerical instability thanks to the stability of the expected result.
= HH and VV results should be identical

= Results should not vary with angle of incidence (phi or theta)
= Squarish mesh used for historical reasons
= Simulations start at low frequency (30 MHz)

= Experimental data not as necessary as other cases

= Can vary frequency, sphere size, etc. with impunity

= Usetul for exploring the parameter space and making comparisons




6 I Mie Sphere: Details of the Meshing scheme

= Radius (R) = 1 meter
= Frequency (f) = 30 MHz

" Initial element edge length =
sphere radius (1 epr)

= Mesh densified by mesh
refinement; four elements
per initial element

= EPR scales as 2N

= Unknown (edge currents)
scales as 13.5 - 4V

= Number of elements scales

as 9 - 4N

= At 30 MHz, A = 10m,
EPW =10 - EPR




7 I Convergence Study Background

* Order of Accuracy (OA): quantifies the rate of convergence of our numerical solution to the true solution

= As a function of element size h, we expect the error to follow E(h) = |u — Hpg f| < Ch™ where n is our convergence rate
* For the Mie Sphere, an analytical solution is used to provide a gold standard to estimate the error
* For other cases (e.g. EMCC structures), the mesh with the greatest number of elements is often used as a reference

=11, L2, and L inﬁnity norms are used to quantify error in the simulation

* Ly == 2n=1|Un — Upes|, corresponds to the average absolute error over the evaluation domain

"L, = \/ >N up — Urer|?, Euclidean or RMS error

= Max|uy — Uper|, maximum absolute error in the evaluation domain

" These norms are calculated on the RCS and surface current values and used to evaluate the OA of our solution



8 I Mie Sphere: Polar Plots of the Simulated RCS values

Gemma Mie Sphere RCS , r:1m , f:30MHz (HH)

* Incidence angle explored as a variable initially

= As expected, variance as a function of angle quickly
goes to zero as the mesh begins to approximate the

sphere
= Angle of incidence eliminated as a variable in further
25.5 epw simulations
50.9 epw
101.9 epw
Ana. Soln.

(®)

T Ol B 00000 |



9

Relative Error (RCS)

Mie Sphere: Convergence Behavior — RCS W)

Mie Sphere Convergence (far field)

0L _
107 F #*  Simulated results | 7
*‘x\\ Convergence Fit
o
ol £ |
10 \‘\\ ]
.
*\
\\\
102 q
\.\
\\\
e
102 ERR = JANA - SIM| / ANA \\\ E
L%
fit function: ERR = C*hP *
C=279892 p=-10370
1|:r.4 il Ll I
10" 102 10° 10*

Mumber of Mesh Elements

10°

Summary of Results

= Far field RCS values used to compare against the analytical model
= Results are shown to be 1% order accurate (as expected)

= Relative errors down to 5e-4 interrogated thusfar

Future Work

= Extend study to increasingly dense meshes in an attempt to
interrogate the floor of the error values

= Explore additional polarization components to verify their
behavior

= Evaluate behavior across the frequency band of interest



10

Error Norms (current)

Mie Sphere: Convergence Behavior — Surface Currents uij

Mie Sphere Convergence (surface currents)

10° . .
& LA, (real)
. * L2 (imag)

1 & O Linf lex)
101k y inf (complex) | 4
102
103 5

S
104 F + 8
: 8 8
Exemplar fit to L1 (real)
105 ‘ : $
fit function: L1, = C*hP
C =0.8352, p=-0.6838
1D.ﬁ L M| L MR | L M|
101 102 108 10*

Mumber of Mesh Elements

Summary of Results

* Norms (L1, L2, Linf) used to evaluate error in the surface current
values of the simulation

= Real, imaginary, and complex current values are separately
evaluated as they could show different behavior based on the
algorithms employed; here, they show the similar trends

Future Work

= Extend study to increasingly dense meshes in an attempt to
interrogate the floor of the error values

= Explore additional polarization components to verify their
behavior

= Evaluate behavior across the frequency band of interest



<+ Higher Wavelengths

T

10,

1
A>>a

.~ Rayleigh
101 Region

Radar Cross Section / ta?

-
o
N

., !
" 0.1

Figure by MIT OCW.

04 07 1

0.2

Mie Sphere: Behavior as a Function of Frequency (from Ref. |) )

Lower WavelengthsS ——p

Optical
' Region
A<<a
Resonance or Mie
Region
2 4 7 10 20

Circumference/ wavelength = 2ra /A

Rayleigh Region
A>>a
oc=k/ A\

Mie or Resonance
Region
Oscillations
Backscattered
wave interferes
with creeping wave

Optical Region
A<<a
c=mn a2
Surface and edge
scattering occur




12 I Simulation geometry k)
(Top view)

@ = [0:0.5:360] °

The source strikes the cone-sphete geometry (gige view)
normal to the spherical region (6 = 90°).

As the simulation progresses, the source is swept
in @ from 0° to 360° in 0.5° increments.

v

polarization
. . . . . . <«—— ‘hh’ polarization
“hh polarization” indicates both the incident and .
analyzed RCS signal are horizontally polarized. 110390 0 T ”
330 10 30

320
310

40
50

This produces a far-field plot of radar cross- 500 60
section (RCS) in decibels per square meter [dBsm] 290 70
Vs @. 280 80

270 90

260 100

. . . ‘ 250
In comparison to the Mie sphere, this provides i

solution verification, since an analytic solution is =

unavailable. 220 140

210 150

200 190 170 160

180

110

120
130




13 I Mesh density

For a single source frequency, mesh density is increased
from 5 elements per wavelength (epw) to 80.

In each subsequent mesh, mesh density increases by a
factor of 2 using CUBIT’s “refine” function, ensuring
the original mesh nodes are present in the highest
mesh density.

Coarse meshes produce large wvariation in element
sizes; as mesh density increases, greater uniformity is
seen in the edge lengths.

5 epw

20 épw

80 epw

Std. dev., edge length (log)

1E+0 T+

1E-1 ¢

1l 1 1 [ T T I |
T T T

=)

[,

1E-2
1E+2

1

LI} T

i t3 1E
# Unknowns (log)

+4
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RCS Error

Using the 40epw mesh as a “golden standard”, RCS error
was computed for the 5, 10, and 20epw mesh densities
using:

|40epw —Current mesh|

ERR =

[40epw]|

and fit using ERR = C - epwP, as shown in the plot below.

Future studies will examine the convergence of the surface
currents using the Ly and Ly, norms, similar to the Mie
sphere:

_ JIglaoM) = Jsim(M)1dS
by Error = JIglJa0(r)las

Imax(|J40(@))—max(|Jsim @)D
max(|Jsim (™))

Lo Error =

ERR RCS (dBsm) (log)

(®)
(Top view) I
¢ =[0:0.5:360]°
<«—— ‘hh’ polarization
1E+0 :
—Fit
e RCS ERR
1E-1
1E-2 ®
C= 164.9
p =-1.085
1E-3 4 : bt . —
100 1000 10000

# Unknowns
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17 I Mie Sphere: Mesh Characteristics

N_[EPR | #Unknowns | Mesh Elements
54 36 10

1 1

2 2 216 144 20
3 4 864 576 40
4 8 3456 2304 80
5 16 13824 9216 160
6 32 55296 13824 320
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2 1 Outline

Motivation

EIGER Simulations / Rational interpolation

Sensitivity Analysis

* Methods

* Canonical Cavity Code and Results

* Power Balance Matched Bound Code and Results

Unmatched Power Balance Case

* Comparison with Experiments Toward Validation

Conclusions/Future Work



3 I Motivation: Canonical Cylindrical Cavity Example

NN
(=]

Full-wave simulation

3]
(=]
T

(=]
T

A
=)

= 7
Shielding effectiveness (dB)
)
S

W\,

SE =201o [ﬂJ
g

o
S

| inc|

1.2 1.4 1.6 1.8 2
Frequency (GHz)

'
oo
(=]

—

* External fields couple through the slot = Large fields (and thus large SE) >> 0 dB are observed neat resonant modes.

* These deterministic full-wave simulations are very sensitive to the parameters used (e.g. geometry, materials, etc.), and require

many frequency points to resolve the high-Q) resonant peaks.

We aim to determine, through a sensitivity analysis, the parameters that largely
affect SE, with the goal of achieving a range determination and distribution



4

EIGER and Rational Interpolation

High-Q resonances may require >100 frequency simulations to fully determine peak value and quality factor

However, the need of large frequency discretization may hinder a sensitivity analysis where enough samples are required

We applied a rational interpolation algorithm from OSU where only a handful of points (<20) are needed to resolve a high-Q
resonance. Using HPC machines, a resonant peak is resolved in 10 minutes run time per frequency point

50

40

30

20

10

Shielding effectiveness (dB)

-20
-30
G

-40

1.12

20

10

Shielding effectiveness (dB)

(a) 3 points

(c) 7 points

1.13
Frequency (GHz)

1.13
Frequency (GHz)

Shielding effectiveness (dB)

Shielding effectiveness (dB)

20

10|

-10 ]

0

(b) 5 points

1.125 1.13 1.135

Frequency (GHz)

(d) 9 points

1.125 1.13 1.135

Frequency (GHz)

15

=)

Shielding effectiveness (dB)

1.1295 1.12955 1.1296 1.12965 1.1297
Frequency (GHz)
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5

Sensitivity Analysis: Basics

* Sensitivity analysis is a way to identify which uncertain inputs are responsible for the variation in the output. There are many
ways to assess input sensitivity. Below are two methods that were used:

1) One-at-a-time variation: inputs are varied one-at-a-time with all other inputs held fixed.
* 'This provides a measure of the variation of the output, but it does not allow for interactions between inputs

2) Variance Decomposition: inputs are varied at the same time and the amount of variation in the output is decomposed and
attributed to each input. Two measures are calculated:
* First-order sensitivity indices - the proportion of the uncertainty in the output that is explained by the uncertainty in
a single input.

* Total-order sensitivity indices - the proportion of the uncertainty in the output that is explained by the uncertainty in
an input and its interactions with other inputs.



6 I Sensitivity Analysis: Two Codes Considered

* Canonical cavity code

»Uses an analytical code for fully-enclosed, highly-resonant cavities

» Initially implemented to build the sensitivity analysis framework to the cavity problem and gauge Q factor, E field
and frequency sensitivity vs cavity radius, height and conductivity

* Power balance code

» Uses matched bound formulation

» Allows for the coupling problem to be analyzed, bringing in the slot dimensions in the sensitivity analysis, in addition
to cavity radius, height and conductivity

|



Canonical Cavity

Assuming that the slot acts as an excitation source for the modes, but does not perturb the resonant modes

/

2
1 .2 nra
Pmpn T J@mp+(h jj
UE

Wm,p,n _ 77 \/Jmp

n7za/h

Qm,p,n = a)m,p,n P -

m,p,n

1+6,a/h

-

—p K

v /

» Cylindrical cavity quality factor (Closed Cavity)

» Cylindrical cavity resonant TM mode frequencies (Closed cavity)

» Field expressions (Closed cavity)

an

e
11

=

@

k'-a* p
E = Alm(Jm,pp/a)cos[m((p—goo)]cos(nﬂz/h) O<p<a, 0<z<h

\_ =5 4[5 +[E ]

\

Jmp] (]mpp/a)cos[ (¢—¢0)}nfsin(n7rz/h) 0<p<a, 0<z<h

-—AJ (jm,pp/a)msin[m(qﬁ—qﬁo)}%sin(nﬂz/h) 0<p<a, 0<z<h
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8 I Sensitivity Analysis: Results (Canonical Cavity Code)

Inputs: Radius, Height and Conductivity

0.751
0.50-
0.25-
0.00-

E field and frequency 2.0e+09-
most sensitive to radius, 8

. 5 1.0e+09-
QQ factor most sensitive O £ 0e+08-

to conductivity. 0.0e+00-

40000-

20000-

0

H
3 1.5e+09-

I N

010012014110 114 010012014 110114 010012014 110 114

mode

Output 1: E field, frequency, Q factor
Radius Sigma
| Direction
S = Negative
— None
— Positive

T '



9 | Sensitivity Analysis: Results (Canonical Cavity Code) )

Inputs: Radius, Height and Conductivit _IEIZ/
puts: Radius, Height a oncuctivity Output 2: VAR VAR = (|E|?)

CaVity Helght Max VAR Max VAR Max VAR
[21.6in, 26.4in] . 5 i
Cavity Radius
[3.6in, 4.4in] ]
. 17.5 18 -
Cavity Sigma mode
et 70 =
15.0 - ' 18 — 014
VAR not very —
— 114
sensitive to 5.5 - 12.5 -
radius, height or e
conductivity. o o
22 23 24 25 26 36 38 40 42 44 0e+00 26407 4e+07 6e+07

- These do not take into account the coupling problem

1 L e OB "



10 I Power Balance Bounding Method (Matched Bound)

* The matched bound has been computed using conservation of power arguments

» Assumes that the matched received power of the aperture is delivered to be absorbed by the interior cavity

walls

a

rec

SO = Oyall S \
0,.. = matched slot cross section

Sy = incident power flux density

o wall loss cross section

wall —

S = interior power density

J

» Additional loss mechanisms can be accounted for
to further improve the bound

40

o
S
T

Shielding effectiveness (dB)
A t
ja) ]

oN
S

E3)
M’

)

| SE,_, = 10log(i—sj

0

o
S

1.5

2 2.5
Frequency (GHz)

* Cavity SE is always below this bound, providing guidelines for maximum achievable levels of interior fields.

We use this power balance bound to perform a sensitivity analysis to
determine the parameters that lead to large SE variations




11 ‘ Sensitivity Analysis: Results (Power Balance Matched Bound)

* SE vs frequency changing only one parameter at a time

32* e \

[a)

=

L Slot Width
< [0.001in, 0.05in]
10 Slot Depth Slot Length

[0.1in, 0.5in] | [1in, 3in] [

e F— B R

=

Ll

n o — ==
Cavity Height Cavity Radius Cavity Sigma

10 [21.6in, 26.4in] - [3.6in, 4.4in] - [1e6, 7e7]

1 Frequency (GHz) 3 1 Frequency (GHz) 3 1 Frequency (GHz) 3

Mean
m— Min/Max



12 I Sensitivity Analysis: Results (Power Balance Matched Bound) )

=
1

First and total order variance decomposition (all parameters varied at once)

Height Radius Sigma Slot Length Slot Width Slot Depth
[21.6in,26.4in]  [3.6in,4.4in]  [2.5e7,3.5e¢7]  [1.5in,2.5in] [0.005in,0.025in]  [0.2in,0.3in]

0.8- .000000oo000.0000.0............. coee, 0.8- ........oo0000000000000...........oo.....
®e o9

© ©

L= =

& 0. o * Height ® Sigma * Slot_Width

g 804 * Radius ® Slot_Length * Slot__Depth

j2 I

- o

woz2 0000000000000000000000000000000000000000° 02 ee0eeececcc®scecscsccsscccsceec0s®ooesed®
00- 000000000000000000000000000000000089008800 00- 00000000000000000000000000000000089380808

1.0e+09 1.5e+09 2.0e+09 2.5e+09 3.0e+09 1.06+09 1.56+09 2.0e+09 2 56+09 3.06+09
Frequency Frequency

The fact that these two are nearly the same shows that the parameters do not interact; also, the major variations in SE are
induced by the slot parameters (length, width, depth).

We will focus only on the slot parameters from now on and try to define a computational experiment in full-wave
simulations




13 I Computational Experiment: Basics

There can be many goals of a UQ analysis. Two common goals are:

1. Estimate the min/max (range) of the output based on the range of input
variables.

2. Estimate a distribution of the output based on distributions of the input.

The choice of the goal is generally tied to requirements. It is important
to consider how the results of the UQ analysis will be used.
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Example to lllustrate Goal #|

Simulating a Cavity with a Slot

Uncertain Input Computer Output
Parameters Model
. Slot Width . T
11n 31n
- Slot Length : SE
3in OEES 5 in — > 5db| |
1in I Slot Depth I D 8

We estimate the SE to be between 5 and 25db. However, we don’t
know how likely SE values are between that range. Is it likely to be
close to 25db? 5db? Somewhere in between?

25db



15 I Example to lllustrate Goal #2

Simulating a Cavity with a Slot

Uncertain Input Computer Output
Parameters Model

Slot Width

SE

Slot Length

Li

Slot Depth

Here we can use the distribution of the output to answer questions
like “what is the probability SE is greater than 20db?”” and “what is the
99th percentile of SE?”



16 I Computational Experiment: Sampling Plan

The choice of sampling will depend on the goal of the analysis.

1) Design of Experiments Sampling — Often used in physical experiments.
o Advantages: Relatively small number of runs needed.

o Disadvantages: Requires assumptions about input/output relationship.

2) Monte Carlo Based Sampling — Often used in computer experiments.

o Advantages: Flexible method for dealing with more complex input/output relationships. Can be used to propagate input
uncertainty to get a distribution on the output.

o Disadvantages: Requires more model runs to adequately cover the input space.



17 I Design of Experiments Methods i

Full Factorial — All combinations of all factors (inputs) are run through the

model.

23 Full

Factorial

3 3 Full
Factorial

43 Full

Factorial

=
o,
A| Slot Width
2 5mil
73]
Slot Length
=
a,
o ©
2
7
Slot Length
Slot Width
5mil

Slot Widt
25mil

Slot Depth

h

o— o

Slot Length

9

= <
5 5
A O a
RS =
N
Slot Length
Slot Width
15mil

8 Runs
Linear

27 Runs
Quadratic

Slot Length
Slot Width
25mil

64 Runs
Cubic

Note: There are other design options that aim to be more efficient (i.e., use less runs) than these.

Each design has its advantages/disadvantages.
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Monte Carlo Based Methods

Latin Hypercube Sampling (LHS) 1s a random sampling method that aims
to sample the inputs evenly across the input space. It is more efficient than
random sampling or doing a very fine grid (e.g., a 153 full factorial).

[

0.8 % {
% |

0.6 * {
*

mw * [
0.4 , * {
¥ |

* |

.X‘ I

0+2 .3:.:’_ ‘
* |

* \

0! 1 1 o ﬁ
0 0.2 0.4 0.6 0.8 1

T '



19 I Computational Experiment: Results with Power Balance

The power balance code was run using 23,33 and 43full factorials, as well
as LHS using sample sizes of 100, 500, 1000 and 2000.

35-

30-
()]
()]
()
o
225 — FF 2
3 —FF 3
RS FF 4
L — LHS 100
D20- LHS 1000
£ LHS 2000
© / LHS 500
o
N 15-

10-

1.0e+09  1.5e+09  2.0e+09 2.5e+09  3.0e+09

Frequency

All full factorials gave the same result, indicating that the input/output
relationship is likely approximately linear. Many LHS samples are
needed to estimate the extremes of the output.



20 I Computational Experiment: EIGER Simulation with Rational Interpolation
* Based on the results from the power balance code, an EIGER simulation with rational interpolation was run
. 3 . . . . .
using a 4° full factorial (64 runs) with the slot parameters specified at the following ranges:
Power balance matched bound Full-wave
Slot Depth
SlOt Length 0.233 s 02 0.233
[1.5in, 2.5in]
Slot Width

25- 10-

[0.005in, 0.025in]

20~

Slot Depth
[0.2in, 0.3in]

A\

15-

N
N

o
[

0.266

Peak_SE

0.266 0.3

Peak_SE

Slot_width %0-
w= 0.005
w— 0.0117
= (0.0184 20
w— 0.025

25- 10~

15+

W

A

A\
A\

-
(6]

2.16 25
as.factor(Slot_len)

Py
o
-
o]
w

1.83

N
-
o
N
3}

15 1.83 216 25 15 183 216 25
Slot_len



21 | Distribution analysis

* We compute here distributions assuming uniform and normal distributions of the input parameters

Uniform Normal

1.0-

7.5e-08 -
5.0e-08 -
05-
 Height
2.5e-08 -
 Radius
00- 0.0e+00 - _ Conductivity

276+07 3.0+07 3.3e+07

 ShtLength

~ Slot Width

~ Slot Depth

276407 3.06+07 33e+07 3.66+0

25

density

50-

40-

7.54
30-
50-
20-
25-
10-
0- 00-
150 175 200 225 250 0005 0010 0015 0020 0.025 0200 0225 0250 0275 0.300 150 175 200 295 250 0.01 0.02 0200 0225 0250 0275 0300

value value



22 | Distribution analysis

¢ We compute here distributions assuming uniform and normal distributions of the input parameters
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Unmatched Bound Case

* In this case, the model:
» Assumes we are below the slot resonance, so the slot behaves inductively
» lgnores interior loading of the slot and wall losses
» As an approximation, is driven by the exterior short circuit current density for an infinite cylinder

40

/
\

éz —ﬁ Ao j:’p I (jm,pp/a)cos[m(¢—¢0)]%sin(nﬂz/h)\

r b
1 1 . . nw . \;
E, :m; Amypanm(mepp/a)msm[m(¢—¢0)]Tsm(n7zz/h) g 0r |
. <
E, = Am,p,nlm(Jm,pp/a)cos[m(¢—¢0)]cos(nﬂzlh) 1.14 5 sl :
= 4
K2 —g? B
Anpn o Lol (Tf;r;/Q K2 %/ | i 1
m, p,n 'm, p,n ~ Xm, p,n ¥ <A 1
-60r
/ Unmatched bound
1.22 123 1.24 -80

1 1.5 2 2.5

Frequency (GHz) 1.78 1.8 1.82

* This model (red curves) is in very good agreement with full-wave simulations and better estimates the peak SE value at each

resonance frequency
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Shielding Effectiveness Measurement Setup

* Measurement setup bandwidth from 1-4 GHz limited by the RF amplifier

* Incident field strength at the aperture slot was measured separately at the same frequency points in order to provide
the SE normalization

* Noise floor limited by the long RF cables from the cylinder to the network analyzer

* Electric field oriented in the z-direction perpendicular to the slot
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Measured & Simulated Empty Cavity SE Results

L TMOlO

* Measured mode frequency shift 10
from simulation can be explained Y
by a change in cylinder radius of S -10
only 50 pm = 0

* Measured SE and Q are lower
than simulation likely due to some
joint resistance in the fabricated
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Cylinder Joint Resistance

¢ Fabricated cylinder has joint at the bottom where the base plate is screwed in

* This joint has some contact resistance that was not initially included in the model/simulations

* A reasonable fit with the TM,;,, measurements is achieved with only 30.4 mQ of joint resistance

* High-Q cavities are very sensitive to additional resistance between joints
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Cylinder Joint Resistance Continued (h
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Conclusions

Rational interpolation greatly decreases the number of simulations required to resolve a
resonance peak.

HPC can be utilized to further decrease runtime.

Sensitivity analysis on the power balance code informed that SE is most sensitive to the
slot parameters.

Performed comparisons with experiments toward validation.

Use of more accurate power balance codes will increase fidelity.



