
PRESENTED BY

William L. Langston

Sandia
National
[aboratories

OHM* NAYsigt
Sandia National Laboratories is a

multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.

SAND2019-4818PE



2 I EIGER Overview

Electromagnetics Interactions GenERalized — EIGER

Initially developed collaboratively by SNL & University
of Houston (Bill Johnson, Roy Jorgenson, Don Wilton)

Massively parallel (IPI), three-dimensional

• Frequency-domain, boundary-element, Method of
Moments

Custom feature set for Sandia use cases
• Ability to rigorously model very high-quality-factor (Q) cavities

• Ability to handle non-ideal (dissipative) materials

• Wire and slot subcell models for high-fidelity coupling calculations

Eiger



3 EM Coupling Simulations Using EIGER Workflow

D Pre-processing:
O Significant level of effort required in preparing the model and mesh

o Mechanical joints are key features for calculating EM leakage into a system

o The leakage is often dominated by the electrical contacts at the mechanical joint

o Resolving the mesh to capture the geometrical details and electrical lengths is critical
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4 Gemma:A Next-Generation EM Code

Complicated
Workflow

Integral-Equation
Formulation Only

RWG Basis Functions

Specialized Sandia
Featu res

Low-Frequency
Instability

DifiPp 1),

Integrated Workflow

Algorithmic
Flexibility/Choices

Higher-order Basis Functions

Extensions to Specialized
Featu res

Low-Frequency Capability

Abstracted Models

Flexible Solver Techniques

Gemma



5 I Gemma Goals

Modern development environment
almilliu

C++ 11 (driving toward newer C++ standards) 1.1 11 Gemma
git + cmake environment supporting multiple target compilers and architectures oilmme
Templated implementation for code readability and maintenance

Scrum process enabling increased communication and transparency among team members

Integrated, flexible, extensible physics
Frequency-domain, full-wave EM method-of-moments simulation code (core EM functionality)

Alternative methods for flexibility and extensibility

Capability to couple E to other domains, such as mechanical, thermal, and circuits



6 I Kokkos: Code Development for Heterogeneous Compute Environments

CPU

Multi-Core

Applications
Gemma

Kokkos abstraction layer

MIC

Many-Core

Libraries
Trilinos

"NW Jo=

GPU

APU

MUM'S

CPU+GPU

Kokkos is the cornerstone for performance portability across next generation HPC architectures at
multiple DOE laboratories and other organizations.



7 Gemma: Capability and Performance on Next-Generation Hardware

FORTRAN
MPI Paradigm

(EIGER)

Heterogenous
Paradigm
(Gemma)

• MPI inter- and intranode parallelism
• High processor clock speed
• High memory per processor

• MPI internode parallelism
• Threading intranode parallelism
• Low processor clock speed
• Low memory per processor

Gemma
Ideal Development:
Writing architecture independent source code

Using multicore technology efficiently

A Mix of CPU Et MIC nodes
KNC Card

KNC Card
L

Intel' Xeone
Processor

System Memory

GDOR5 GDDR5
Channel • • • Channel

inte

K 50sCocroersn er

..MilUX Os

.7.DDR5

Cna-ne, • • • ,:ha-1,

>= 8G8 OCRS memory

CPU Et GPU on a single node



8 I Gemma: Early Activities (FY I 8) Gemma

• Integral-Equation (IE) Implementation
• CPU/GPU Performance
• Team Study and OSU Collaboration on Alternative Algorithms
• Multiphysics Coupling: Circuits, Mechanical, etc.
• Embedded Model Abstractions

Motivation:

Retain EIGER core capability

Extend algorithmic capability for flexibility

Allow for breadth in analysis needs (quick to highly rigorous sims) 



9 Gemma: Present Activities (FYI9)

/

Gemma

• Identify Plan Forward on Gemma Ul/UX
• MPI Implementation and Demo on CPU/GPU/MIC
• First Demo of Representative Coupling Simulation
• Implement time history of unit test coverage/regression test
timing

• Iterative Physical Optics (IPO) Implementation and Demo

Motivation:

Establish physics capabilities for Sandia use cases

Establish V&V early in code lifecycle

Enable parallel simulations across multiple nodes/GPUs

Demonstrate candidate alternative modeling methods



I10 Gemma: FY19 Recent Progress
.....0„,„
Il l'a; Gemma1.7 ...

Initial implementations for multiple regions and dielectrics have been completed paving the way for
initial coupling simulations.

MPI version of Gemma being developed and close to a working version for CPU and MIC (Pliris
direct solver does not support GPUs yet).

Initial IPO code implementation is complete. It is now being tested to verify correct results and
limitations.

Integrated Workflow (IWF) is proceeding with EIGER testing for both serial and parallel
simulations. This activity will inform the Gemma UI/UX development.



11 Gemma: FY20 Roadmap Gemma

• Verification and Validation for coupling use case
• Implement analytic deep-slot formulation
• Begin to implement selected OSU models
• Exercise IPO capability on Sandia use case
• Implement analytic power-balance formulation
• Begin implementation of Ul
• First code release to select user-set and document feedback
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1 3 ki Maxwell's Equations in the Frequency Domain

rFaraday x E —:/wB

Ampere — Maxwell x H = J ju;D

Electric Gauss V • D = p

Q4agnetic Gauss B

r

,

Magnetic fidd E=Ex + Ey j)-F Ez

E(x, y, z, t) = Re{eicutE}

Mection

exp ( jcot) time harmonic conventi

E electric field [Vim]

H : magnetic field [A/m]

D : electric flux density [C/m2]

B : magnetic flux density [T = Wb/m2]

J : cicctric current density [A/m2]

3p : volume charge density [C/m]

Constitutive relations:

D — cE : permitivity [F/m]

B = pH p permeability [1-1/m]

J = aE conductivity [S/m]

1



14 Integral Equation, Method of Moments

Boundary Condition on Surface:

L(I) pscatt = ET inc
tan tan

rN-

The currents are expanded in terms of the Rao-Wilton-Glisson basis functions:

J (r) lin fn(r)

Test the integral equation with the basis functions:

( fm, L(.1 )) f fm • L(J )ds
surface

Z 1 V

Unknown
Currents

v
Impedance
Matrix

1
1

I
1

1
Excitation I

I

1
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Overview

• Coupling problems

• Analysis techniques
• Power Balance

• Slot Model
• Homogeneous Regions

• Simulation using boundary element methods
• PMCHWT and Mier formulations

• Status of coupling simulation in Gemma



Gemma: Next-Generation Electromagnetics Simulation Software
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Gemma: Next-Generation Electromagnetics Simulation Software

• Successor to Sandia's EIGER (Electromagnetic Interactions GenERalized) code
suite

• Presently uses method of moments (MoM) with Rao-Wilton-Glisson (RWG) basis
functions

• Use of Kokkos abstraction enables compilation for multiple different platforms

• Currently being tested for OpenMP, MPI, and Cuda

• Uses linear algebra algorithms from Sandia's Trilinos library



Coupling Simulations

SZ

UU

sc
11 DEVICE

Motivation:

• Devices in high-Q cavities vulnerable
to EM interference coupled through
small apertures

• Particularly at resonant frequencies

• Shielding effectiveness (SE) prediction
becomes important design step



Coupling Simulations

SZ

UU

sc
11 DEVICE

Motivation:

• Devices in high-Q cavities vulnerable
to EM interference coupled through

small apertures

• Particularly at resonant frequencies

• Shielding effectiveness (SE) prediction

becomes important design step

Methods being investigated:

• Analytic
• Power balance

• Full-Wave

• PMCHWT formulation
[J. Poggio and Miller, 1973]

• Willer formulation [Miller, 1969]
• Slot model



Coupling Problems: Bounding with Power Balance

• Upper bound on shielding effectiveness
obtained using statistical EM

• Transmitted power (Pt) equated to
dissipated power (Pd)

• Shielding effectiveness calculated as
ratio between power density of
incident wave Si and power density in
cavity 5', [Hill, 2009]

SE(r) = 10 log10 (Scs,(21.))

40

,_, 20
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DEVICE
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Coupling Problems: Full Wave Analysis

Single Region

Qi

• Q1 includes inside,
outside, gap

• Fails to capture coupling
accurately

Slot Region

Qi
Q2

• Mesh slot volume as
separate region

• Fewer interactions
between inner/outer
regions

• Still accurately capture
slot geometry

Q1

Slot Model

c
Q2

• Model slot as
transmission line
connecting Q1, Q2

• Same mesh can be used
to test different slot
parameters



BEM Solution of Multi-Region Problems

• Enforce tangential continuity of E and
H on boundary

• Convenient to define
(J+, M+) = —(J,1\4)

• Yields combined field formulation

EFIE+ aEFIE-

MFIE+ /3MFIE-

• Choice of cx,f3 affects accuracy,
conditioning

• a = = 1 gives PMCHWT
formulation _

• a = =  
1-tr

formulation

gives Milner

(1)

tri+

7.„„r?rr: 
........... ..

• .
A••••"---.

J-,

Q+



Reference Solutions

• Scattering from spherically symmetric
objects described by Mie
series[Harrington, 1961]

00

Ar 
= EO cos cp E (bni4c,2) (kr) + anJn) Prli(cosO)

W II n=1
sin co cx'Fr = Eo  cn.k2) (kr) + an:in) P71,-(cosO)

n=1

(2)

• Applicable to

• Conducting sphere
• Homogeneous dielectric sphere
• Piecewise homogeneous sphere with

multiple dielectric/conducting layers



Comparison of PMCHWT and MOHer Formulations

• PMCHWT

• No 2Z term
• Better accuracy with higher-contrast

materials
• Poorly conditioned
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Comparison of PMCHWT and MOHer Formulations

• PMCHWT

• No V term
• Better accuracy with higher-contrast

materials
• Poorly conditioned

• Miller

• Singularity reduction in G
• Better accuracy with low contrast

materials
• Well-conditioned

Figure: Near-field scattering of 3 x 107 Hz
plane wave from homogeneous dielectric sphere
characterized by Er.
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Comparison of PMCHWT and MOHer Formulations

• PMCHWT

• No V term
• Better accuracy with higher-contrast

materials
• Poorly conditioned

• Miller

• Singularity reduction in G
• Better accuracy with low contrast

materials
• Well-conditioned

Figure: Near-field scattering of 3 x 107 Hz
plane wave from homogeneous dielectric sphere
characterized by Er.
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Comparison of PMCHWT and Willer Formulations
er = 1
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Comparison of PMCHWT and Willer Formulations
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5
4
3
2

70

60

50

40

30

20

10

0  
0

ttttt 
tttttt ....a lllllllll
Mie —*—

Gemma, all PMCHWT —1E1—
Gernma inner PMCHWT, outer Mueller —e—
Gemma inner Mueller, outer PMCHWT —M—

Gemma, all Muelleir —4,—
E44  
lEe

80 85

20

90

40

95

60

100

80 100 120 140 160 180

e M

66

65.5
• +z-traveling wave, E = 377 V m-1*l

65
El; lllllll De. llllll ::::: - Frequency 30 MHz

64.5

64 Far-field scattered E computed at yo = 65°
63.5

0 5 10 15 20
Sphere meshed with 3598 flat triangles



Comparison of PMCHWT and Willer Formulations
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Gemma Multi-Region Results: 3-layer Sphere
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Gemma Multi-Region Results: 4-layer Sphere
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Coupling Problems in Gemma

• At present Gemma solves dielectric problems with

non-intersecting boundaries
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Coupling Problems in Gemma

• At present Gemma solves dielectric problems with

non-intersecting boundaries

• Correct solution obtained for 1-5 region problems

• Coupling problems contain junctions

PEC

Figure : Multi-Region Junction with closed
PEC. Currents represented by arrows
correspond to same DOF.



Coupling Problems in Gemma

• At present Gemma solves dielectric problems with

non-intersecting boundaries

• Correct solution obtained for 1-5 region problems

• Coupling problems contain junctions

• PMCHWT and Weller require specific handling of
different junction types [Yl-Oijala et al., 2005] c2i PEC

Figure : Multi-Region Junction with thin
PEC (black). Different color arrows
correspond to different DOF. (cf.
[Yla-Oijala et al., 2005, Fig. 6]



Current Status

• Done

• PMCHWT and Willer formulations implemented on GPU
• Multiple-region logic tested for 2-3 regions

• Remaining

• Address MFIE integration accuracy
• Generalize for arbitrary number and arrangement of regions (incl. junctions)
• Incorporate slot model into Gemma and compare to meshed slot
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1
Slot Model

Slot geometry can be replaced by transmission line

[Warne and Chen, 1990]

B.. (pE„ z) + 
440 dz2
—
1 
—
d2
Im — Ypolm/4 = —HP' (3)

i ( d2 ) fh eikR0
Hz> (pirT , z) = + k2
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EM Boundary Element Equations for Homogeneous Regions
The equivalence principle [Harrington, 1961] gives us the integral equations on the
surface S bounding region S27, [Yla-Oijala and Taskinen, 2005]:

• EFlEn:

• MFlEri:

1
T. [cn,C,(Jn) + 1c,(1\47,)] — —

2
(11 x T).1\47, = T•Enc

T- [dnrn(Mn) — kri(in)] + —
2 
(ri x T)-J, = T.111;i1c



EM Boundary Element Equations for Homogeneous Regions
The equivalence principle [Harrington, 1961] gives us the integral equations on the
surface S bounding region S27, [Yla-Oijala and Taskinen, 2005]:

• EFlEn:
1

T. [cn,C,(Jn) + 1c,(1\47,)] — —
2
(11 x T).1\47, = T•Enc

• MFlEri:

[dnrn(Mn) — kri(in)] + 2
 
(ri X T)-Jn = T.IK1c

• Let J2 = -J1 and M2 = -M1. Solve combined system

a1EFIE1 — a2EFIE2

/31MFIE1 — 132MFIE2
(7)



EM Boundary Element Equations for Homogeneous Regions
The equivalence principle [Harrington, 1961] gives us the integral equations on the
surface S bounding region S27, [Yla-Oijala and Taskinen, 2005]:

• EFlEn:
1

T. [cn,C,(Jn) + 1c,(1\47,)] — —
2
(11 x T).1\47, = T•Enc

• MFlEri:

[dr,rn(Mn) — /COTO] + 2
 
(ri X T)-Jn = T.IK1c

• Let J2 = —J1 and M2 = —M1. Solve combined system

a1EFlE1 — a2EFIE2

i31MFIE1 — 02MFIE2

• Galerkin PMCHWT formulation:

al = a2 = /31 = i(32 = 1, Tn = Bn

(7)



EM Boundary Element Equations for Homogeneous Regions
The equivalence principle [Harrington, 1961] gives us the integral equations on the
surface S bounding region S27, [Yla-Oijala and Taskinen, 2005]:

• EFlEn:
1

T. [cn,C,(Jn) + 1c,(1\47,)] — —
2
(ri x T).1\47, = T•Enc

• MFlEri:

[dnrn (MO — /COTO] + (ri X T)-Jn = T.IK1c

• Let J2 = —J1 and M2 = -1\41. Solve combined system

a1EFIE1 — a2EFIE2

i31MFIE1 — 02MFIE2

• Galerkin PMCHWT formulation:

al = a2 = /31 = /32 = 1, Tn. = Bn

• N-Müller formulation:

= Erl, a2 = Er2, /31 /32 - /42, Tn = Bn X fin

(7)



Rational Interpolation

• Frequency sweeps for

complex/electrically large

cavities expensive.

• Rational interpolation

algorithm provided by OSU
enables accurate and efficient

resolution of SE peaks

50
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Figure : SE plot for cylinder using Eiger with rational
interpolation algorithm. Comparison with Altair FEKO
sweep across 46 uniformly spaced points.
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Performance Portability



3 Minimizing Effort for Running Fast on Desired Architectures

Everybody
wants to be
here.

Performance
Run "fast enough" for
scientific discovery.

Portabilit
Support multiple
architectures.

Productivity
Minimize effort in
development and

maintenance.

■ Performance / Productivity
Enable domain scientists to write high-
performance codes with minimal tuning

■ Performance / Portability
Enable applications to run at different
facilities, on different machine types

■ Portability/ Productivity
Enable developers to program in one
shared language/programming model

John Pennycook, Charlene Yang, and Jack Deslippe, "Quantitatively Assessing Performance Portability
with Roofline", NeRSC. https://ideas-productivity.org/events/hpc-best-practices-webinars/#webinar025



4 I Performance Portability Defined

c13(a, p,

0

ei(a,p) =
minCFl Bi X I i(a, p))

zex ei(a,p)

Pi(a,p)

if i is supported Vi E H ei(a, = efficiency of application a for
input problem p.

otherwise

a)

Application

100.00%

80.00%

1 — PP(a,p,H) = 23.30%

.=ril 60.00%
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0_
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"The harmonic mean of an application's
performance efficiency on a set of
platforms for a given problem."

Application 2 — PP(a,p,1-1) = 20.00% Application 3 — = 36.92%

1 oo.00% loom%

80.00% a) 80.00%

60 00% t 60.00%
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20.00% 20.00%

0.00% 
0_ 
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A B C D E F

Platform

A B C D E F

Platform

Efficiency PP Efficiency PP

John Pennycook, Charlene Yang, and Jack Deslippe, "Quantitatively Assessing Performance Portability
with Roofline", NeRSC. https://ideas-productivity.org/events/hpc-best-practices-webinars/#webinar025



5 Architectural vs Application Efficiency

Architectural Efficiency
4096

2048

256

128

64

Achievable

i!, Observed

Application Efficiency
600
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u)
Cil
9 300
u_
0

200

100

0

1 Best-Known

Observed

1/8 1/4 1/2 1 2 4 8 16 32 64 128 1 2

Arithmetic Intensity Implementation

Represents how well an application utilizes Represents whether an application uses
each platform's resources appropriate algorithms on each platform

John Pennycook, Charlene Yang, and Jack Deslippe, "Quantitatively Assessing Performance Portability
with Roofline", NeRSC. https://ideas-productivity.org/events/hpc-best-practices-webinars/#webinar025
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7 I Theoretical and Empirical Rooflines for KNLs and V100s

KNL Theoretical FMA: 2457.6 GFL(
Empirical FMA: 2390.1 GFL( 

Theoretical No-FMA: 1228.8 GFL  1311.'

3%

  22%c).•• Empirical No-FMA: 959.5 GFL

  Theoretical Ceiling

Empirical Ceiling

10-1 10° 101 102 103 104 105
Arithmetic Intensity [FLOPs/Byte]

104

u
(i)

0
LL

a) 103-
u

o

(1.)

102

v100 Theoretical FMA: 7833.6 GF

Empirical FMA: 7068.9 GF
Theoretical No-FMA: 3916.8 GF

1 0%

1 Empirical No-FMA: 3535.8 GF 1 0%
(111/e-1

  Theoretical Ceiling

Empirical Ceiling

10° 101 102 103 104
Arithmetic Intensity [FLOPs/Byte]

105

KNL FMA: 2390.1 FLOPs/byte 7 FLOPs/byte v100 FMA: "6" FLOPs/byte 8.5 FLOPs/byte
828.8341.8

KNL no FMA: 
—959.5 

FLOPs/byte 2.8 FLOPs/byte
341.8

v100 no FMA: 3535.8 FLOPs/byte = 4.3 FLOPs/byte
828.8

John Pennycook, Charlene Yang, and Jack Deslippe, "Quantitatively Assessing Performance Portability with Roofline", NeRSC. https://ideas-
productivity.org/events/hpc-best-practices-webinars/#webinar025



8 Required Arithmetic Intensities for Using Main Memory

Haswell CPU
Theoretical bandwidth from system memory: 68 GB/s

Theoretical max FMA FLOPs: 185.6 GFLOPs/s

Required arithmetic intensity to load from system memory: 2.7 FLOPs/Byte

v100
Empirical bandwidth from global memory: 828.8 GB/s

Empirical max FMA FLOPs: 7068.9 GFLOPs/s

Required arithmetic intensity to load from global memory: 8.5 FLOPs/Byte

KNL
Empirical bandwidth from high bandwidth memory: 341.8 GB/s

Empirical max FMA FLOPs: 2390.1 GFLOPs/s

Required arithmetic intensity to load from high bandwidth memory: 7 FLOPs/Byte

Intel, Intel Xeon Processor E5-2698 v3. https://ark.intel.com/content/www/us/en/ark/products/81060/intel-xeon-processor-e5-2698-v3-40m-
cache-2-30-ghz.html

Intel, Export Compliance Metrics for Intel Microprocessors Intel Xeown Processors.
https://www.intel.com/content/dam/support/us/en/documents/processors/APP-for-Intel-Xeon-Processors.pdf

1

John Pennycook, Charlene Yang, and Jack Deslippe, "Quantitatively Assessing Performance Portability with Roofline", NeRSC.
https://ideas-productivity.org/events/hpc-best-practices-webinars/#webinar025



Kokkos and Kokkos Kernels



10 I Kokkos Overview

Kokkos is a productive, portable, performant, shared-memory programming
model.

CI is a C++ library, not a new language or language extension.

III supports clear, concise, thread-scalable parallel patterns.

lets you write algorithms once and run on many architectures

e.g. multi-core CPU, NVidia GPU, Xeon Phi, ...

CI minimizes the amount of architecture-specific implementation details
users must know.

solves the data layout problem by using multi-dimensional arrays with
architecture-dependent layouts

https://github.com/kokkos/kokkos-tutorials/blob/master/Intro-Short/Slides/KokkosTutorial_ATPESC I 8.pdf



11 I Kokkos — Node Design

Target machine:
r

rn
lo

eu
uc

oJ
ai

u 

On-Packag
Memory Core Coi-e

NUMA Domain

Network-on-Chip

NUMA Domain
V

-Ask
4m►

Core Core

Acc.

Accelerator

 411111 • n-Package
Memory

L_ DRAM

3„
Rif NVRAM

Node

Christian Trott, "Kokkos: Capabilities Overview". https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf



1 2 I An Abstraction Layer to Prevent Rewriting an Entire Code

.1M= 11=1

Multi-Core Many-Core APU

11111111
33 I

CPU f GPU

Christian Trott, "Kokkos: Capabilities Overview". https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf



13 I Kokkos Data Management and Execution

Data Structures

- Multiple-Levels
- Logical Space (think UVM vs explicit)

Memory Layouts ("How") 

- Architecture dependent index-maps
- Also needed for subviews

1

2

3

Access Intent: Stream, Random, ...
Access Behavior: Atomic
Enables special load paths: i.e. texture

1 2 3 4 0 1

0
1

2

Parallel Execution 111

Execution Spaces ("Where")

- N-Level
- Support Heterogeneous Execution

Execution Patterns ("How"Ml

parallel for/reduce/scan,
Enable nesting

Execution Policia°.

task spawn

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent scratch-pads

2 3

10-

A: Column-major order (Fortran-style) B: Row-major order (C-style

Execution Policies Patterns
parallel_for(N, [=] (const size_t i) {

/* loop body */

}) ;

double totallntegral = 0;

parallel_reduce(number0fIntervals,

[=] (const size_t i, double & valueToUpdate) {
valueToUpdate += function(...);

},

totallntegral);

parallel_outer(

TeamPolicy<>(numberOfTeams, teamSize, vectorLength)

KOKKOS_LAMBDA (const member_type & teamMemberj", ...]) {

/* beginning of outer body */

parallel_middle(

TeamThreadRange(teamMember, thisTeamsRangeSize),

[=] (const int indexwithinBatch[, ...]) {

/* begin middle body */

parallel_inner(

ThreadVectorRange(teamMember, thisVectorRangeSize)

[=] (const int indexVectorRangq, ...]) {
/* inner body */

}[, );
/* end middle body */

} C, ...] );
/* end of outer body */

}[, ...] );

Christian Trott, "Kokkos: Capabilities Overview". https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pclf
Intel. Developer Guide for Intel Math Kernel Library for Linux. https://software.intel.com/en-us/node/528573



14 I Kokkos Kernels

KokkosKernels is a library for node-level, performance-portable,
computational kernels for sparse/dense linear algebra and graph
operations, using the Kokkos shared-memory parallel
programming model.

❑ Kokkos Kernels is available publicly both as part of Trilinos
and as part of the Kokkos ecosystem

ID Can be building block of a solver, linear algebra library that uses
MPI and threads for parallelism, or it can be used stand-alone in
an application.

Generic implementations for various scalar types and data
layouts

0 Interfaces to Intel, NVIDIA and other vendor provided kernels
available in order to leverage their high-performance libraries

Several new kernels are being added as needed by the
applications

E.g.: Distance-2 Coloring, Deterministic coloring, dense linear system
solver, ...

D Expand the scope of BLAS to hierarchical implementations.

D Download at https://github.com/kokkos/kokkos-kernels

Science and Engineering Applications

Trilinos

NP7

Kokkos
Tools

( Debugging

Profiling )

Kokkos Ecosystem

Kokkos Kernels

( Linear Algebra Kernels Graph Kernels

Kokkos Core
Parallel

Execution
Parallel Data
Structures

Meld-Core

  Elm

Many-Core APU CPU+ GPU



1 5 I Kokkos Kernels — Capabilities (1/2)

/ LIAO
ni An

\  D 

• BLAS-1: abs(), axpy(), axpby(), dot(), fill(), mult(), nrm2(), scal(), ...
• BLAS-2: gemv() (matrix-vector multiplication)
• BLAS-3: gemm() (matrix-matrix multiplication)
• BLAS-1 functions are available as multi-vector variants
• Extended BLAS: dense linear system solver (MAGMA Third-Party Library (TPL))

( Sparse )
• CSR-Sparse Matrix Class providing fundamental capabilities
• SPMV: Sparse Matrix Vector Multiply
• SpGEMM: Sparse Matrix Matrix Multiply; separate symbolic and numeric phase
• GS: Gauss-Seidel Method using graph coloring: symbolic, numeric, solve phases

( Batched BLAS )

• DGEMM: matrix-matrix multiplication
• DTRSM: triangular system solve
• DGETRF: LU factorization



16 I Kokkos Kernels — Capabilities (2/2)

K Graph 7
• Distance-1 and Distance-2 graph coloring
• Triangle enumeration for graph analytics

• Using SpGEMM + Visitor Pattern: can be used to represent large problems

( Micro BLAS )

• Hierarchical Hardware requires hierarchy of function support
• Provide BLAS / SparseBLAS interface with hardware handles
• Example use-case: each CUDA block or KNL tile runs its own independent CG-Solve
• Team-level BLAS: abs(), axpy(), axpby(), dot(), mult(), nrm2(), scal(), update(), gemv(), ...
• Kernel uses a CUDA block or all threads sharing a common L2 cache
• Utilization of local scratch



17 I cuBLAS and MKL TPLs Support in Kokkos Kernels

BLAS functions (Level-1, -2, and -3): KokkosKernels allows calling cuBLAS or
MKT, functions through KokkosKernels interfaces

1 cuBLAS: axpy, axpby, dot, nrml (asum), nrm2, nrm_inf (Ixamax), scal, gemv, gemm.

More will be added when necessary
6 MKT.: not yet, will be added soon (needed for Pliris)

D Example:

KokkosBlas : : gemm "r , "N" , alpha A B beta C

"N": non-transpose

"T": transpose

"C": conjugate transpose Kokkos::Views

performs matrix-matrix multiplication
C [i, j ] = beta*C [i, j ] + alpha*SUM k (A [i, k] *B [k, j ] )

Equivalent cuBLAS functions: cublasSgemm, cublasDgemm, cublasCgemm, cublasZgemm



18 I MAGMA TPL Support (GESV) in Kokkos Kernels (1/2)

CI MAGMA is a collection of next generation linear algebra libraries for
heterogeneous GPU-based architectures of multi/manycore CPUs and multi-
GPUs.

❑ Key Features:
- Multiple precision arithmetic support (S/D/C/ )

• Hybrid algorithms using both multicore CPUs and GPUs

Hybrid LAPACK-style functions:

➢ Matrix factorizations: LU, Cholesky, QR, eigenvalue, SVD,

➢ Solve linear systems and linear least squares, ...

➢ Nearly all are synchronous: return on CPU when computation is finished

• GPU BLAS and auxiliary functions:

➢ Matrix-vector multiply, matrix norms, transpose (in-place and out-of-place), ...

➢ Most are asynchronous: return immediately on CPU; computation proceeds on GPU

• Wrappers around CUDA and cuBLAS:

BLAS routines (gemm, symm, symv, ...)

➢ Copy host <=> device, queue (stream) support, GPU malloc & free, ...

• Nvidia Tensor Cores version of
linear mixed-precision solver
that is able to provide an FP64
solution with up to 4x speedup
using the fast FP16 Tensor
Cores arithmetic



19 I MAGMA TPL Support (GESV) in Kokkos Kernels (2/2)

MAGMA GPU interface:

U Column-major layout

CI Solve AX = B

O Example:

Double precision, GEneral
matrix SolVe (DGESV)

U Input & output matrices in
GPU device memory

Note:

• Set GPU stride (ldda) to
multiple of 32 for better
performance

• ipiv still in CPU memory

// tutorial2_gpu_interface.cc
int main( int argc, char** argv )

}

magma_init();

int n = 100, nrhs = 10;
int ldda = magma_roundup( n, 32 );
int lddx = magma roundup( n, 32 );
int* ipiv = new int[ n ];

double *dA, *dX;
magma_dmalloc( &dA,
magma_dmalloc( &dX,
assert( dA != nullpt
assert( dX != nullpt

ldda*n );
lddx*nrhs );
✓ );
✓ );

// ... fill in dA and dX (on GPU)

// solve AX = B where B is in X
int info;
magma_dgesv_gpu( n, nrhs,

dA, ldda, ipiv,
dX, lddx, &info );

if (info != 0) {
throw std::exception();

// ... use result in dX

magma_free( dA );
magma_free( dX );
delete[] ipiv;

magma_finalize();

Source: ECP 20 I 8 Annual Meeting Tutorials
https://idutk.edu/projectsfiles/magmakutorial/ecp20 1 8-magma-tutorial.pdf

MAGMA TPL support in KK:

U calling MAGMA functions through
KK interfaces

O taking Kokkos::View instead of raw
pointers

U initializing and finalizing MAGMA,
allocating ipiv under the hood

KokkosBlas : : gesv ("N" , A X

"Y": partial pivoting

"N": no pivoting

Kokkos::Views

Note: Used for solving problem fit in a
single node in GEMMA



20 MAGMA ZGESV Performance Evaluation

Evaluation was performed
through a Kokkos framework
only

Will redo with Kokkos Kernels
TPL support when it gets
merged

Matrix A and vector B are
randomly generated as Kokkos ,
Views °

MAGMA:
magma_zgesv_gpu,
magma_zge sv_nopiv_gpu
(on a single P100 Nvidia GPU,
OMP_NUM_THREADS=64)

MKT: LAPACKE_zgesv (on
KNL,
OMP_NUM_THREADS=68)

4,500

4,000

3,500

3,000

2,500

(.9 2,000

1,500

1,000

500

ZGESV (NxN) (P100 GPU, KNL)

MAGMA

-0-MAGMA NOPIV

4-KNL

—Y—Y—Y—Y—Y—YY -IC --Y Y -IC Y —1C YY—Y—Y—Y—Y—Y—Y -. -Id -Y —1d -Id -- -le Y —Y
l—i n4 rn .1" Ln up N oo cr) o 1-1 r`g CO d- Ln lID r. oo cP) o L-1 n4 m di- Ln Lo r--- co cm o

L-1 L-1 L-1 L-1 L-1 L-1 L-1 L-1 L-1 L-1 (-..1 r•J r•J C`J CV C \J rsl C`s1 r•J r•J M

Matrix size (N)

GFLOPS: Giga Floating Point Operations Per Second — The higher the better

I
I

I



Kokkos and/or Kokkos Kernels with MPI



MPI Init()

22 Generic Framework
Rank 1

Kokkos::initialize()

T

I

Construct partial

[Z]

Construct partial
partial RHS [V]

Solve for [/]

1
Get solution
vector [/] 1

Kokkos::finalize()

(Comm.)

* • •

Comm.

<  
Comm.

>Et

Rank n

Kokkos::initialize()

1

I

Construct partial
[Z]

Construct partial
partial RHS [V]

]Solve for [I]

1
Get solutiondi
vector [/]

1
Kokkos::finalize()

MPI Finalize()



Next-Gen Pliris



24 I Pliris: Parallel Dense Solver Package

Performs LU factorization and solves a dense matrix equation on parallel computers using
MPI

The matrix is torus-wrap mapped onto the processors(transparent to the user) and uses
partial pivoting during the factorization of the matrix

since the input matrix is not torus-wrapped, permutation of the results is performed to "unwrap the
results"

D Each processor contains a portion of the matrix and the right hand sides determined by a
distribution function to optimally load balance the computation and communication during
the factorization of the matrix

no processor can have no more(or less) than one row or column of the matrix than any other processor

Use old C-programming style with pointers and can run only on CPUs

https://github.com/trilinos/Trilinos/tree/master/packages/pliris



25 Pliris — Example of Workload Distribution

Total number of processors = 6

Number of processors for a row = 3

Number of right-hand sides = 2

WW

WW

Sub-block column id 0

Sub-block row id

0

1

1



26 I Next-Gen Pliris (in progress)

' C++ 11 (driving toward newer C++ standards)

i_i Templated implementation for code readability and maintenance

1:1 Supporting multiple target compilers and architectures
Re-factor Pliris for use on MIC and GPU processors

- Use Kokkos and Kokkos Kernels

Non-even distribution may be necessary for load balancing in the future
applications



Arithmetic Intensity for EFIE MoM



28 I MoM EFIE Arithmetic Intensity when Considering Triangle Pairs

Test
triangle:

Source
triangle:

Fills 1/4th of 9 EFIE matrix entries: Compute the 4D integral ff G (AT • sA AT As)

over an triangle pair where T and S loop through the 3 half-basis functions on each triangle.

Assume the triangle pair requires loading 520 bytes = 6 vertices (18 doubles) + eps & mu (2
complexes) + connectivity information (14 ints) + 9 matrix contributes (18 complexes since atomic)

•With some reuse of data, the arithmetic intensity is —
2335 
520 

FLOPs/byte 4.5 FLOPs/byte

A(r)

V • A

G (r , r')

G (AT • As + V • AT * V • As )

Elemental mapping

add, sub, mul
(1 FLOPs)

16

7

8

28

div
(4 FLOPs)

exp, sincos,
sqrt (8 FLOPs)

esti mated
FLOPs

Total for 3x7 points and 3
half-basis

2 24 720 (= FLOPs x 10 x 3)

1

2 3

4

39

12 (= FLOPs x 3)

819 (= FLOPs x 21)

8 504 (= FLOPs x 21 x 3)

28 280 (= FLOPs x 10)

Total 59 5 3 108 2335



29 I Considering Triangle Pairs via Quadrature Inner Product

Inner product over quadrature to form a 3x3 block of matrix
G1,1 G1,7 Ai:

contributions: A = [A71' • • • A73] :

• • •

G3,1 ••• G3,7 A7

3x3 block of complexes A is scattered to nonconsecutive
matrix entries. It contains 18 doubles, i.e., 144 bytes.

[Ar], [A:7], [V • AT], [V • As], [Gii] vectors and matrix

contain 162 doubles, i.e., 1296 bytes.

Requires 1528 bytes of Kokkos scratch level O.

GPU details: Only 1 triangle pair considered by a warp.

HostSpace

-*-
DeviceSpace

Mesh data a matrix

Kokkos scratch level 1

v-
li Kokkos scratch level 0

1 triangle pair, [AT], [Gi j], A, etc.

1

.
1



30 I Considering Triangle Pairs via a Loop over Triangle Pairs

Instead of storing the [AD, [V], [Gij] vectors and matrix
G1,7  [All1,1

required for A = [ A71: • • • A7
G3,1

• • •

• • • G3,7 A.,57
compute them on the fly.

Requires 7424 bytes of Kokkos scratch level 0 and 4608 bytes
of Kokkos scratch level 1.

Total FLOPs per triangle
pair

A(r) 1512 (= FLOPs x 21 x 3)

V • A 252 (= FLOPs x 21 x 3)

G (r , r') 2457 (= FLOPs x 21 x 3)

G (AT • As + V • AT * V • As) 504 (= FLOPs x 21 x 3)

Elemental mapping 1764 (= FLOPs x 21 x 3)

DeviceSpace

Mesh data ec, matrix

Kokkos scratch level 1

A

Kokkos scratch level 0

32 triangle pairs

Total 6489



31 I Considering Triangle Pairs via a Loop over Triangles

Thread 0 1 2 3 4 5 6 7 8 9 10

Test Unknown 40 41 42 43 44 45 46 47 40 41 42

Source Unknown 620 620 620 620 620 620 620 620 621 621 621

Instead of loading 32 triangle pairs, load 8 test and 8 source triangles to make
64 triangle pairs on the fly.

Reduces memory use in Kokkos scratch level 0 by reducing the required
number of vertices, but maybe not the other information.

Previous slide's 32 triangle pairs require 192 vertices, which is 576 doubles or 4608
bytes.

This slide's 16 triangles require 48 vertices, which is 144 doubles or 1152 byes.

Required FLOPs largely unaffected.

HostSpace

DeviceSpace

Mesh data Et matrix

Kokkos scratch level 1

A

Kokkos scratch level 0

16 = 2 x 8 triangles

1

1



32 Considering Triangle Pairs while Storing the Matrix in HostSpace

Send A to HostSpace with instructions on where to put it in the matrix.

A- is 3x3 and each entry goes to a different location in the matrix.

Information required by the host to scatter A is 216 bytes = 9 entries of A (9
complexes) + 9 matrix coordinates (18 ints).

GPU details:

Data reuse: the algorithm requires 2335 FLOPs. Its arithmetic intensity is
2335

FLOPs/byte = 10.8 FLOPs/byte.
216

No data reuse: the algorithm requires 6489 FLOPs. Its arithmetic intensity is
6489

FLOPs/byte 30 FLOPs/byte.
216

Feasible if (the GPU max FLOPs divided by the GPU-HostSpace bandwidth) is

less than the arithmetic intensity.

Matrix

Mesh

Kokkos scratch level 1

Kokkos scratch level

1 16 = 2 x 8 triangles

John Pennycook, Charlene Yang, and Jacl< Deslippe, "Quantitatively Assessing Performance Portability with Roofline", NeRSC. https://ideas-
productivity.org/events/hpc-best-practices-webinars/#webinar025



33 MoM EFIE Arithmetic Intensity when Considering Basis Pairs

Test
basis:

n. edge

Source
basis:

n. edge

Fills EFIE matrix entry (T, S): Compute the 4D integral ff G (AT • As + AT v • A A SN) over 4 triangle

pairs, 2 of which support basis T and 2 of which support basis S .

Assume for 4 triangle pairs, the triangle pair requires loading 652 bytes = 12 vertices (36 doubles) + eps &
mu (2 complexes) + connectivity information (16 ints) + 1 matrix contributes (1 complex)

5004
•With some reuse of data, the arithmetic intensity is  

652 
FLOPs/byte 7.7 FLOPs/byte

A(r)

V • A

G (r , r')

G (AT • As + V • AT * V • As )

Elemental mapping

add, sub, mul
(1 FLOPs)

16

7

8

28

div
(4 FLOPs)

exp, sincos,
sqrt (8 FLOPs)

esti mated
FLOPs

Total for 3x7 points and
2x2 triangles

2 24 480 (= FLOPs x 10 x 2)

1

2 3

4

39

16 (= FLOPs x 4)

3276 (= FLOPs x 21 x 4)

8 672 (= FLOPs x 21 x 4)

28 560 (= FLOPs x 10 x 2)

Total 59 5 3 108 5004



34 I Considering Basis Pairs without Reuse

•Since each basis pair is supported by 4 triangle pairs,
32 basis pairs requires 128 triangle pairs, i.e., 20864
bytes in Kokkos scratch level 0.

With T and S fixed for a single edge of each element,
the contribution is still given by

• • • G1,7 [AllG1,1

[A17 • • • AT31 i

G3,1 • • •

• •• •

G3,7 A.,s7.

Total FLOPs per basis
pair (no reuse)

A(r) 2016 (= FLOPs x 21 x 4)

V • A

G (r , r')

G (AT • As + V • AT * V • As )

Elemental mapping

336 (= FLOPs x 21 x 4)

3276 (= FLOPs x 21 x 4)

672 (= FLOPs x 21 x 4)

2352 (= FLOPs x 21 x 4)

11:±u:11

nth edge

DeviceSpace

Mesh data Et matrix

Kokkos scratch level 1

Kokkos scratch level

128 triangle pairs
Total 8652



35 I Considering Basis Pairs Making Triangle Pairs on the Fly

*If not reusing data, consider the 4 triangle pairs supporting the basis pair simultaneously and make
triangle pairs on the fly. cy 

16 triangles require 48 vertices = 144 doubles = 1152 byes.

128 triangle pairs require 768 vertices = 2304 doubles = 18432 bytes.

Thread 0 1 2 3 4 5 6 7 8 9 10

Test Unknown 6 6 6 6 7 7 7 7 8 8 8

Test Element + + + + + +

Source Unknown 600 600 600 600 600 600 600 600 600 600 600

Source Element + + + + + +

1

nt h edge

DeviceSpace

Mesh data Et matrix

#
Kokkos scratch level 0

16 = 2 x 8 triangles



36 Considering Basis Pairs via an Outer Product of Bases

Instead of loading Basis pairs, load 32 test and 32 source
bases to make 1024 basis pairs on the fly.

. Loading 1024 basis pairs requires 24576 vertices = 73728
doubles = 589824 bytes.

Loading 64 bases requires 768 vertices = 2304 doubles =
18432 byes.

Fills a 32x32 block of the system matrix.

GPU details: Load the information for 1 test basis and all
32 source bases for a given warp. This is broadcasting and
coalesced memory access, respectively.

Thread 0 1 2 3 4 5 6 7 8 9 10

Test Unknown 6 7 8 9 10 11 12 13 14 15 16

Source Unknown 600 600 600 600 600 600 600 600 600 600 600

DeviceSpace

Mesh, matrix

Kokkos scratch level

32 test a, 32 source full-bases



37 Considering Basis Pairs via Precomputing and Calling BLAS

• Precompute A & G.

• Use BLAS to perform a contraction over some of the
dimensions of the following tensors:

[r 
1,1 

Sj 
••• u 

r 
1,7

sj Ay
u 

gii

[A1i: • • • A7i.]
Ti,Sj

G3,1 *** G1,1

• A7-;_ i is a matrix. 1st dimension: (x,y,z) coordinates. 2nd dimension:
Full-basis [Ti]. Same for all other A. Full-bases [Ti] and [Sj] .

• Gnsi is a 3-dimensional tensor. 1st dimension: real and
imaginary parts. 2nd and 3rd dimensions:

• Contract over the shown quadrature point dimension and the
(x,y,z) coordinates of the As.

• For N test full-basis and N source full-basis, fills a continuous
NxN block of the system matrix.

The G tensor contains 41N2 doubles and the As contain 30
30N, where BLAS likes large N.

• Opting for instead precomputing quadrature points and basis
requires 60N instead of 41N2 + 30N.

Precalculate A(?)

DeviceSpace

A, G(?), element quadrature(?)

Kokkos scratch level 1

-f-
Kokkos scratch level 0

Blocks of A and G as BLAS sees fit



Question:Arithmetic Intensity
in an MPI Environment?



39 What if Bound by MPI Communication Instead of Memory Bandwidth?

MPI scatter can be expensive; when is it appropriate?

MLFMA example

Has 0 (N log N) complexity and 0 (N) storage requirement, but that means the complexity is C * N log N
for some constant C. If C is a function of MPI bandwidth when the algorithm is implemented, C can be
quite high.



Ideas for increasing Arithmetic
Intensity



41 I Idea I : Decrease Working Precision

lo°

Helps because it lowers the number of bytes
but keeps the number of FLOPs constant

10
-1

*Example:

O CUBIT default output has error of 1*10̂ -6 0-

•O Consider the slotted cylinder m
:a

O Matrix has a condition number of 1.1 x 10-7. An LU solver a
2 10

needs double precision to get 5 digits IX
0O Schur-PCA solver might only need single precision to 0

obtain error of 10-4.
0

O Fill with full RWG can lose 1 significant digit
due to subtraction after calculating integrals over
each element i o

o Should we use single precision until we scatter

to the system matrix? Can we perform the solve
10_

in single precision? o

E

Block Diagonal Precondltioner
Schur-PCA Preconditioner

26 iterations

1 1 1 

200 400 600

iterations

800 1000 1200

Jin-Fa Lee and Chung Lee,"Schur PC with Octree ", 4/9/2019.



42 I Idea 2: Decrease Memory Requested / Increase the FLOPs

Reduce accuracy to reduce bytes loaded
Low accuracy solution and far coupling calculation require only 1 quadrature point (centroid) on each
triangle

Store element centroid instead of 3 vertices

Reuse data stored in the cache to reduce bytes loaded
Classical approach: Loop by elements instead of by unknowns

More recent: sort unknowns in an FMM like way to increase chance of reuse, but have to avoid bank
conflicts

Use high order basis to increase the FLOPs performed
More computationally demanding for loading same element data

Don't need to obtain exponential convergence of p-refinement in order to increase arithmetic intensity; just
need to do as well as h-refinement



43 1

Fin





45 I Required Bytes

Previously stored in a cache: 3 test quadrature points and 7
source quadrature points

Input: 188 bytes = 23 doubles = 6 vertices (18 doubles) + eps
(1 complex) + mu (1 complex) + wavenumber (1 complex)

Output: 16 bytes = 2 doubles (1 complex)

fl G (AT • As + pr , AT * v , As )

Total bytes read and written for one element pair: 204



46 I A's FLOPS

r—vo (rx,ry,rz)— (vox,voy,voz)
A 0 (r)

Ihol
2*area 2*leoxei l

i ho i 
leo' leo' 

where eo (vax) v2y, 122z)

(v1x) V1y) viz)

A cross product requires 3 subtractions and 6 multiplications

A0 (r) requires 9 subtractions, 7 multiplications, and 2 divisions

ICounting division as 4 flops, A0 (r) requires 24 flops

2
V • A0 ihol 

1
1

17 • A0 requires 1 division given IN l from A0 (r)
IV • Ao requires 4 flops

Ihoi



47 I G's FLOPS

G (r, r')
e-jklr-rf I

4Tclr—rf l
e-jklr-ri l re(e-Jklr-ril)-Fj im(e-jklr-r'1)

2 divisions:  =  
47rlr—rf I 47rlr—rf I

1 exp and 1 sincos: e-jklr-rf l = ere(414—rfl) (COS(ii71(— jklr — ri 1)) +
j sin(im(—jkir — 1-'1))
2 multiplications: —j k lr-rfl = im(k)lr — rfl — j re (k)Ir — ril
2 multiplications: 47 lr — 7-'1

3 subtractions and 1 square root: 1r — r ' l = (rx, ry, rz) — (rfx, rfy)riz)

1
1

I
1

1
i

G(r, rf) requires 3 subtractions, 4 multiplications, 2 divisions, 1 exponential, and 1 I
square root

Counting exp and sincos as 8 flops, G(r, , rf) requires 31 flops



48 I Kernel FLOPS

G (AT • As + V • AT * V • As )
2 multiplications: G * x = (re(G) + j im(G)) * x

2 additions and 3 multiplications: AT • As = ATxAsx + ATy Asy + ATzAsz

1 multiplication: V • AT * V • As

The kernel requires 2 additions and 6 multiplications, i.e., 8 flops

Single quadrature point / weight

6 additions and 9 multiplications: Elemental mapping Gvo + 'i.vi. + .2v2
3 subtractions and 6 multiplications: Jacobian 1 eo x e1 I

4 multiplications: kernel * quadrature weights * Jacobian

Calculating point / weight information requires 6 additions, 3 subtractions, and
19 multiplications, i.e., 28 FLOPS.



49 Integral Arithmetic Intensity

h',valuating G (AT • As + V • AT * V • As ) at a quadrature point
on the element and multiplying by the corresponding weight
requires 8 additions, 15 subtractions, 36 multiplications, and 5
divisions, 1 exponential, and 1 square root, i.e., 95 FLOPS

TRepeating this for 3 test and 7 source points, II G (A • AS +



Example:Arithmetic Intensity
Matrix Multiplication



51 I Matrix Multiplication Arithmetic Intensity

For two lx1 matrices, one must load 2 doubles and store 1 double to perform the

matrix-matrix multiplication. 1 FLOP is performed. The arithmetic intensity is —
24 

i",1

0.04 FLOPs/Byte.

For two NxN matrices, 3N2 doubles (8 bytes each) are moved. Each entry of the
resulting matrix requires N multiplications and N — 1 additions, i.e., 2N — 1
FLOPs. Doing this for all N2 entries of the result, the arithmetic intensity is
N2(N-1) 

= (N — 1)/24 FLOPs/Byte.
24N4.
,

For sufficiently large N , the algorithm is compute bound. Is there enough cache to
make a large enough N? No.

For example, consider a V100 GPU with 96 KB of shared memory. Assuming all of
it can be used for the three matrices, 96000 = 24N2, which gives N < 63.
Limiting ourselves to this size, the best arithmetic intensity for this matrix-matrix

N-1 62
imultiplication algorithm on a V100 s

4 
= -

24 
;-'-, 2.6 FLOPs/Byte.
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2 I The V&V Process

An iterative process with feedback between V&V elements

Uncertainty Quantification

Geometric/Representation Fidelity

• Errors arise in using a model/mesh to approximate continuous structures

Defeaturing, for example, will introduce geometric fidelity errors

Physics odels

How close are the equations to the physically realized solution?

Code Verification

How well does the code represent the physics model?

• Solution Verification

- Does the solution converge to the right answer?

If so, how rapidly does it converge?

Validation

Comparison of simulation results to experimental data

Validation

UQ
Geometric

Representation
Fidelity

Application Context
Application
Requirements

Test-CompSi m
Integration

Derived CompSim
Requirements

Solution
Verification

Physics
Models

Code Verification
Code SQA



3 Overview of RCS Calculations

Figure by MIT OCW.

Scattered Field Es

Target

RCS = LIM

Incident Field Ei

Range r

I Es1 2
4 r2  

IE; 2

Transm itter

(Unit: Area)

Radar Cross Section (RCS) is the hypothetical area, that would intercept the
incident power at the target, which if scattered isotropically, would produce
the same echo power at the radar, as the actual target.



4 I Overview of RCS Calculations (2)

(Near-Field)

Polarization

Frequency

(Monostatic)
(Far-Field)

Target, size, shape,
material, orientation

Scattering
Direction
(Bistatic)

Image from Ref. [1]

• Presented results are for
`HH'

H polarized input

H polarized return

Two problems are
considered

Cone-sphere

Mie Sphere

More left to the future

-1 NASA almond

• Double ogive

Ogive

Business card

Figure by MIT OCW.



5 I RCS Problem 2: Mie Sphere

A perfect PEC sphere with a radius of 1 meter is meshed at different densities to test convergence of the numerical
estimate of the RCS value.

An analytical solution for the Mie Sphere scattering problem exists and will be used, in this case, as our benchmark.
Most cases do not have an analytical solution and rely on a) a densely meshed structure and/or b) experimental data

■ Useful for identifying numerical instability thanks to the stability of the expected result.
- HH and VV results should be identical

Results should not vary with angle of incidence (phi or theta)

Squarish mesh used for historical reasons

• Simulations start at low frequency (30 MHz)

■ Experimental data not as necessary as other cases
Can vary frequency, sphere size, etc. with impunity

Useful for exploring the parameter space and making comparisons



6 Mie Sphere: Details of the Meshing scheme

Radius (R) = 1 meter

Frequency (f) = 30 MHz

• Initial element edge length cz
sphere radius (1 epr)

Mesh densified by mesh
refinement; four elements
per initial element

• EPR scales as 2N

Unknown (edge currents)
scales as 13.5 • 4N

• Number of elements scales
as 9 • 4N

At 30 MHz, À = 10m,
EPW = 10 • EPR



I7 Convergence Study Background

Order of Accuracy (OA): quantifies the rate of convergence of our numerical solution to the true solution

As a function of element size h, we expect the error to follow E(h) = lu — u„fl Chn where n is our convergence rate

For the Mie Sphere, an analytical solution is used to provide a gold standard to estimate the error

For other cases (e.g. EMCC structures), the mesh with the greatest number of elements is often used as a reference

L1, L2, and L infinity norms are used to quantify error in the simulation

- L1 = —NLn=i l un — u„f 1, corresponds to the average absolute error over the evaluation domain

vN 1
1., Euclidean or RMS error
4 = TV Lin=i I lin — Uref12 )

Loa = maxlun — uref 1, maximum absolute error in the evaluation domain

These norms are calculated on the RCS and surface current values and used to evaluate the OA of our solution



8 Mie Sphere: Polar Plots of the Simulated RCS values

180

Gemma Mie Sphere RCS , r:l m , f:30MHz (HH)
90

120

240

270

60

300

25.5 epw

50.9 epw

101.9 epw

Ana. Soh.

Incidence angle explored as a variable initially

As expected, variance as a function of angle quickly
goes to zero as the mesh begins to approximate the
sphere

Angle of incidence eliminated as a variable in further
simulations



9 Mie Sphere: Convergence Behavior — RCS

1o0

1 0-1

Mie Sphere Convergence (far field)

-1(- Simulated results
 Convergence Fit

ERR = ANA - SIMI 1 ANA

: fit function: ERR = C•hl)

- C = 27.9592: p = -1.0370

101 102 10a 10,1

Number of Mesh Elements

Summary of Results

Far field RCS values used to compare against the analytical model

Results are shown to be 1st order accurate (as expected)

Relative errors down to 5e-4 interrogated thusfar

Future Work

Extend study to increasingly dense meshes in an attempt to
interrogate the floor of the error values

Explore additional polarization components to verify their
behavior

Evaluate behavior across the frequency band of interest



10 Mie Sphere: Convergence Behavior — Surface Currents

100

10-1

''
LI] 10-4

Mie Sphere Convergence (surface currents)

Exem pla r fit to L1 (real)

fitfunctiorr Lifrt =Ct13- 

C 0.8352, p = -0.6838

101 102 103

Number of Mesh Elements
104

Summary of Results

Norms (L1, L2, Linf) used to evaluate error in the surface current
values of the simulation

- Real, imaginary, and complex current values are separately
evaluated as they could show different behavior based on the
algorithms employed; here, they show the similar trends

Future Work

Extend study to increasingly dense meshes in an attempt to
interrogate the floor of the error values

• Explore additional polarization components to verify their
behavior

• Evaluate behavior across the frequency band of interest



11 Mie Sphere: Behavior as a Function of Frequency (from Ref. I)

10

CN1

1

o
.4-7;
o

Ci)

(.0 10-1
o

ca-0
ct 10-2

4— Higher Wavelengths Lower Wavelengths —*

/
•

10-3
0.1

>> a

Rayleigh
Region /

Figure by MIT OCW.

Resonance or Mie
Region

r

! 1 L.    1  1. 11_11

0.2 0.4 0.7 1

Optical
Region

- -

« a

2 4 7 10 20

Circumference/ wavelength = 27ta /

Rayleiqh Reqion 
>> a

a = k

Mie or Resonance 
Reqion 

Oscillations
Backscattered
wave interferes
with creeping wave

Optical Reqion 
<< a

a = TC a2
Surface and edge
scattering occur



12 Simulation geometry

The source strikes the cone-sphere geometry
normal to the spherical region (9 = 900).

As the simulation progresses, the source is swept
in (p from 0° to 360° in 0.5° increments.

"hh polarization" indicates both the incident and
analyzed RCS signal are horizontally polarized.

This produces a far-field plot of radar cross-
section (RCS) in decibels per square meter [dBsm]
vs cp.

In comparison to the Mie sphere, this provides
solution verification, since an analytic solution is
unavailable.

(Side view)

= 9 0°

`vv'
polarization

(Fop view)

340 
350 0 

0 
10

330 -10
320

-20
310

-30
300 -40

20
30

40

50

60

290 5 70
-60

280 
- 70 

80

270 -80 90

260 100

250 110

240 120

230 130

220 140
210 150

200 160
190 170

= [0: 0.5: 360] °

`1111' polarization

180



13 I Mesh density

For a single source frequency, mesh density is increased
from 5 elements per wavelength (epw) to 80.

In each subsequent mesh, mesh density increases by a
factor of 2 using CUBIT's "refine" function, ensuring
the original mesh nodes are present in the highest
mesh density.

Coarse meshes produce large variation in element
sizes; as mesh density increases, greater uniformity is
seen in the edge lengths.

5 epw

20 epw

80 epw

cd
gc
 l
cn

gt
h 
(l

og
) 

1E+0

1E-1

1E-2

1E+2

■

.

■

•

I 11111 I 11111

1 E+3 1E+4

# Unknowns (log)

1 E+5



14 I RCS Error

Using the 40epw mesh as a "golden standard", RCS error
was computed for the 5, 10, and 20epw mesh densities
using:

ERR = 
140epw —Current meshl

Izioepwl

and fit using ERR = C • epwP , as shown in the plot below.

Future studies will examine the convergence of the surface
currents using the L1 and Loo norms, similar to the Mie
sphere:

L1 Error =
ffsliloWldS

ffsl_140(r)-/sim(r)ldS

Lc, Error = Imax(1/40(r)l)—max(1./sim(r)1)1 
max(1/sim(r)l)

E
R
R
 R
C
S
 (
d
B
s
m
)
 (l
og
) 

(Top view)

cp = [0: 0.5: 360] °

ID

4----* ̀1111' polarization

1E+0 =
_ - Fit— 
-_ • RCS ERR

1E-1
.•••,

1E-2 =

C = 164.9
p = -1.085

mlm

1E-3

100 1000

# Unknowns

10000
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17 Mie Sphere: Mesh Characteristics

N

1
2

3

4

5

6

EPR # Unknowns Mesh Elements EPW

1
2

4

54

216

864

36

144

576

10

20

40

8 3456

16 13824

32 55296

2304

9216
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160

13824 320



Sensitivity Analysis Effort in High-
Quality Factor Cavities

PRESENTED BY

Salvatore Campione

Sandia
National
[aboratories

Wad& NAYsill
Sandia National Laboratories is a

multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.



2 I Outline

. A 4- :_viotivation

EIGER Simulations / Rational interpolation

Sensitivity Analysis

Methods

Canonical Cavity Code and Results

Power Balance Matched Bound Code and Results

• Unmatched Power Balance Case

Comparison with Experiments Toward Validation

Conclusions/Future Work



3 I Motivation: Canonical Cylindrical Cavity Example

H

Slot SH

sW r+-

40 

(2-1

20-

^

cn

• -20

;11-1
;-'6' -40 -
7L)
cip

-60-

-80

Full-wave simulation

SE = 20log

112

' 1E
dEinc) 

1.4 1.6
Frequency (GHz)

1.8

• External fields couple through the slot 4 Large fields (and thus large SE) » 0 dB are observed near resonant modes.

• These deterministic full-wave simulations are very sensitive to the parameters used (e.g. geometry, materials, etc.), and require

many frequency points to resolve the high-Q resonant peaks.

We aim to determine, through a sensitivity analysis, the parameters that largely

affect SE, with the goal of achieving a range determination and distribution



4 I EIGER and Rational Interpolation

• High-Q resonances may require >100 frequency simulations to fully determine peak value and quality factor

• However, the need of large frequency discretization may hinder a sensitivity analysis where enough samples are required

• We applied a rational interpolation algorithm from OSU where only a handful of points (<20) are needed to resolve a high-Q

resonance. Using HPC machines, a resonant peak is resolved in 10 minutes run time per frequency point

50

40
(a) 3 points

a 30 -

65 20 -
0.9

10 -

75
-c -20 -ci>

-30 -

-40
1.125

20

,—, 10
oa

.1 -10

•5 -20

75
c.>

-30

-40

1.13
Frequency (GHz)

20

(b) 5 points

aa

0
>

bq

4 -20

7,7

-30

10

-40  
1.135 1.125

20

1.13
Frequency (GHz)

1.135

(d) 9 points

,—, 10
oa
-o

0Np

u

-o -20

75

-30

-40

1 5

O

1.1295 1.12955 1.1296 1.12965
Frequency (GHz)

1.1297

1.125 1.13
Frequency (GHz)

1.135 1.125 1.13
Frequency (GHz)

1.135



5 I Sensitivity Analysis: Basics

• Sensitivity analysis is a way to identify which uncertain inputs are responsible for the variation in the output. There are many

ways to assess input sensitivity. Below are two methods that were used:

1) One-at-a-time variation: inputs are varied one-at-a-time with all other inputs held fixed.

• This provides a measure of the variation of the output, but it does not allow for interactions between inputs

2) Variance Decomposition: inputs are varied at the same time and the amount of variation in the output is decomposed and

attributed to each input. Two measures are calculated:
• First-order sensitivity indices - the proportion of the uncertainty in the output that is explained by the uncertainty in

a single input.

• Total-order sensitivity indices - the proportion of the uncertainty in the output that is explained by the uncertainty in

an input and its interactions with other inputs.



6 Sensitivity Analysis:Two Codes Considered

Canonical cavity code

Uses an analytical code for fully-enclosed, highly-resonant cavities

Initially implemented to build the sensitivity analysis framework to the cavity problem and gauge Q factor, E field
and frequency sensitivity vs cavity radius, height and conductivity

Power balance code

Uses matched bound formulation

Allows for the coupling problem to be analyzed, bringing in the slot dimensions in the sensitivity analysis, in addition
to cavity radius, height and conductivity



7 Canonical Cavity
• Assuming that the slot acts as an excitation source for the modes, but does not perturb the resonant modes

a

  A

E

•

h

• Cylindrical cavity resonant TM mode frequencies (Closed cavity)

rn, p,n
1 • 2

Jm, p
rnza

h

• Cylindrical cavity quality factor (Closed Cavity)

\2

Qm,p,n = ,a,na Wm, p,n = 11(jrn,p (nira/h)
u• ,p,n

P 2Rs 1+Sna/hm, mn 

• Field expressions (Closed cavity)

p
 AimP Y (.1 p/a)cos[m(0-4)1—

h 
sin(wrz/h) 0<p<a, 0<z<h

1 . wz- .

k2 —a2 a in in'13

1 1 
AI (j p/a)msin[m(0 4)] 

h
nrc sin(nrcz/h) 0<p<a, 0<z<h

k2 —a2 p m "4

= AI m(jm,pp/ 40414 — cdcos(nrcz/h) 0< p < a, 0< z<h

EP
2 N2+1E,12



8 Sensitivity Analysis: Results (Canonical Cavity Code)

Inputs: Radius, Height and Conductivity

E field and frequency

most sensitive to radius,
Q factor most sensitive

to conductivity.

0.75-

0.50-

0.25-

0.00-

2.0e+09 -

-5 1 5e+09-
0_
-5 1.0e+09-

5.0e+08 -

0.0e+00 -
60000 -

40000 -

20000 -

0 -

Height

Output 1: E field, frequency, Q factor

Radius Sigma

010 012 014 110 1 14 010 012 014 1 10 114 010 012 014 110 114

mode

Direction

Negative
None
Positive



9 I Sensitivity Analysis: Results (Canonical Cavity Code)

Inputs: Radius, Height and Conductivity

Cavity Height

[21.6in, 26.4in]

Cavity Radius

[3.6in, 4.4in]

Cavity Sigma

[1e6, 7e7]

VAR not very

sensitive to

radius, height or

conductivity.

Output 2: VAR VAR = 1E12/(1E12)

Max VAR Max VAR Max VAR

20.0 -
20.0 -

17.5 - 18 -
17.5 -

m ode

010

15.0 - 012
15.0 -

15 -
• 014

110

114

12.5 -12.5 -

12 -

10.0 - 10.0 -

1 '22 23 24 l 125 26 3.6 3.8 4:0 4.2 4.4 Oe+00 2e+07 4e+07 6e+07

These do not take into account the coupling problem



lo Power Balance Bounding Method (Matched Bound)
• The matched bound has been computed using conservation of power arguments

➢ Assumes that the matched received power of the aperture is delivered to be absorbed by the interior cavity
walls 40  

arec SO = awall S

(Tree = matched slot cross section
So = incident power flux density

awa 11 = wall loss cross section

S = interior power density

➢ Additional loss mechanisms can be accounted for
to further improve the bound

20
A:1
-o

a)
a)

à-.3 -20

a.)

• -40

-60

-80  
1

SEmax = 10 log
8S

SO

Matched bound

1.5 2 2.5 3
Frequency (GHz)

• Cavity SE is always below this bound, providing guidelines for maximum achievable levels of interior fields.

We use this power balance bound to perform a sensitivity analysis to
determine the parameters that lead to large SE variations



11 I Sensitivity Analysis: Results (Power Balance Matched Bound)

• SE vs frequency changing only one parameter at a time

10

30

0-3
-0
w
tA

10

Slot Depth

[0.1in, 0.5in]

Cavity Height

[21.6in, 26.4in]

Slot Length

[lin, 3in]

Cavity Radius

[3.6in, 4.4in]

Slot Width

[0.001in, 0.05in]

Cavity Sigma

[1e6, 7e7]

Mean
Min/Max

1 Frequency (GHz) 3 1 Frequency (GHz) 3 1 Frequency (GHz) 3



12 Sensitivity Analysis: Results (Power Balance Matched Bound)

• First and total order variance decomposition (all parameters varied at once)

Height Radius Sigma Slot Length Slot Width Slot Depth

[21.6in,26.4in] [3.6in,4.4in] [2.5e7,3.5e7] [1.5in,2.5in] [0.005in,0.025in] [0.2in,0.3in]

0.8-

0x 6--
W

-rs 
•

6 0 4-
c
0

b: 0.2- • • • • • • • • • ••• • • •••••••••••••••••••••••••••

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •••

0.0-

1.0e+09

eisossesseleesessessessseelsessels1111111

1.5e+09 2.0e+09
Frequency

2.5e+09 3.0e+09

0 8

-2 0.4-

o
H 0.2-

0.0-

1.0e+09

••••••
••••••000•••••••••••00••••••66.1.•••

Height • Sigma Slot Width
Radius Slot_Length Slot:Depth

• ••••••••••••••••••••••••••••••••••••••e•

essessessessessesesiissesseSSISIMIMM

1.5e+09 2.0e+09 2.5e+09
Frequency

3.0e+09

• The fact that these two are nearly the same shows that the parameters do not interact; also, the major variations in SE are

induced by the slot parameters (length, width, depth).

• We will focus only on the slot parameters from now on and try to define a computational experiment in full-wave

simulations



13 I Computational Experiment: Basics

There can be many goals of a UQ analysis. Two common goals are:

1. F,stimate the min/max (range) of the output based on the range of input

variables.

2. F,stimate a distribution of the output based on distributions of the input.

The choice of the goal is generally tied to requirements. It is important

to consider how the results of the UQ analysis will be used.



14 I Example to Illustrate Goal #1

Uncertain Input

Parameters

1 in 
Slot Width

3 in 1 Slot Length 

.1 in  
Slot Depth

Simulating a Cavity with a Slot

3 in

1 5 in

.2 in

Computer
Model

5db

Output

SE
 1 25db

We estimate the SE to be between 5 and 25db. However, we don't

know how likely SE values are between that range. Is it likely to be

close to 25db? 5db? Somewhere in between?



1 5 I Example to Illustrate Goal #2

Simulating a Cavity with a Slot

Uncertain Input Computer
Parameters Model

Slot Width

ASlot Length

Slot Depth Alt

ti

I

I

Output

I

I

$E s

I

I

I
Here we can use the distribution of the output to answer questions

like "what is the probability SE is greater than 20db?" and "what is the

99th percentile of SE?"



16 I Computational Experiment: Sampling Plan

The choice of sampling will depend on the goal of the analysis.

1) Design of Experiments Sampling — Often used in physical experiments.
o Advantages: Relatively small number of runs needed.

o Disadvantages: Requires assumptions about input/output relationship.

2) Monte Carlo Based Sampling — Often used in computer experiments.
O Advantages: Flexible method for dealing with more complex input/output relationships. Can be used to propagate input

uncertainty to get a distribution on the output.
O Disadvantages: Requires more model runs to adequately cover the input space.



17 Design of Experiments Methods

Full Factorial — All combinations of all factors (inputs) are run through the

model.

23 Full

Factorial

33 Full
Factorial

43 Full
Factorial

Slot Length

Slot Length Slot Length
Slot Width Slot Width

5mil 15mil

• • •

Slot Length

Slot Width
25mil

8 Runs

Linear

27 Runs

Quadratic

64 Runs

Cubic

Note: There are other design options that aim to be more efficient (i.e., use less runs) than these.

Each design has its advantages/disadvantages.



18 I Monte Carlo Based Methods

Latin Hypercube Sampling (LHS) is a random sampling method that aims
to sample the inputs evenly across the input space. It is more efficient than
random sampling or doing a very fine grid (e.g., a 153 full factorial).

1

0.8

0.2

o
0 0.2 0.4 0.6 0.8 1



19 Computational Experiment: Results with Power Balance

The power balance code was run using 23, 33, and 43full factorials, as well
as LHS using sample sizes of 100, 500, 1000 and 2000.

35

30

a)
a)
> 25

a)

F20-

_c
(1) 15

10-

1.0e+09 1.5e+09 2.0e+09 2.5e+09 3.0e+09
Frequency

— FF 2
— FF 3
FF 4

— LHS 100
LHS 1000
LHS 2000
LHS 500

All full factorials gave the same result, indicating that the input/output

relationship is likely approximately linear. Many LHS samples are

needed to estimate the extremes of the output.



20 I Computational Experiment: EIGER Simulation with Rational Interpolation

• Based on the results from the power balance code, an EIGER simulation with rational interpolation was run
using a 43 full factorial (64 runs) with the slot parameters specified at the following ranges:

Power balance matched bound Full-wave

Slot Length

[1.5in, 2.5in]

Slot Width

[0.005in, 0.025in]

Slot Depth

[0.2in, 0.3in]
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0.3
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0-
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21 I Distribution analysis

• We compute here distributions assuming uniform and normal distributions of the input parameters

Uniform
Normal

Height Radius

1 06 07 -

Conductivity

0 5 -

Height

3 -

Radius Conducthdy

0 20 -

2.0e-07 -

1 0
0 -

0 15 -
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2 -
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0 05 - 2 5e-08 -
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>.
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>,
u)
c
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Slot Width
a)
p

125
1 00 - 50 10 0 -
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40
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1 5 - 75 15 -
30
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0 25 - 2 5 -
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22 I Distribution analysis

• We compute here distributions assuming uniform and normal distributions of the input parameters
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I Unmatched Bound Case
• In this case, the model:

➢ Assumes we are below the slot resonance, so the slot behaves inductively
➢ Ignores interior loading of the slot and wall losses
➢ As an approximation, is driven by the exterior short circuit current density for an infinite cylinder

=  1 a2 Affi,p,111: J:n(jm,pp/a)cos[m(0-00)17sin(ngz/h)

1
Ew = 

1
 a2 p 4,,p,.J.(1,,,pPla)msin [m(0 —03)111—: sin (nrcz/ h)

Ez = Am,podm( jrn,pp/a)cos[m(0-950]cos(nrcz/h)

a 2
Am,p,n ()€ Lslotiqc k2 +kkm,p,n (1+i)/Qrn,p,n
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• This model (red curves) is in very good agreement with full-wave simulations and better estimates the peak SE value at each
resonance frequency
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Shielding Effectiveness Measurement Setup

• Measurement setup bandwidth from 1-4 GHz limited by the RF amplifier

• Incident field strength at the aperture slot was measured separately at the same frequency points in order to provide
the SE normalization

Noise floor limited by the long RF cables from the cylinder to the network analyzer

• Electric field oriented in the z-direction perpendicular to the slot
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k

S. Campione et al., Sandia National Laboratories Report, SAND2018-10548, Albuquerque, NM (2018)



I Measured & Simulated Empty Cavity SE Results

Measured mode frequency shift
from simulation can be explained
by a change in cylinder radius of
only 50 pim

Measured SE and Q are lower
than simulation likely due to some
joint resistance in the fabricated
cylinder (next slide)
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Mode Peak SEsim  (dB) Peak SEMeaS. (dB) %ma. QMeas.

TM010 13.6 9.25 29268 18327

TM012 18.1 10.85 27027 10662
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TM114 21.3 18.42 27994 19017
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Cylinder Joint Resistance

• Fabricated cylinder has joint at the bottom where the base plate is screwed in

• This joint has some contact resistance that was not initially included in the model/simulations

• A reasonable fit with the TM010 measurements is achieved with only 30.4 mS2 of joint resistance

• High-Q cavities are very sensitive to additional resistance between joints
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I Cylinder Joint Resistance Continued

The contact resistance fitted
for the TM010 mode has been
applied to higher order
modes, leading to agreement
with experiments

This further validates the
presence of such loss
mechanism

S. Campione et al., Sandia National
Laboratories Report, SAND2018-10548,
Albuquerque, NM (2018)
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28 I Conclusions

• Rational interpolation greatly decreases the number of simulations required to resolve a
resonance peak.

• HPC can be utilized to further decrease runtime.

• Sensitivity analysis on the power balance code informed that SE is most sensitive to the
slot parameters.

• Performed comparisons with experiments toward validation.

• Use of more accurate power balance codes will increase fidelity.
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