

ENG 572 Final Report

Jeffrey Zhao

July 27, 2020

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

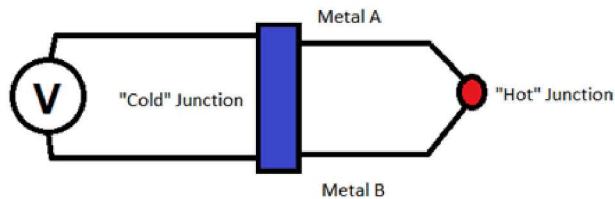
Abstract

Thermo-electric coolers (TECs) provide an essential function in many high-powered applications by diverting heat away from a temperature-sensitive load. This summer I have worked with Sandia National Laboratories in exploring the failure mechanisms behind said devices. I have been tasked with determining a plan of action for two TECs manufactured by two different companies labeled A and B respectively. Prior to my involvement in the project, the former has displayed failures during normal operation within its packaging. The latter was subsequently chosen to resolve these issues. Thermal cycling between the extreme expected operating temperatures (-40°C to 80°C) was applied to 5 unmounted TECA over a period of 5 hours with 1-hour soaks at each extreme. The unmounted TECBs are currently undergoing the same process, and the task is expected to be completed over the next few weeks. The results of the TECA characterization have indicated no failure has occurred, which indicates that failure will need to be induced through either higher temperature extremes or additional mechanical stress.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

Introduction

Sandia National Laboratories is a Federally Funded Research and Development Center (FFRDC) founded in 1949 with the mission of developing and testing the non-nuclear components of nuclear weapons. Sandia has since been involved with numerous projects to support the Department of Defense's (DOE) National Nuclear Security Administration (NNSA). One such set of projects has been implementing over-the-road transportation security enhancements. Under this program, Sandia National Laboratories (SNL) has worked to develop interface compatibility modifications for existing shipping configurations. This summer I will be working with a line of trailers that have been used to transport high asset cargo. These vehicles have successfully traveled millions of miles without any accidents over the course of 15 years.


The primary motivation for the work that I will complete this summer is to provide support for existing electronic communication technologies implemented at SNL. As part of an ongoing project to implement modifications to a trailer system, I will focus primarily on the characterization and testing of thermal electric coolers (TEC). Within the scope of the trailer project, these devices provide temperature control for lasers used on optical communication boards (OCB).

Literature Review of Technology

Thermoelectric materials have been heavily researched in the past few decades in response to their ability to convert temperature to voltage and vice versa. These materials have applications in alternative energy technologies as they are most commonly used to convert waste heat into electrical energy. Other applications include small, localized cooling in infrared detectors and computers, which have been quoted to produce speed gains ranging from 30-200% if integrated correctly with CMOS technology [1]. The focus of this paper will be to discuss a subset of such applications, i.e., thermoelectric coolers, otherwise known as Peltier coolers.

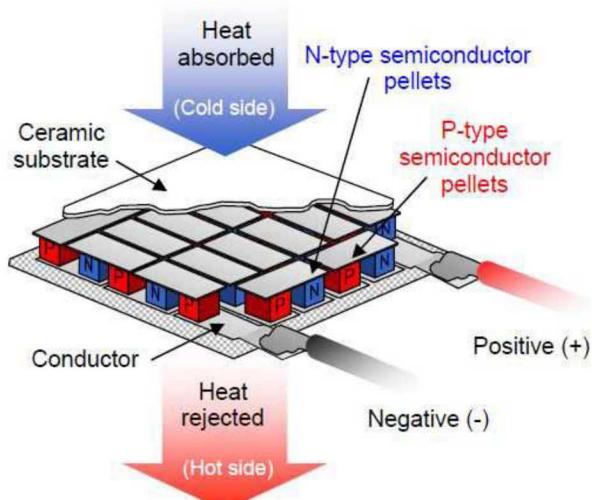
Operation

A thermoelectric cooler is a device that relies on the heating/cooling nature of a thermocouple. This component is created by combining two different metals at two junctions on either end as seen in Figure 1. The "cold" junction is generally used as the reference temperature and the "hot" junction is used to measure an external heat source.

Fig. 1. Typical setup for characterizing thermocouples

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

The device can produce a thermal electromotive force (EMF) in response to a temperature differential applied between the junctions in an occurrence known as the Seebeck effect. Named after Thomas Johann Seebeck, the effect describes the physical phenomena whereby an electrical potential (∇V) is produced proportional to the temperature gradient (∇T). It can be described empirically as:


$$\nabla V = -S\nabla T \quad (1)$$

Where S , the Seebeck coefficient (otherwise called thermopower), is typically in the range of a few $\mu\text{V/K}$ for commonly used conductive metals such as copper, silver, and gold [10]. A related effect known as the Peltier effect, which was discovered a few years later, describes the process in which an electric current passing through the junction of two dissimilar materials creates a temperature differential between the two ends dependent on the direction of current flow. This can be explained primarily by the difference in Fermi energies between the two junctions; however, effects such as the Hall, Ettingshausen, and Nernst play roles as well [2]. Combining the two effects yields the equation:

$$Q_p = \Pi I \quad (2)$$

where Q_p is the Peltier heat emitted or evolved per unit time and Π is the Peltier coefficient $\Pi = ST$.

By placing several thermocouples in series or parallel, one can create a thermopile. These devices operate under the idea that current will flow along the temperature gradient. Within a solid-state component such as Figure 2, electric current circulates through the device to draw heat from one end and evolve it at another.

Fig. 2. Typical layout of semiconductor thermoelectric cooler using array of thermocouples [3]

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXXX

Qualification of Thermoelectric Performance

A common characterization for the merit of a TE material is as follows:

$$ZT = \frac{S^2 T}{\rho \kappa} \quad (3)$$

where ρ is the electrical resistivity and κ is the thermal conductivity, and ZT is a dimensionless quantity known as the figure-of-merit. Although Z and ZT are used interchangeably, the temperature T (in Kelvin) must be stated. However, the characterization of a single material is not very useful as most TECs as seen in Figure 2 possess both n-type and p-type materials. Thus, the merit is typically given as:

$$ZT = \frac{(S_p - S_n)^2 T}{(\rho_n \kappa_n)^{1/2} - (\rho_p \kappa_p)^{1/2}} \quad (4)$$

As with most devices, we may wish to determine the performance or efficiency depending on the usage. Using what we understand from the Seebeck effect causing a thermocouple to act as a power generation device, the efficiency of a thermoelectric couple η , is given by:

$$\eta = \frac{W}{Q_H} = \frac{\frac{V_{OC}^2}{R} \cdot m}{\frac{A}{L} \int_{T_c}^{T_h} \kappa(T) dT + I T_h S(T_h) - \frac{1}{2} I^2 R} \quad (5)$$

where V_{OC} is the open-circuit voltage applied to the system, m is the ratio of the load resistance RL/R , the internal resistance, $S(T_h)$ is the Seebeck coefficient at the hot side of the generator, A is the cross sectional area of single pellet, and L is its length. For simplification, we ignore the Thomson effect, a reversible effect that explains the property whereby the metal wires (Figure 1) themselves heat and cool in response to the changing temperature gradients between the two junctions. Simplification of this equation is performed by taking the following to be true:

$$R = \frac{1}{T_h - T_c} \frac{L}{A} \int_{T_c}^{T_h} \rho(T) dT \quad (6)$$

$$I = \frac{V_{OC}}{R(1+m)} \quad (7)$$

$$V_{OC} = \int_{T_c}^{T_h} S(T) dT \quad (8)$$

which yields:

$$\eta = \frac{\frac{m}{1+m}}{\frac{1+m}{Z(T_h - T_c)} + \frac{\frac{S(T_h)T_h}{\int_{T_c}^{T_h} S(T) dT} - \frac{1}{2(1+m)}}{}} \quad (9)$$

To maximize the efficiency, take the derivative $\frac{d\eta}{dm}$, which yields the optimal setup m_{opt} :

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXXX

$$m_{OPT} = \sqrt{1 + Z\Delta T \left(\frac{S(T_h)T_h}{\int_{T_c}^{T_h} S(T) dT} - \frac{1}{2} \right)} \quad (10)$$

Define $\frac{S(T_h)T_h}{\int_{T_c}^{T_h} S(T) dT}$ as a nondimensional intensity factor of the Thomson effect, which we will take as 1, which reduces (10) to:

$$m_{OPT} = \sqrt{1 + ZT_M} \quad (11)$$

where T_M is mean value of the hot and cold temperatures. Substituting (11) into (9) with our assumptions yields

$$\eta = \eta_C \frac{m_{OPT}-1}{m_{OPT} + \left(\frac{T_c}{T_h} \right)} \quad (12)$$

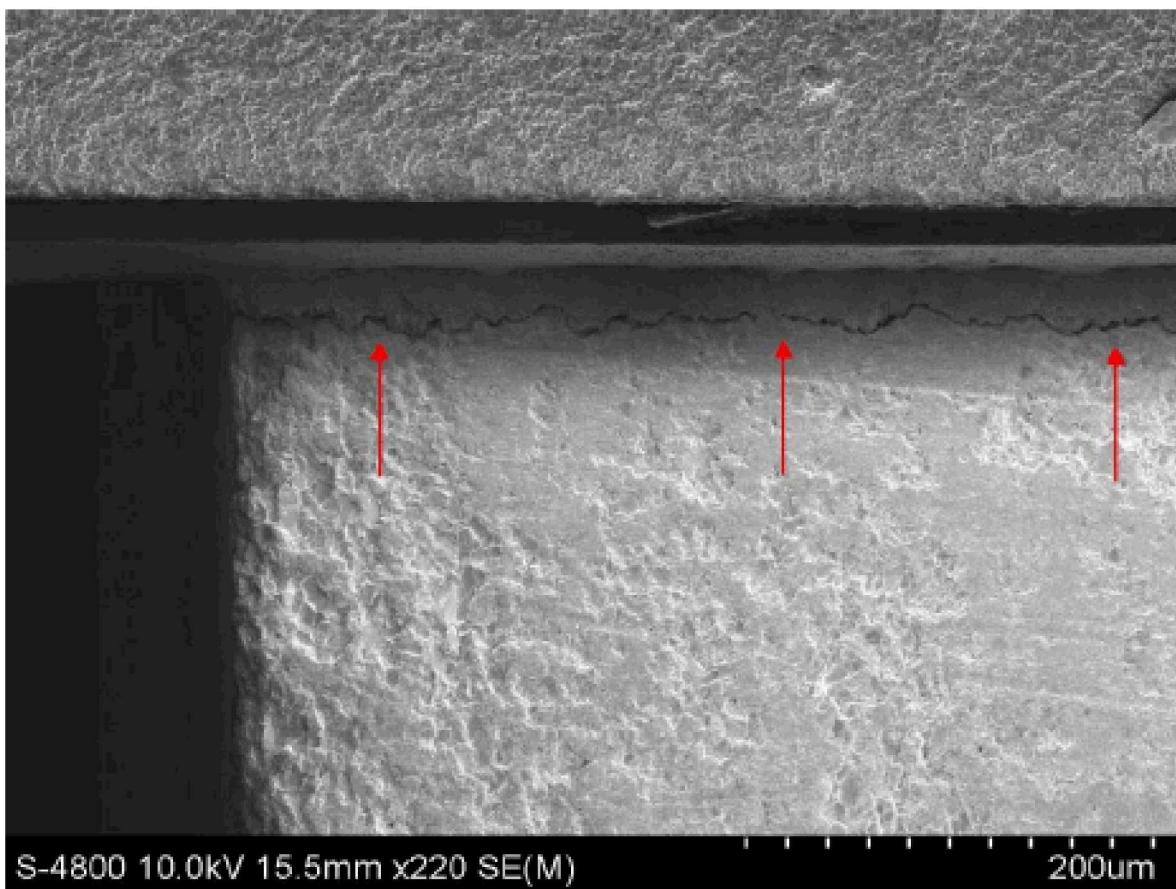
It is important to note that the efficiency would approach the Carnot efficiency $\eta_C = \frac{T_h - T_c}{T_h}$ as ZT_M approaches infinity. While there is neither a thermodynamic nor theoretical reason for a practical limit to exist, this upper value for most materials is $ZT \approx 1$ [4]. However, recent super lattice, mixed composition materials have been able to achieve a ZT of up to 2.4 [5]. The coefficient of performance ϕ (for refrigeration) can also be solved using the same assumptions:

$$\phi = \frac{Q_C}{W} = \frac{IT_C S(T_c) - \frac{A}{L} \int_{T_c}^{T_h} \kappa(T) dT - \frac{1}{2} I^2 R}{\frac{V_{Q_C}^2 m}{R (m+1)}} = \frac{T_c}{T_h - T_c} \frac{m_{OPT} - \left(\frac{T_h}{T_c} \right)}{m_{OPT} + 1} \quad (13)$$

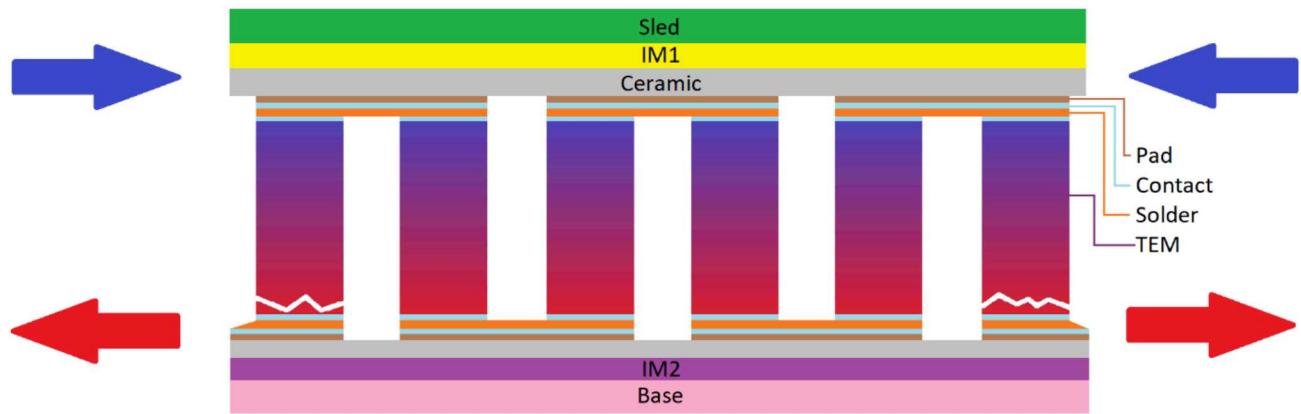
Equation (13) approaches $\frac{T_c}{T_h - T_c}$ as the maximum theoretical efficiency for a TEC as m_{OPT} approaches infinity. This expression will act as the efficiency limit approached by the devices that I will test.

Background of Project

Over the following months I will perform analyses on two sets of TECs, henceforth named TECA and TECB. Initial studies have indicated that TECAAs have been failing, resulting in the devices “opening” during standard operating conditions in the OCBs. As a result, the group will be testing TECs from another manufacture (TECB) to determine whether this issue can be resolved. Prior to my contribution to the project, characterization curves and failure analysis studies have been performed on the TECAAs. My group found that the TECAAs were operational during light-current-voltage (LIV) curve tracing before and after extreme -120% I_{OP} testing condition for 24 or fewer hours— testing conditions to cool laser temperatures to 25°C.


However, when the TECAAs were installed in the OCBs, rather than maintaining the temperature of the lasers to 25°C, the lasers remained unregulated. TECA’s inputs and outputs were also reading close to 0 current although proper operation dictated 1-2 amps. This led the

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXXX



team to surmise that the internal structure of the TECs was being compromised during operation, resulting in an increase in resistance. Four TECAs were subsequently sent to a third-party for failure analysis. Initial inspections found that there were neither external nor radiological abnormalities that could have resulted in the failures of the devices. However, upon de-lidding, de-soldering, and retesting the TECAs outside of their packaging, fluctuations in resistance were found which confirmed the issues during SNL's testing. Scanning electron microscopy (SEM) imaging found horizontal fractures. As seen in Figure 3, these fractures were located close to the Bismuth Telluride (Bi_2Te_3) / Nickel (Ni) interface. It was explained that the consistent location of these fractures near their individual element terminations, where varied CTE valued materials resided, indicated that thermal fatigue played a role in the failure of the thermoelectric coolers. These fractures created higher-than-typical resistances, which in turn caused even more localized heating and subsequent cracking.

Fig. 3. Close-up SEM image of the cracked Peltier element leg

These cracks typically occur when there is a significant discrepancy between the coefficients of thermal expansion (CTE) across materials [6].

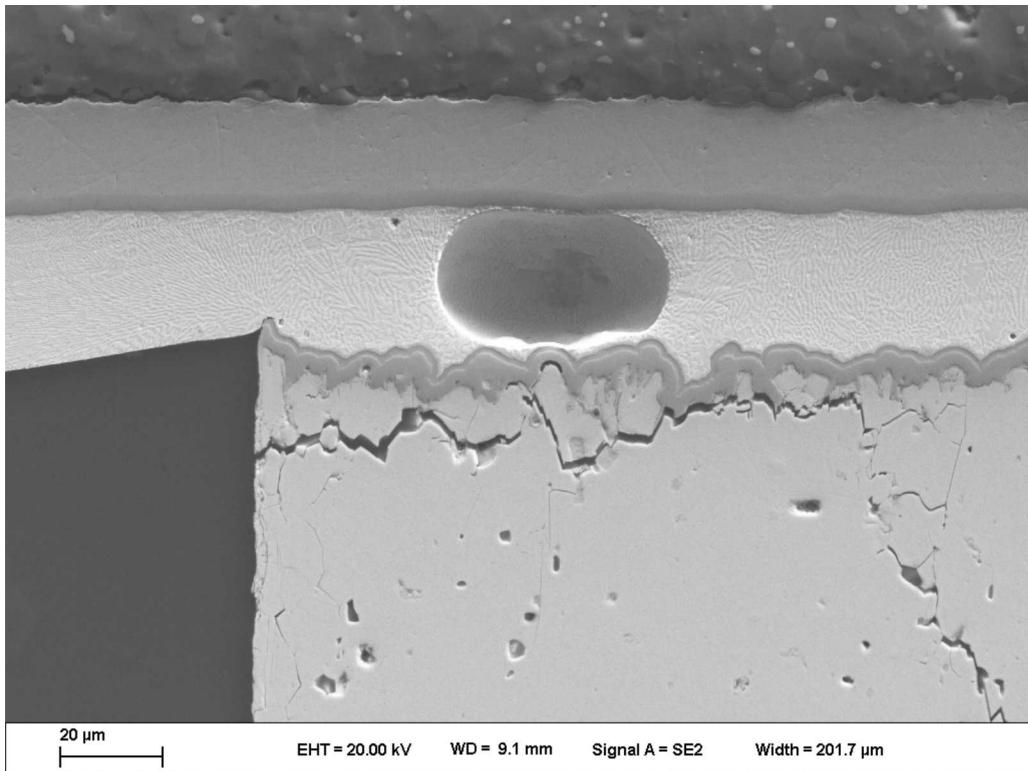


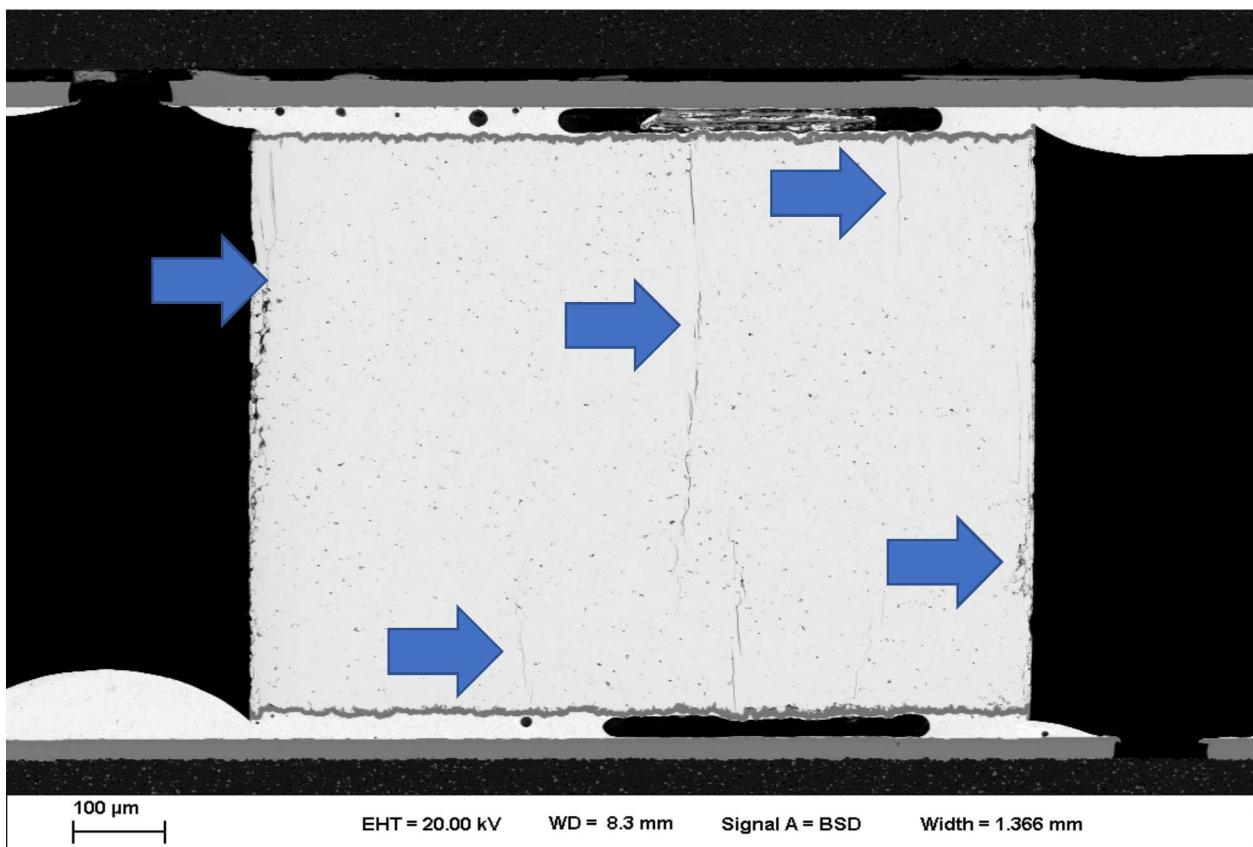
Fig. 4. Diagram of TECA device translated from EDS analysis illustrating cracking

While the initial failure analysis led the team in the right direction, a large concern was raised over the method of testing. The packages needed to be reflowed in order to separate them from the package. This could have introduced the solder voiding seen in the TECA, which would undoubtedly reduce the overall efficiency of the device. A second round of tests conducted on the TECA parts applied more aggressive testing by thermal cycling the TECA ten times between -40°C and 52°C over a 4-hour soak. They tested for failures by tracing their LIV curves. Of the 12 TECA parts tested, 3 failed. One failed TECA and one functional TECA were cross-sectioned and captured using energy-dispersive X-ray spectroscopy (EDS) and SEM again. The former confirmed the stack-up composition (Table 1, Figure 4) and the latter provided detailed imaging of the cracking that occurred in the device (Figure 5). Cutting open the packages eliminated any possible reflowing issue with the solder but could have introduced the possibility of cracks being created along the TE material during the process. It was also noted that even without reflowing, the voids were still present in the cross section (Figure 5).

TABLE 1. CTE DATA FOR TECA

Label	Material	CTE (ppm/°C)
IM1	77.2Sn-20In-2.8Ag	28.0
Ceramic	AlNi	4.5
Pad	Cu	17.0
Contact	Ni	13.3
Solder	AuSn	16.0
TEM	Bi_2Te_3	14-21
IM2	96.5Sn-3.0Ag-0.5Cu	23.5

Fig. 5. SEM capture following device failure


Initially I suspected that a discrepancy between the Aluminum Nitride ceramic material ($\text{CTE}_{\text{Ceramic}}$) and outer casing of the laser module (CTE_{Base}) and/or sled that carries laser's heat load (CTE_{Sled}) was a possible cause of this issue. The TECA devices came pre-tinned with an interface material (IM) that needed to be reflowed and sandwiched between the two materials. This material solder was confirmed to not be of issue and was widely used and accepted. Yet, studies have found that the thermal load attached to Peltier junction can cause extremely high levels of thermal stress, which might cause dislocations and cracks of the material layers [7-9]. Although the Cu pads and Bi_2Te_3 pellets may vary in CTEs during operation ($\sim 12\text{-}18$ and $\sim 14\text{-}20 \times 10^{-6}$, $1/\text{K}$ respectively [10,7]), the pad-contact-solder-contact-TEM stack up (Figure 4) provides enough cushion for drastic CTE changes. Moreover, the Ni contact that enhances solderability has been demonstrated to work well with BiTe TEMs to promote a strong mechanical structure [8]. However, the practical effects of TEC loading are typically not well documented. Instead, most papers assume zero loading on the cold side and a constant heat on the hot side [9]. Thus, examining the mechanical elements was where I began my initial investigation. Without knowing how the TECAAs were soldered between the package and sled, these fractures may have been created during assembly. Thus, poor mounting techniques and/or incorrect CTE material selections were possible culprits for device cracking.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

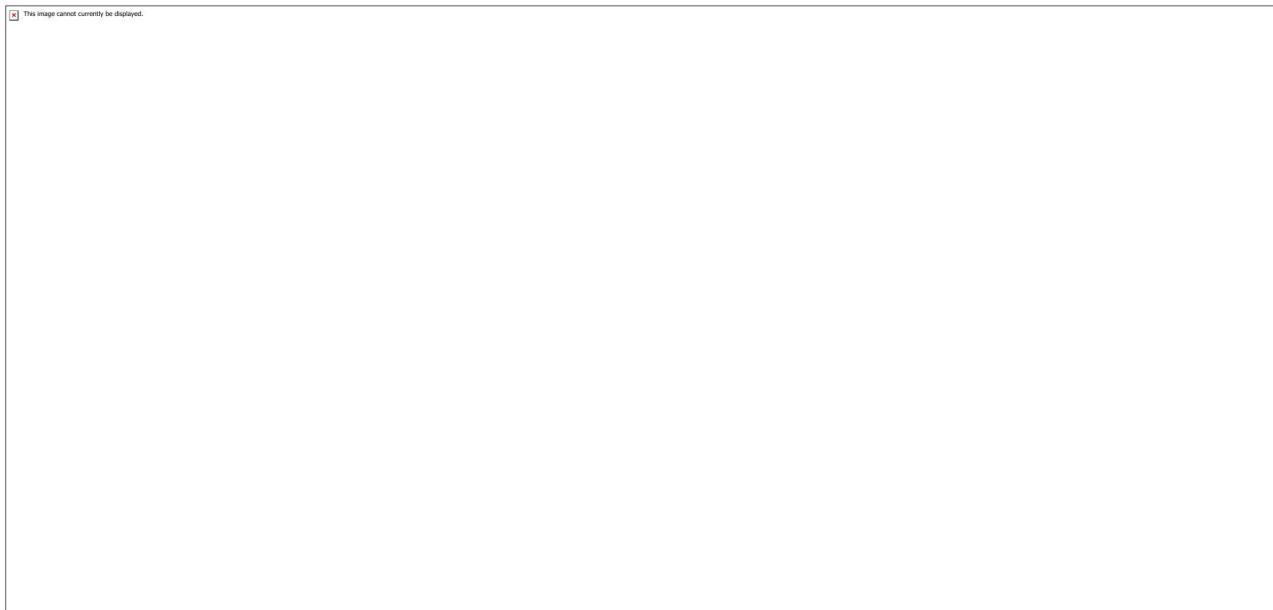

Unfortunately, due to time constraints, the packaging and sled material could not be changed. However, after the TECA's were sent to the laser packaging manufacturer, it was deemed that poor mounting techniques were involved in the process. Since then, several changes have been made as to how the laser package is mounted on the OCB. Specifically, a flatness specification was qualified, the pins on the laser packages were cut to the right lengths, a new design introduced flushed mounted tapped holes, the torque was reduced for the fasteners, and the laser mounting pad was changed to a Bergquist material. Nevertheless, the TECs were still exhibiting failures. Upon inspection of the failed TECs, it was found that even the working devices were exhibiting stress fractures.

Fig. 6. Unmounted TEC SEM imaging

With only manufacturing defects as the culprit, two unmounted TECs were taken to be SEM imaged. The metallographic cross-sections indicated microfractures along the pellets (Figure 6). X-ray imaging of the unmounted TECA's was also performed which illustrated the large number of voids within the solder (Figure 7). These images confirmed a few important points:

1. Destructive SEM imaging was not the cause of the fractures
2. Voiding in the solder was present prior to even testing
3. The TECAAs were objectively poorly manufactured

Fig. 7. X-ray imaging of unmounted TECAAs

Work Completed

Most of the time spent on this project has been invested in catching up on existing work performed for the study. I have worked with another member of the group to compose a test plan that will be carried out in the next months. This plan will be carried out for both sets of TECs (TECA and TECB) to determine if our thermal cycling testing conform to the tests conducted by other groups at Sandia. This will also be used a comparison study between the two TECs.

Terms and definitions

- Delta T (ΔT) – with no external heat to be absorbed, the device reaches its maximum rated ΔT . This is difference between temperature of T_H and T_C .
- Heat pumping capacity (Q_c) – once the cold side reaches the temperature of the heat sink, the TE cooler reaches its Q_{max} . This is amount of heat that the TEC can pump from the “cold” side.
- U_{max} – DC voltage needed to reach greatest ΔT . Although one would expect that this is the max voltage rating, increasing the voltage above the U_{max} instead decreases the ΔT because the power dissipation I^2R elevates the temperature, and this diminishes ΔT .
- I_{max} – DC current level that will produce the greatest ΔT

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

- Alternating Current Resistance (ACR) – The resistance of TEC's are unable to be measured using DC current because a ΔT will be produced across the module resulting in a Seebeck voltage that opposes the applied voltage. If read using ohmmeter, the resulting resistance will be higher than what is truly across the device. By applying an AC current, the polarity will change every half-cycle and the Seebeck voltage will be diminished.
- Time constant (τ) - shows in very simple words the "TEC cooling rate" - the time TEC requires from switching on to a reach the stable cooling mode level [11].
- Figure-of-merit (Z) – derivation discussed in “Qualification of Thermoelectric Performance”. Measurement of the “goodness” of TEC

Test Plan

A DX4085 Z-meter from TEC Microsystems has been ordered to aid in characterizing the TECA's in lab. It can measure the ACR, figure-of-merit (Z), and time-constant τ . For the first batch of tests, five unmounted TECA's will be tested. Below is a table explaining the meaning behind each reading. The TECs will be evaluated before and after impact tests are conducted. This far, impact tests will consist of thermal cycling according to each manufacturer's max temperature ratings.

TABLE 2. TEST CONDITIONS FOR UNMOUNTED TEC

Reasons of Defect	AC Resistance ACR	Figure-of-Merit Z	Time Constant τ	Comment
Metal junctions detachment	\sim const	\sim const	\uparrow	
Confused p-n pellets polarity	\sim const	\downarrow	\uparrow	$\tau \sim$ const @ low current
Thermal Contact between Pellet Side Wall and Solder Meniscus	\sim const	\downarrow	\downarrow	
Thermal and Electric Contact of Pellet Wall and Solder Meniscus	\downarrow	\sim const	\downarrow	
TEC Pellets Short Circuit	\downarrow	\downarrow	\downarrow	
Two-stage TEC: confused stage polarity	\sim const	\sim const	\downarrow	τ twice lower to nominal value
TE material Degradation	\uparrow	\downarrow	\sim const	

Test Procedures

Before the testing occurs, the TECs shall be labeled with unique serial numbers. The general procedure for the testing of the TEC is as follows:

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

1. Record the TEC Parameters (ACR, Z, τ) before any test condition is applied to the TEC. Record both the parameters at the current ambient temperature and the 27°C reference temperature. These are the beginning of life TEC parameters.
 - a. Turn on Z-meter by pressing the top red button shortly
 - b. Connect leads as close to the contact pins of the TECs as possible
 - c. Place temperature sensor near TEC
 - d. Confirm that the current reading is at 80mA, and the measuring time is 120 seconds
 - e. Press green Start button and wait until yellow progress bar is complete
 - f. Record ACR, Z, T, dTMax
 - g. Press Mode once and record ambient temperature and corresponding ACR
 - h. Press Mode twice to return to main screen
 - i. Repeat steps d-g until all TECs characterized
2. For each test condition,
 - a. Record the TEC Parameters (ACR, Z, τ) before any test condition is applied to the TEC. Record both the parameters at the current ambient temperature and the 27°C reference temperature. These are the beginning of test TEC parameters.
 - b. Apply the test condition to the TEC, which is documented in the Test Condition sections.
 - c. Record the TEC Parameters (ACR, Z, τ) after the test condition is applied to the TEC. Record both the parameters at the current ambient temperature and the 27°C reference temperature. These are the after-test (AT) TEC parameters.
 - d. Calculate the percent change of the TEC parameters from the beginning of life (BOL) measurement and beginning of test (BOT) measurement.

$$\% \text{ Change BOL} = \frac{\text{Parameter}_{\text{AT}} - \text{Parameter}_{\text{BOL}}}{\text{Parameter}_{\text{BOL}}} \quad (14)$$

$$\% \text{ Change BOT} = \frac{\text{Parameter}_{\text{AT}} - \text{Parameter}_{\text{BOT}}}{\text{Parameter}_{\text{BOT}}} \quad (15)$$

- e. Verify the TEC parameters have not changed by more than the limits in Table 3. These limits were decided in accordance with Electronics Industry Standard Telcordia GR-468 (MIL-883).
- f. If TEC parameters have changed, identify a failure defect based on Table 2

TABLE 3. TEC PARAMETER LIMITS

TEC Parameter	Limit
ACR	$\pm 5\%$ of beginning of life
Z	$\pm 5\%$ of beginning of life
τ	± 100 ms of beginning of life

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

Thermal cycling will be performed on the TECs to determine the impact of extreme temperatures on the devices. The procedure for performing this part is listed as follows:

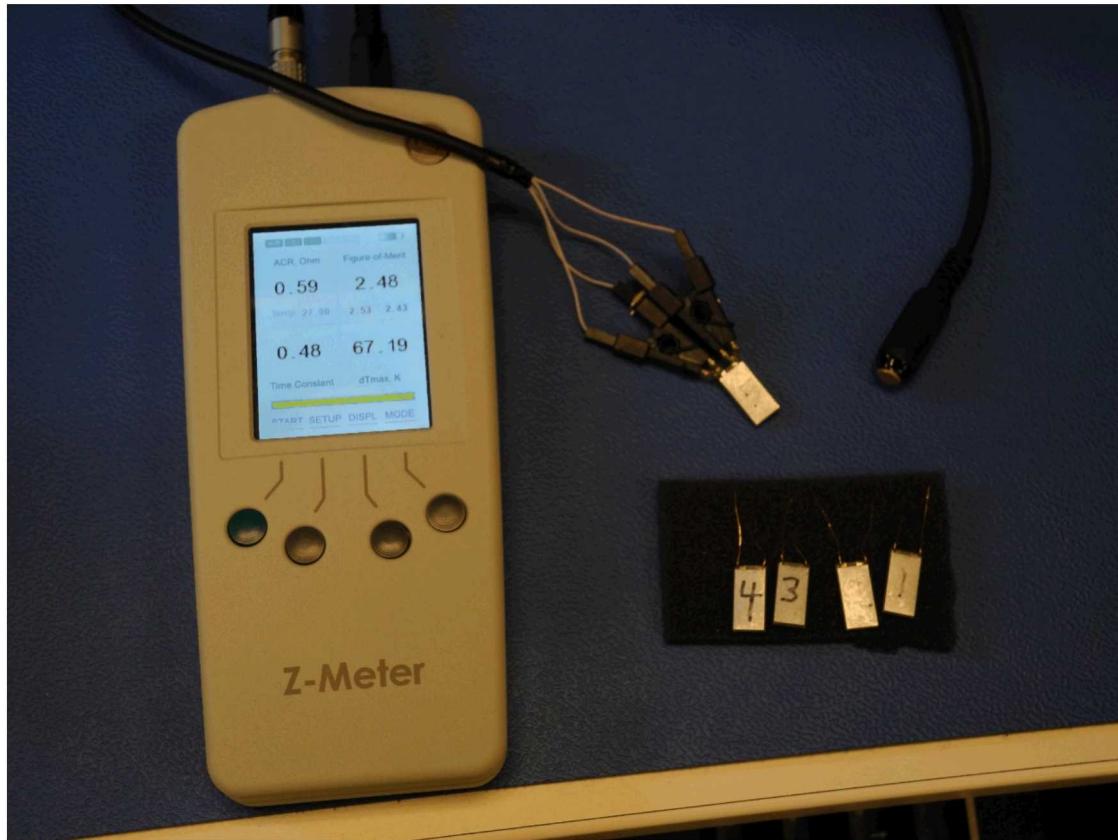
1. Measure the beginning of test TEC parameters.
2. Program the temperature chamber with the temperature profile in Table 4
3. Load the temperature chamber with the TEC DUTs. Put the TEC DUTs on a metal plate.
4. Start the temperature profile on the temperature chamber.
5. Wait for the temperature profile to complete.
6. Take the TEC DUTs out of the temperature chamber.
7. Measure the after-test TEC parameters.
8. Repeat steps 3-6 until the TECs fail or 10 cycles have been completed
9. Verify the TEC parameters are within tolerance and identify any defects.

TECA and TECB IV curves have been obtained from their respective manufacturers under life cycle testing and will be used for reference by comparing the results of the Z-meter testing. They can be found in Appendices A and B.

TABLE 4. TEMPERATURE PROFILE FOR THERMAL CYCLING

Total Time (Minutes)	Temperature (°C)	Dwell Time (Minutes)	Ramp Time (°C/Min)	Ramp Time (Minutes)
0	25			
30	25	30		
57.5	80		2	27.5
117.5	80	60		
177.5	-40		2	60
237.5	-40	60		
270	25		2	32.5
300	25	30		

Results and Setup


Five TECA's were brought into the lab in early July. Over the course of two weeks, the TECAs were characterized by operating the Z-meter as seen in the setup of Figure 8. The leads were placed as close to the junctions as possible, and the temperature sensor was also placed near the TECs on an ESD mat. The ACR with respect to the reference temperature (27°C), figure-of-merit, time constant, dTmax, and ACR with respect to room temperature ACR were measured over three trials and averaged as seen in Table 5. These constitute the baseline measurements for the TECs prior to thermal cycle impact. After characterization, the TECs were placed on a plate inside a Test Equity Model 123C temperature chamber and underwent the temperature profile (Table 4) programmed into the machine (Figure 9). This process of imposing temperature

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXXX

extremes and characterizing the TECA's was repeated 12 times. The resulting profiles over time (numbered cycle) can be seen in Figures 10-12.

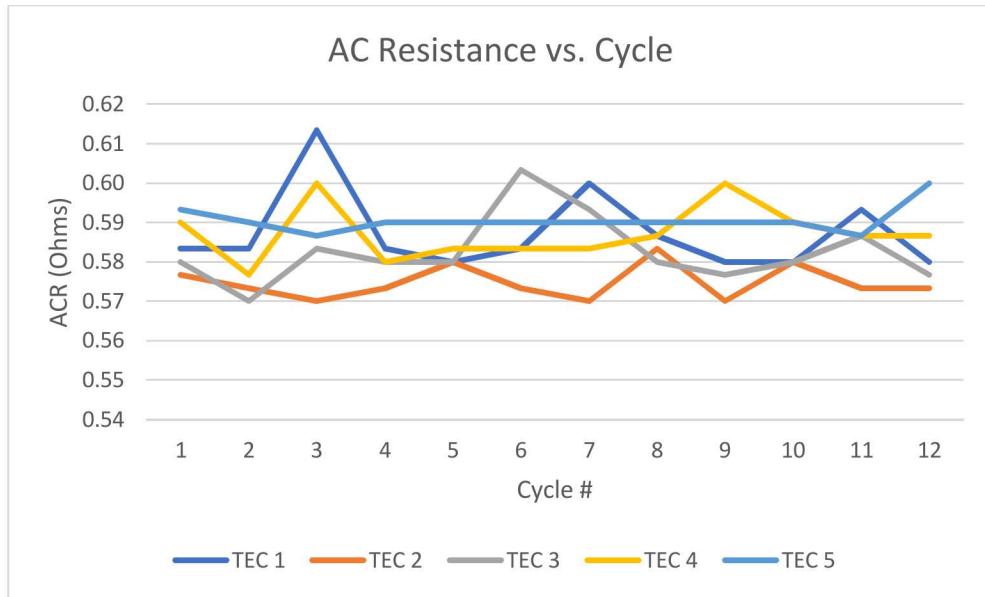

Fig. 8. Characterization of TECA's

TABLE 5. TECA PRE-IMPACTED CHARACTERIZATION

ACR at Reference Temperature (Ohms)	Figure-of-Merit (z)	Time Constant (seconds)	dTmax (°K)	Ambient Temperature (°C)	ACR at Ambient Temperature (Ohms)
0.58	2.51	0.54	67.73	27.93	0.58
0.57	2.54	0.53	68.24	28.50	0.58
0.57	2.54	0.55	68.17	28.73	0.58
0.58	2.50	0.55	67.51	28.37	0.58
0.59	2.47	0.51	66.99	27.57	0.59

Fig. 9. Temperature chambers used for thermal cycling

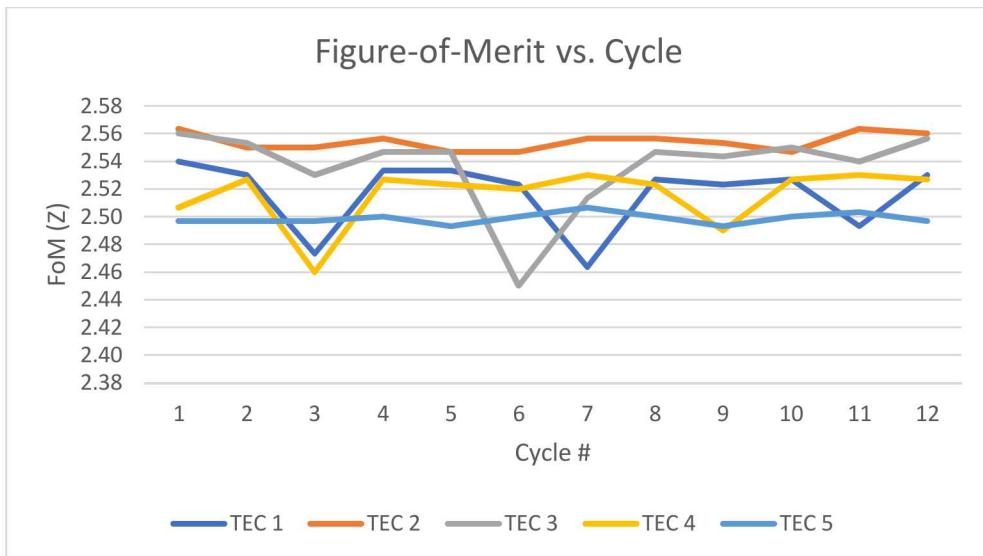
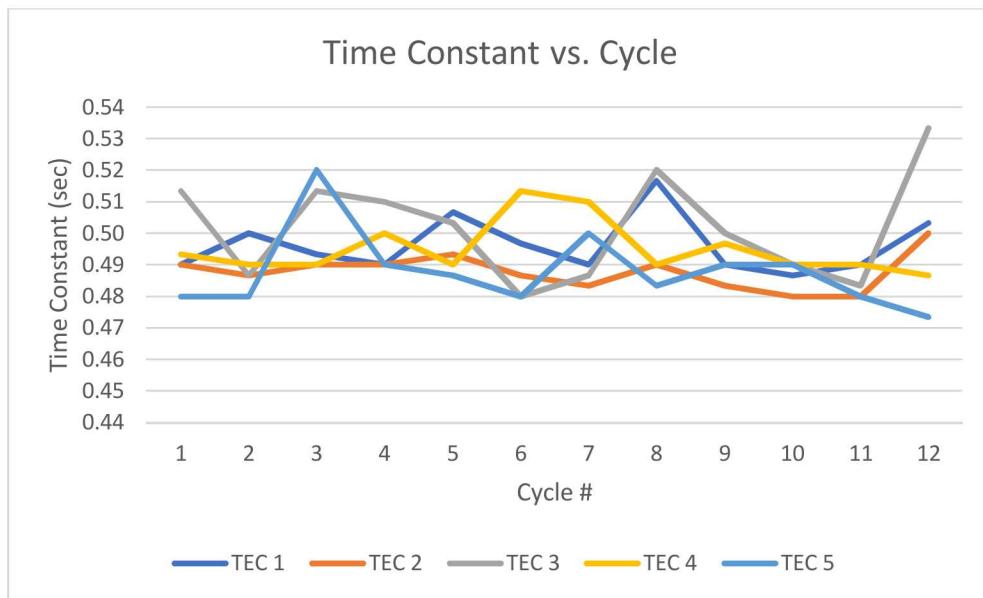


Fig. 10. TECA ACR vs. Cycle over 12 runs



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

Fig. 11. Figure-of-Merit across 12 temperature cycles

Fig. 12. Time constant values for TECAs measured over 12 cycles

Summary of Results

Following the thermal cycling of the TECAs, it was found that no degradation that would warrant a catastrophic failure had occurred. Using the Table 3 parameter limit equations, the comparison between the pre-impacted and post-impacted states after the 12 cycles were calculated as seen in Table 6. Due to the ACR and Z values falling within 5% of the pre-

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

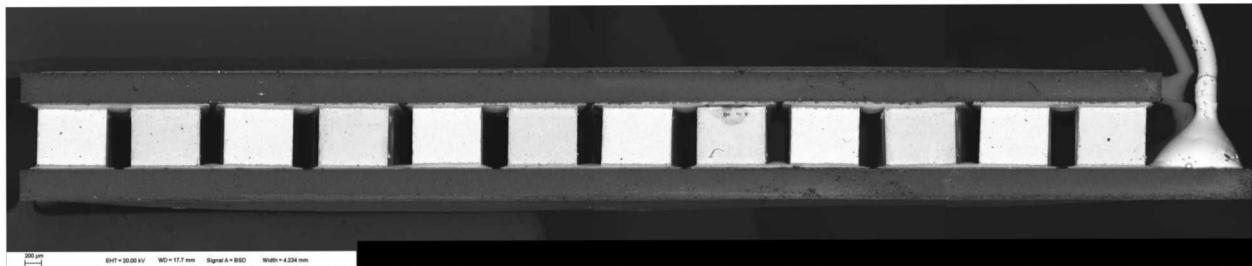
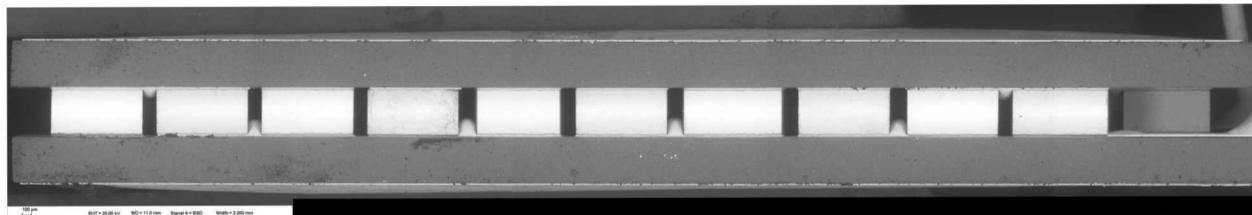

impacted values, and the time constant falling within 100ms of the initial measurements, we can conclude that the unmounted TECA have not failed after our tests.

TABLE 6. TECA POST-IMPACT EVALUATION


TECA	$\Delta\text{ACR} (\%)$	$\Delta Z (\%)$	$\Delta\tau (\text{ms})$
1	0.00%	0.80%	-36.67
2	0.58%	0.79%	-26.67
3	0.58%	0.79%	-13.33
4	1.73%	1.07%	-63.33
5	1.69%	1.22%	-36.67

Plans/ Suggestions for Future Work

Future work for this project has already been laid out for me to complete in the upcoming weeks. The TECBs have been prepared and have already undergone a few thermal cycles. Compared to the TECA (Figure 13), the TECBs (Figure 14) have fewer pellets in total (72 vs. 55) and are wider with less space between each component. This change has been deemed promising because this new profile is suspected to withstand greater thermomechanical stresses. However, even with minor cracking along the pellets (Figure 15), these imperfections are qualitatively less severe than those of TECA (Figure 6). Upon cycling the TECBs 12 times, I intend to send both the TECA and TECBs to our lab's highly accelerated life test (HALT) chambers, where they will undergo harsher temperature extremes in addition to mechanical stresses.

Fig. 13. TECA side profile

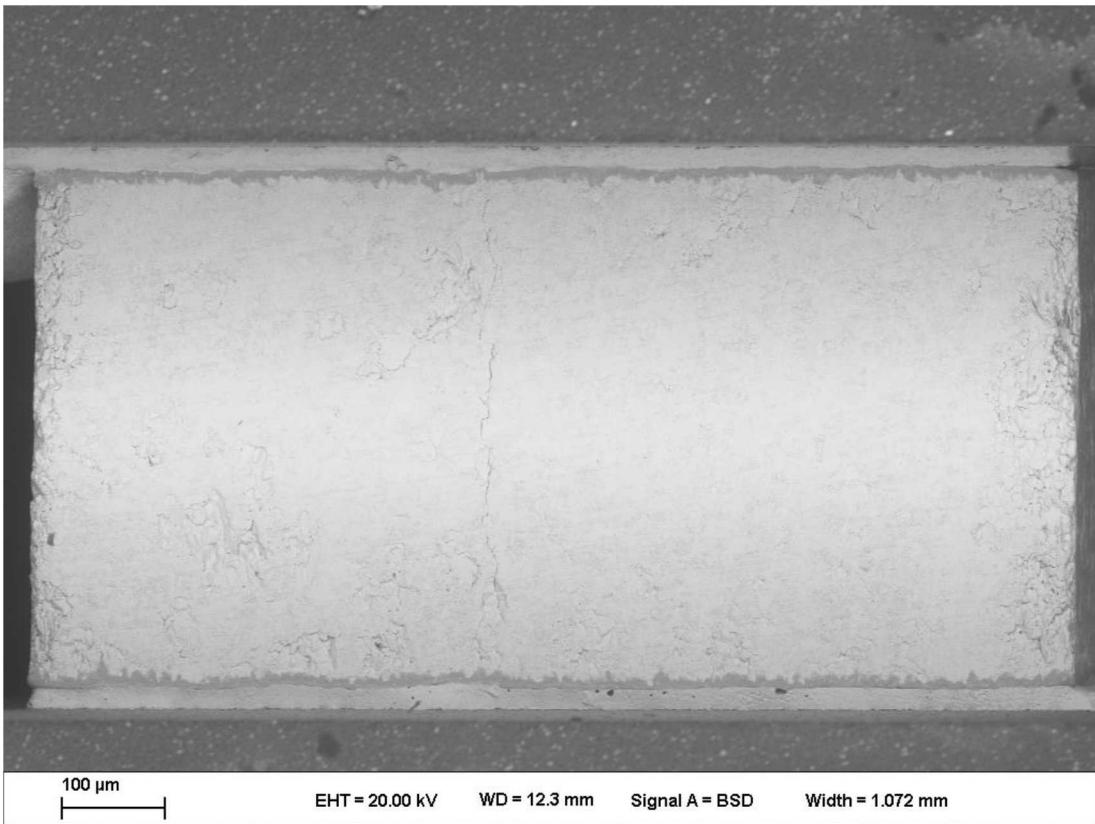


Fig. 14. Side view of TECB

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

Fig. 15. Minor cracking seen in TECBs

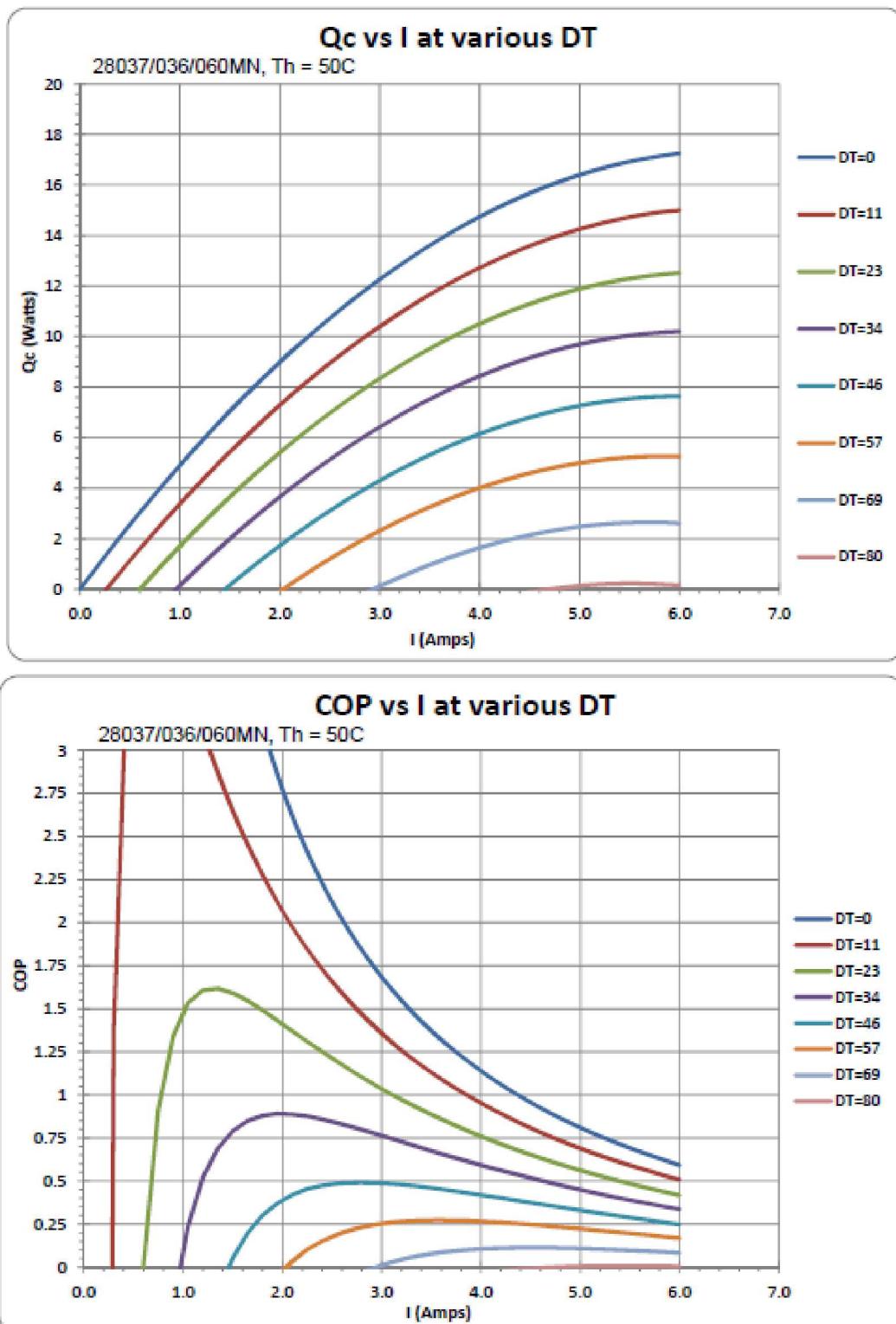
If any of the TECs fail, which I suspect the TECAs will to a higher degree, I will send them our failure analysis team to verify the location of failure. After comparing the two TECs I should be able to provide a recommendation on how to proceed with the devices.

Given the resources, I would like to explore the effects of the different load materials (aluminum, copper, tungsten, etc.) on the thermo-mechanical stress of the TECs. Another interesting test would be modifying the mounting orientation (epoxy, compression mounting) to see if these options improve the reliability of the devices. Although out of the scope of my knowledge, an interesting project would be modeling the TECs using finite element analysis to predict the effects of the aforementioned changes on the structural integrity of the system.

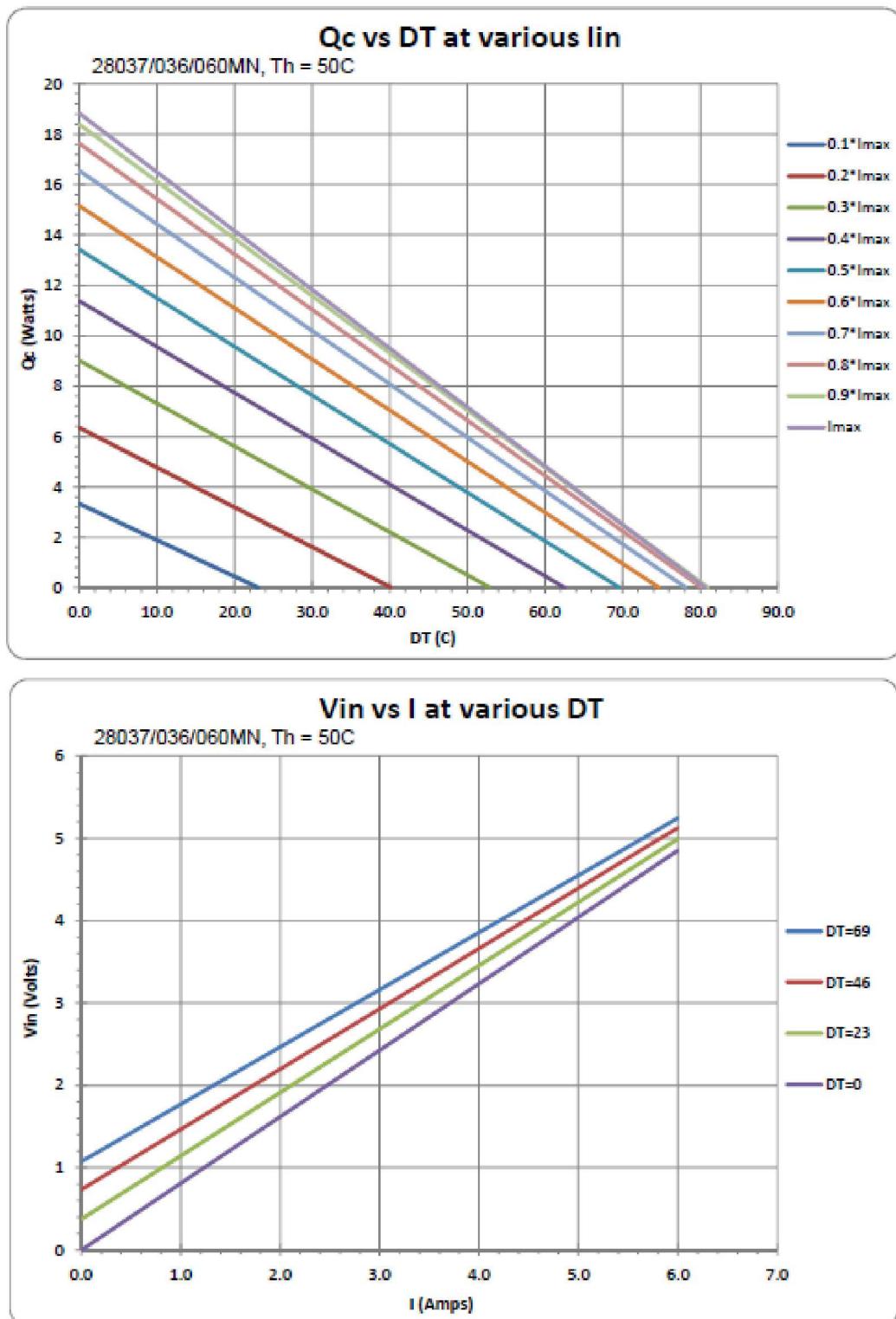
Operating curves at different loads (temperatures), and varying inputs were also provided by the manufacturers of the devices as seen in Appendix A and Appendix B. Combined with the data from the varying load materials, I believe it would be possible to entirely characterize the TECs in normal to extreme applications.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

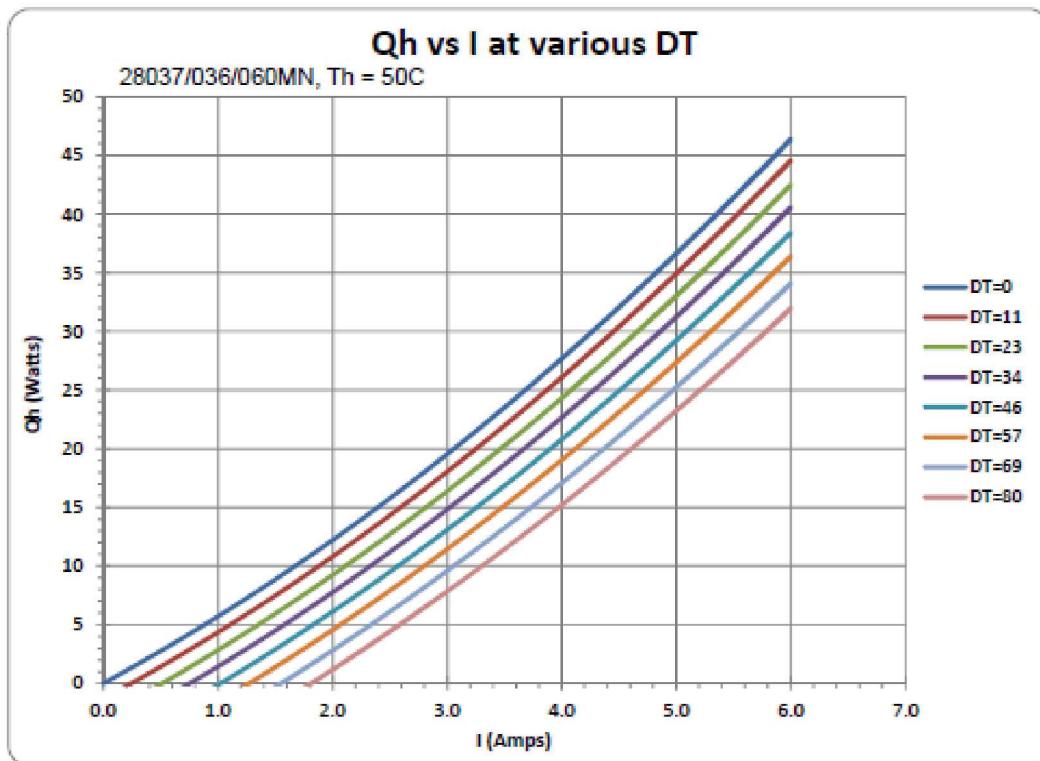
References


1. A. Allen, *Laser Focus World*, vol. 33. March 1997.
2. T. M. Tritt and M. A. Subramanian, “Thermoelectric Materials, Phenomena, and Applications: A Birds Eye View,” *MRS Bulletin*, vol. 31, no. 3, pp. 188–198, 2006.
3. G. Karapetyan, *Physics and Mechanics of New Materials and Their Applications*. Nova Science Publishers, Inc., 2013.
4. T. Tritt, “Thermoelectric Materials: Principles, Structure, Properties, and Applications,” *Encyclopedia of Materials: Science and Technology*, pp. 1–11, 2002.
5. R. Venkatasubramanian, E. Sivola, T. Colpitts, and B. Oquinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” *Nature*, vol. 413, no. 6856, pp. 597–602, 2001.
6. N. Cusack and P. Kendall, “The Absolute Scale of Thermoelectric Power at High Temperature,” *Proceedings of the Physical Society*, vol. 72, no. 5, pp. 898–901, 1958.
7. W. Liu, Q. Jie, H. S. Kim, and Z. Ren, “Current progress and future challenges in thermoelectric power generation: From materials to devices,” *Acta Materialia*, vol. 87, pp. 357–376, 2015.
8. R. He, G. Schierning, and K. Nielsch, “Thermoelectric Devices: Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization (Adv. Mater. Technol. 4/2018),” *Advanced Materials Technologies*, vol. 3, no. 4, p. 1870016, 2018.
9. T. Gong, Y. Wu, L. Gao, L. Zhang, J. Li, and T. Ming, “Thermo-mechanical analysis on a compact thermoelectric cooler,” *Energy*, vol. 172, pp. 1211–1224, 2019.
10. F. C. Nix and D. Macnair, “The Thermal Expansion of Pure Metals: Copper, Gold, Aluminum, Nickel, and Iron,” *Physical Review*, vol. 60, no. 8, pp. 597–605, 1941.
11. “Z-Meters - Why do you need one if you ... - TEC Microsystems.” [Online]. Available: <https://tec-microsystems.com/products/z-meters-for-express-qc/z-meter---why-do-you-need-one.html>. [Accessed: 22-Jun-2020].

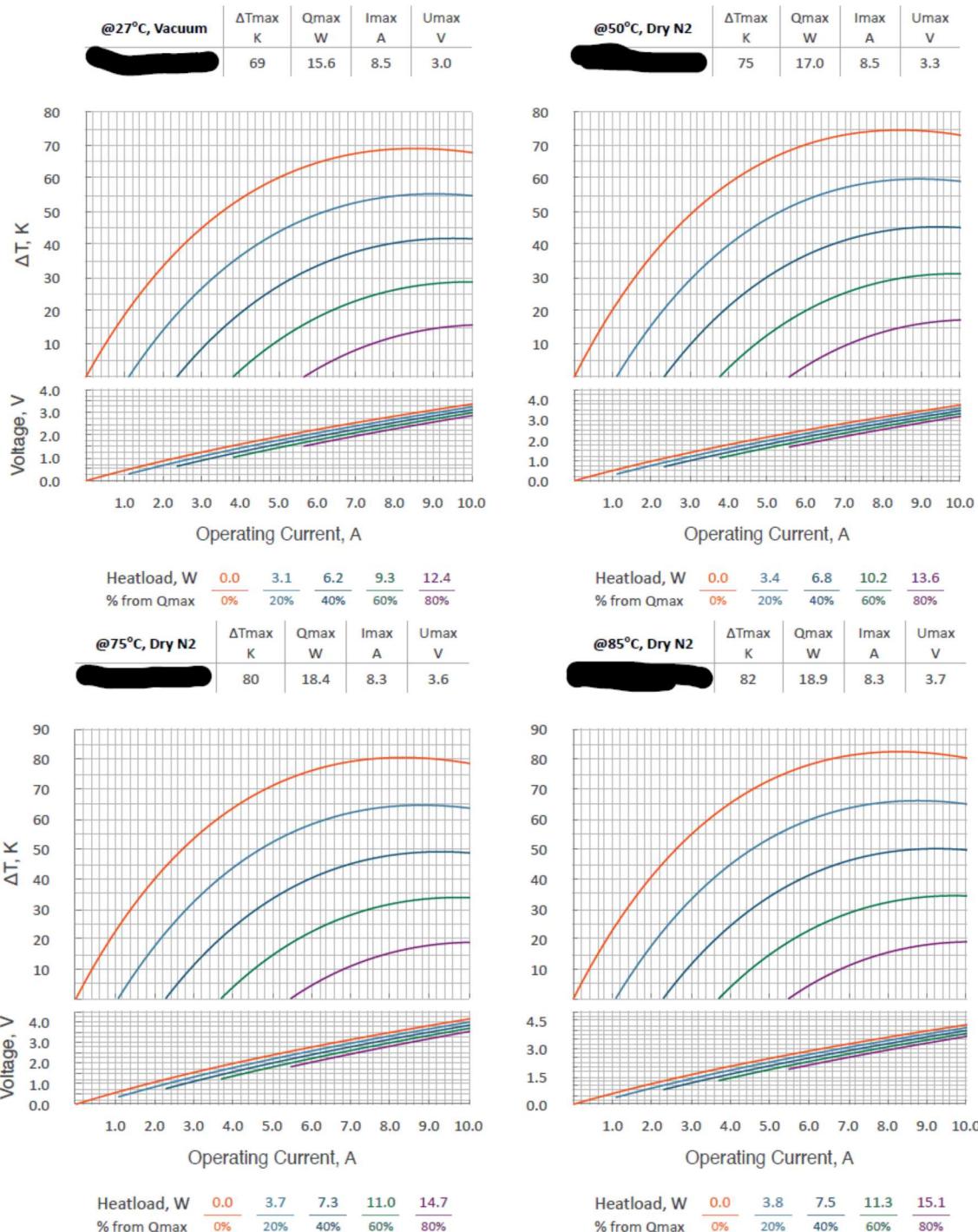
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X



Appendix A: TECA Curves


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

Appendix B: TECB Curves

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-XXXX X

