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Abstract: The goal of this project is to develop a machine-learning (ML) based model for real-
time forecasting of shale gas production at the Marcellus Shale Energy and Environment 
Laboratory (MSEEL).  The ML-model is based on Random Forest Regressor and is trained, tested, 
and validated on synthetic data that is representative of a MSEEL site. The production data for 
this project is simulated using fast and accurate physics of gas flow and transport. The associated 
multi-physics high-fidelity model for gas flow and transport is solved using PFLOTRAN multi-
physics code. Multiple realizations (~3000) are generated that encompass a range of possible 
field-site characteristics found at the MSEEL site.  A site-behavior library is then created using this 
PFLOTRAN synthetic production data.  The simulated data in the site-behavior library is then used 
to create a ML-model to help refine key site parameters (e.g., fracture network statistics, matrix 
permeability, matrix porosity) and then forecast future gas production rate. The forecasts include 
total cumulative production, production rate, stage-specific production, and spatial evolution of 
the quantities of interest.  The Random Forest-based ML-model predictions are compared to the 
PFLOTRAN simulated data. The predictions of the ML-model have a R2-score greater than 90% 
when compared to the ground truth. Moreover, the time needed to train, test, and run the 
proposed ML-model is very low (~105 faster) compared to running a single high-fidelity 
PFLOTRAN simulation. These results instill confidence in our proposed ML-workflow that our 
developed models are fast, accurate, and reliable methods to estimate shale gas production.      

Introduction: The data collection field-site for this MLEF project is the Marcellus Shale Energy 
and Environmental Laboratory (MSEEL) in Morgantown, West Virginia. MSEEL is a Department of 
Energy (DOE) field lab for unconventional shale gas reservoirs.  The reservoir was developed in 
2011 with new wells added in 2015.  MSEEL is a long-term field site used to develop and validate 
new technology (e.g., pressure management) and offers an opportunity to field-validate 
strategies for improved gas production (Mudunuru et al., 2020). The goal of the MSEEL project is 
to improve shale gas recovery while minimizing environmental impacts.  Creating ML-based 
models for real-time forecasting of shale gas production is one of the most important aspects of 
the MSEEL’s overreaching project goals. 

High-fidelity numerical simulations based on physics models are needed to create a data library 
for ML-model development.  However, because they are computationally intensive (e.g., takes 
hours to days to run a single simulation), it is not feasible to use them for real-time forecasting 
of shale production. Machine learning (ML) models are generally quicker to develop and 
implement.  The question is whether they are fast, accurate, and reliable for real-time forecasting 
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of shale production.  To help answer this question, first, a site behavior library is constructed. The 
library contains synthetic production-data created using PFLOTRAN multi-physics code 
(https://www.pflotran.org/)  and is based on a range of possible MSEEL site characteristics.  Then, 
a ML-based model (Random Forest) is generated using the site behavior library to refine key site 
parameters and then estimate the future gas production rate, including total cumulative 
production, total gas production, stage-specific production and spatial evolution (residual gas, P).  
Next, comparisons are made between the simulated physics model (PFLOTRAN) predictions and 
the Random Forest model predictions.  Finally, computational costs of running a single high-
fidelity numerical simulation are compared to the computational costs of running a ML-model.  

  

Machine Learning Workflow (Methods): 

To begin the process of creating a ML-model for the forecasting of shale gas production, a range 
of possible site characteristics were collected from the MSEEL field-site (Table 1).  These field 
characteristics were the basis on which we created the synthetic production data that went into 
the site behavior library. The Discrete fracture network (DFN) (Hyman et al., 2015) and upscaled 
model was used to simulate the physical behavior of the fractured reservoir at MSEEL-I, starting 
with stage 10 of MIP-3H.  Natural fracture planes connect to the hydraulic fractures. These 
fractures were upscaled and form a continuum model in which the upscaled permeability and 
porosity is obtained.  Then, the PFLOTRAN model was solved on this upscaled continuum model. 
The PLOTRAN model produced the synthetic production data found in the data library.  The 
statistics that are used to generate the library include aperture minimum, aperture maximum, 
aperture mean, aperture log variance, matrix permeability, and matrix porosity (Table 1).  

 

Table-1: Statistics of realizations to generate site-behavior data library 

Statistics of Realization Minimum Value Maximum Value 

Aperture Mean 1.37e-4 1.51e-4 

Aperture Log Variance 0.46 0.539524 

Aperture Minimum 3.78e-06 1.47e-05 

Aperture Maximum 7.82e-4 3.98e-03 

Matrix Permeability 1.01e-19 2.00e-18 

Matrix Porosity 5.00e-2 9.98e-2 
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The most important quantities of interest to be forecasted  include cumulative production and 
its rate (Figure 1). These are estimated from the PFLOTRAN model realizations.  This data was 
then used to create a Random Forest ML-based model in which the predicted production rate 
was the output.   

 

Figure-1: Data for ML-model development (Cumulative Production and Production rates). This includes training, 
testing, and validation. 

 

The Random Forest model was created using 150 realizations.  The training-data comprised of 
70% of the data and the test-data comprised 30% of the data.  The ML-model was based on 100 
weak base estimators with a max depth decision tree estimator depth of 10.  Computational costs 
(time) were recorded for the ML-model development, which were then compared to the 
computational costs of running the realizations of the PFLOTRAN simulated data.  Figure 2 shows 
the entire workflow for data generation and the real-time forecasting.  

 
Figure-2: ML-Workflow utilizes a library of data on site characteristics to inform forecasting models 
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Results: The PFLOTRAN simulated data built in the site behavior library was found to be 
representative of the MSEEL field production data. The Random Forest-based ML-model gas 
production rate predictions were compared to the PFLOTRAN simulated data gas productions 
rates (Figure 3).  The ML-model predictions had a R2-score > 90% when compared to the 
simulated data.  The root mean square error (RMSE) was 0.283 for the training data and 0.366 
for the test data. The Random Forest model results based on 100 trees, indicates that it predicts 
production rates very well and shows promise as a fast, accurate, and reliable method to estimate 
shale gas production.     

 

 

 Figure-3: Random Forest-based ML-model predictions on unseen data. The ML-model consists of an ensemble 
of weak base regressors, which is 100 trees. 

 

It took approximately 4 hours to create the ML-model and only 11.65 minutes to run it in its 
entirety on a single-core processor. In comparison, it took anywhere between 6 and 72 hours to 
run a high-fidelity PFLOTRAN model realization (Figure 4). 
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Figure-4: Data generation time to run high-fidelity PLOTRAN Model. Analysis is performed for 3000 realizations. 

Conclusions: In summary, a first-cut of the site behavior library, which is representative of the 
MSEEL site, was created.  A ML-model (Random Forest) was built using the site behavior library 
for real-time forecasting.  Comparisons were made between the PFLOTRAN simulated model 
predictions and the Random Forest model predictions.  The Random Forest model predictions 
closely matched those of the PFLOTRAN simulated data.  The cost of computation is greatly 
reduced when using the ML-model in comparison to the PFLOTRAN high-fidelity simulations.  The 
next steps involve comparing predictions from the random forest ML-model built on the 3000-
11000 PFLOTRAN model realization library to the MSEEL field production data (similar to Figure 
5).   

 

Figure-5: Comparison of gas production field-scale data at MSEEL site and PFLOTRAN simulation shows promise. 
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