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2 Overview

PART 0: Brief Sandia National Laboratories overview

PART I: Clustering analysis of aircraft trajectory data

• Motivations and applications

• Algorithm implementation details

• Tracktable open source software

• Related problems and future topics

•PART II: Mosaic imaging by sampling and optimization

• Motivations and applications

-' Model formulations and solution details

Pyomo and GeoPlace open source software

• Related problems and future topics
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3 Sandia: An FFRDC for nearly seven decades
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Significant dates
• July 1945: Los Alamos creates Z Division at Sandia Base

• November 1, 1949: Sandia Laboratory is established and managed by AT&T

March 8, 1956: Sandia's California site is established

July 26, 1993: Martin Marietta wins first Sandia Corporation contract competition

April 30, 2017: Lockheed Martin contract
May 1, 2017 — present: NTESS contract



4 Sandia:A multimission Iab
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5 Sites and key facilities:A few examples
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Clustering Analysis of Aircraft
Trajectory Data

Motivations and Applications



7 Nature and Scale of Trajectory Dat
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9 Nature and Scale of Trajectory data

Thanks to GPS and new geolocation technologies, enormous corpuses of position/time data exist:
o Collision avoidance data for aircraft (ASDI, ADS-B) and ships (AIS)

o Transponder data from ground vehicles, other moving objects

But...often very little additional information and/or some metadata is untrustworthy

Questions then arise related to comparing trajectories:
o What patterns exist in this dataset?

o Have we seen this pattern before?

o Have we seen a pattern related to this known behavior of interest?

o Can we group together similar patterns, and...

O ...can we identify patterns that are unique or unusual (outliers)?

1111111111,7"-

o Can we forecast where a current trajectory will go based on historical observations?

o Can we identify different types of collective behavior among many trajectories?

O



Clustering Analysis of Aircraft
Trajectory Data

Algorithm Implementation Details



11 What Does Tracktable Do?

Given a large corpus of
trajectory points...

Pm

Assemble points into
traj ectories

Compute features and store
in spatial index

d2

d1
d3

0 1/2 1

d1

Discover, compare, and
forecast patterns

DBSCAN
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12 How Does Tracktable Compare?

Previous analyses use computationally expensive, unintuitive curve alignment techniques.
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Using intuitive combinations of numerical descriptions, trajectories can be analyzed and compared
efficiently:

• End-to-end distance traveled • Centroid of convex hull •

■ Total distance traveled • Start/Stop point ■

■ Ratio of end-to-end distance traveled to • Nearest distance to a given point •
total distance traveled "Distance" from a given specified track

■ Total curvature ■ "Distance" from a given specified shape
■ Total amount of turning ■Start/Stop time
■ Average heading change Time nearest to a given point
■ Area covered by flight (convex hull of ■ Average speed

points) Range of speeds
■ Eccentricity of the convex hull

Max altitude
■ Perimeter of convex hull

Fluctuations of altitude/shape of
• Centroid of points altitude/time curve

Difference from historical data

Most common speed/altitude (cruise)

Place, time and heading where first seen
/ last seen (might not be start/stop
points)

Other...

FEATURE LIST



1 3 Clustering: DBSCAN

Many different types of clustering algorithms exist (k-means, EM, etc.) but DBSCAN has two nice
properties:
o Doesn't require a pre-defined number of clusters

o Has the notion of noise (outliers)

DBSCAN requires
O A neighborhood density

O A neighborhood radius

Tracktable implements a variation of DBSCAN
o sklearn.cluster Python package includes an implementation

Example cluster
requiring a density of 4



14 Clustering Pattern Discovery: Mapping flights

Clustered 1 month of ASDI data from
July of 2013 according to shape features

Discovered a large cluster of mapping
flights across the US

Mapping/aerial surveillance flights are
regularly used to produce commercial and
scientific maps
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1 5 Clustering Pattern Discovery: Oil Rig Helicopters

5 helicopter flights from July 2013

All helicopters belong to the same
petrochemical company

0 They fly people/equipment out to oil
rigs

Spatial proximity was coincidental
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16 Clustering Pattern Discovery: Boeing Test Flights

Boeing test flights from its factory to
a test field near Moses Lake in
eastern Washington

Flights occurred over the month of
July in 2013

Slightly different routes all with very
similar 2-D shapes
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17 Clustering Pattern Discovery: Outliers

If we use the same feature vector and
cluster over one day of flights, we
also get a noise cluster

This graphic represents around 700
outliers out of a total of 50,000
flights from July 10th, 2013
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Clustering Analysis of Aircraft
Trajectory Data

Related Problems and Future Topics



19 Related Problems: Find a Similar Flight

Consider the red flight, and look
at just two features:

Ratio of length to end-to-end distance

Aspect ratio of convex hull

A search for flights with similar
values gives the white flights

This is an example of a fast,
shape-invariant search

_ .. ,,,

-1---
)\.,

i ' ,,,, ..

Google earth



20 Related Problems: Collective Behavior

Find flights that followed the same
path around the same time

A group of 6 Cessna's all flew from
Los Angeles to Tracy on the
morning of July 10th.

... and then from Tracy to Redding
around noon on _July 10th.



21 Future Topics

Automated parameter selection for clustering analysis

Automated feature selection for clustering, forecasting, and trajectory comparison
O Dimensionality reduction techniques

o Suitability of specific features across different trajectory data sets

Forecasting and prediction of various trajectory features
o To date, we have explored destination/source/location forecasting

Sub-trajectory lexicon for behaviors

Additional topics in coordinated behavior of trajectories
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Mosaic Imaging by Sampling and
Optimization

Motivations and Applications



23 Optimization of Spatial Coverage
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Model Formulations and
Solution Details

Pyomo and GeoPlace open source software



26 Details of Our Spatial Coverage Problem

*A small number (-10-100) of footprints (images) are required to:
• Cover a region of interest (ROI) on the earth.

• No gaps are allowed, some overlap between footprints is desirable.

•The ROI is modeled as a polygon, sometimes with holes.

•Footprints are nearly convex and have good aspect ratios when projected on Earth.



27 Algorithm
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28 Algorithm (continued) 0
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Mixed-Integer Programs

Formulation and Solution Descriptions



30 Mixed-Integer Programs

VC E C,

Vt E T.

Equation 1: Basic coverage

min E + a E
t (id)

J (c)

s.t. E ?1
< 1
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Equation 2: Coverage penalizing
overlap

Eot(1 — aili(t)) + a2 E f(i,
t (i,j)

Equation 3: Coverage
penalizing overlap, rewarding

efficiency

Notation:
• Let T denote the set of (potential) footprint placement points,

• C is the set of required coverage points,
• J(c) are the set of placements j E J that would cover c E C,
• 4;sii E {0,1 denotes whether or not placement pair (i2/) has footprints placed at both points,

• h(t) is the number of coverage points covered by placing a footprint at placement point t.



31 Mixed-Integer Programs
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Problem Instances and Solutions with GeoPlace



Note: Placements are optimal given fixed coverage and placement points and footprints.



34 Examples (continued)

• Problem instances were solved using both CPLEX (commercial
license) and Gurobi (free academic use license)
• Optimality gap tolerance was set to 0.01%
• Solved on a 64-core workstation with 2.4GHz AMD processors

and 512GB RAM
• Source code:

• Available at haps://aithub.com/cavalic/GeoPlace 
• C++

• Coverage and placement point generation

• Visualization
• Python

• Mixed-integer linear program models (www.pyomo.org)

• Solver interface
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36 Related Problems and Future Topics

Alternative mosaics

Multiple intra-mosaic footprint shapes
o Accommodate relative motion of satellite
o Accommodate cooperative sensing of disparate satellites

o Placement with priorities and uncertainty

oConstellation job scheduling problems
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Research and Development Themes

•Adaptive models: objectives,
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• Scalable online solutions
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Example schedule with model that allows certain
collection windows to run concurrently.



37 ThankYou!

Questions?

o


