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PURPOSE STATEMENT
4 | DEFINES WHAT WE DO

Sandia develops
advanced technologies
to ensure global peace

Multiple research thrust areas at Sandia
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NMR Centric.... Biased View
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“Therefore we can draw the conclusion
that long term exposure to high
magnetic fields has no known harmful
physical effect”

NMR Diffusometry
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Outline

Transport in PEMS SDAPP membranes
= Motivation for SDAPP

= MD Simulations of Nanomorphology
= Characterization (NMR and SAXS)

= NMR Diffusometry

Chain dynamics in Ferrocene cured thermosets |
= Cure stress in cross-linked polymers

= TH NMR of chain dynamics |



Fuel Cells — Emerging Technology

57 “Old Technology — Material Advances Lead the Way” =

= Convert chemical energy (fuel) to electricity using oxygen.
= Different types of fuels (hydrogen, methanol, ethanol...).
= Can produce electricity as long as there is fuel (unlike batteries)....remote locations.

= Power generation (backup), including remote sites, military, automobile.

= Higher efficiency (60 - 85%) than combustion systems (30%).

k] Hydrogen Station

Hydrogen Tank
&




s Polymer Exchange Membranes (PEM) at Sandia L

Proton exchange membranes

PEM Fuel Cell
H, +1/20, — H,0

Pressure

Half- Reaction

1/20, + 2e > H,0

sl Water Vapor

= Fuel Cells (PEMs and AEM) = Desalination

= Battery Separators = Reverse Osmosis

= Flow Batteries (V, Na, Fe etc.) = Electrolysis

= Catalyst Support Binder = |on Selective Electrodes

“Development of new membranes materials for a wide range of technological
applications ultimately based on fundamental understanding of transport...”



Sulfonated Diels Alder Polyphenylene

(SDAPP) Membranes

Nafion
(perfluoronated membranes)
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= Stable in alkaline environments.
= High T, (-350 °C).

= Easily processed.

= Wide range of functionalities.

= Promising alternative to Nafion.
= No F (i.e. HF) during aging

CFs HO

« Good conductivity at low temperatures.
«  The present industry standard.

SDAPP Analogues Nations! Laboratories
AEM (Anion Exchange Membranes) e
_ |5 SDAPP-FDPS Copolymers
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Fujimoto, C. H., Hickner, M. A., Cornelius, C. J., Loy, D. A., Macromolecules 2005, 38 (12), 5010-5016.



.+ Diels Alder Polymerization
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Sulfonated Diels Alder Polyphenylene

(SDAPP) Membranes
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SDAPP Conductivity
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without solubility issues. ~#—IEG= 21 (SDRPFA - 800)
®
Improved H conductivity over wide RH%. oad
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M. A. Hickner, C. H. Fujimoto, C. J. Cornelius, Polymer 47 (2006) 4238-4244




= What is Controlling SDAPP Conductivity?

Conducitivty (mS/cm)

SDAPP Conductivity
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Questions we would like to answer

Why the different conductivity versus hydration
behavior with increasing sulfonation (S)?

Why the low temperature variation in the fluorinated
coblock polymer?

Why the low conductivity temperature variations?
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Nanoscale Morphology Impacts Design Principals for

14| Improved Performance of Hydrocarbon Based PEMs

ll. Morphology Control is Essential (Gross, 2009)
= Produce morphologies that provide percolation/transport pathways.
= Bicontinuous/random morphologies with numerous contacts between hydrophilic domains.
= Positional dependent diffusion constant (PDDC).
= Anisotropic directional alignment added benefit.
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[1] Prof. Thomas, Figure by MIT OpenCourseWare. [2] Liu, S.; Savage, J.; Voth, G. A., Mesoscale Study of Proton Transport in Proton Exchange Membranes: Role of
Morphology. The Journal of Physical Chemistry C 2015, 119 (4), 1753-1762. [3] Lauren J. Abbott and Amalie L. Frischknecht,“Nanoscale Structure and Morphology of
Sulfonated Polyphenylenes via Atomistic Simulations” Macromolecules 2017, 50(3), 1184-1192. [4] Ling, X.; Bonn, M.; Parekh, S. H.; Domke, K. F., Nanoscale
Distribution of Sulfonic Acid Groups Determines Structure and Binding of Water in Nafion Membranes. Angewandte Chemie International Edition 2016, 55 (12), 4011-
4015. [5] P. W. Majewski et al., “Anisotropic lonic Conductivity in Block Copolymer Membranes by Magnetic Field Alignment” (2010), J. Am. Chem. Soc., 132, 17516-
17522.



SDAPP Nanoscale Morphology
' Expected to be Different than Nafion

e\ | \ & 358
. %‘\ (ﬁ Rigid sidechains Ooé} 8 R

g) Limited backbone flexibility ¢-c»
o

Combination of Efforts

= Quantum calculation of water binding energetics.
= MD simulations of nanoscale morphology.

= X-ray Scattering of SDAPP Membranes

= NMR spin diffusion domain size measurements.

= Connecting MD and experimental NMR spin diffusion.
= NMR Diffusometry



«| SDAPP Molecular (MD) Simulations
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= Local structure depends on
the degree of sulfonation (S)
and the hydration (1) levels.

= Cluster domain shape
depends on how it s
defined: distance based
versus density based
methods.

= Increasing S and A resulted
in larger and more spherical
cluster sizes, with the
formation of fully
percolated ionic domains.

Thin connections are not considered a domain in

density based algorithm.
L. A. Abbott, A. Frischknecht, Macromolecules, 50(3), 1184-1192, 2017.



SDAPP Molecular (MD) Simulations
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Can we obtain experimental verification of these proposed domain
structures and changes in the structure with increasing hydration?

L. A. Abbott, A. Frischknecht, Macromolecules, 50(3), 1184-1192, 2017.



s SAXS scattering MD
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Eric G. Sorte, Benjamin A. Paren, Christina G. Rodriguez, Cy Fujimoto, Cassandria Poirier, Lauren J. Abbott, Nathani
Frischknecht, and Todd M. Alam, “Impact of Hydration and Sulfonation on the Morphology and lonic Conductivity of Sulfonated Poly(phenylene) Proton
Exchange Membranes”, Macromolecules 52, 857-876 (2019).
DOI: 10.1021/acs.macromol.8b02013

;f ol
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»| Loss of lonomer peak in SAXS...
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a) Partial structure factors from SDAPP MD simulation for S = 2, A= 10; b) Water partial structure factors (S, ) for S = 2,
for A = 3 (blue), A =5 (green), A = 10 (red), and A = 20 (black).
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Total structure factors from MD simulation, using the atomic scattering coefficients for SDAPP (blue), and replacing
the aromatic hydrogen scattering coefficients with those for fluorine (green).

Reduction in ionomer peak is NOT due to loss of hanophase separation but is

scattering contrast related.




»| '"H NMR Spin Diffusion Experiments
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' Connecting Models to NMR Spin Diffusion

Uniform bilayer Distributed bilayer

> 4 ey & I = ionic domain
sy s S

Analytical solutions for the simplest cases.

Solutions become unwieldy for distribution of more complex structures!!

Would like to simulate structured from MD and Course Grain simulations.

Developed the program (NMR_DIFFSIM) to simulate any proposed structure.

Used to estimate domain size in SDAPP polymer membranes.

Sorte, E. G., Lauren J. Abbott, Mark Wilson, Amalie Frischknecht, and Todd M. Alam, “Hydrophilic Domain Structure in
Polymer Exchange membranes: Simulation of NMR Spin Diffusion Experiments to Address Ability for Model Discrimination”,
J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 62-78.
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»1 MD => Spin Diffusion Experiments

DIFFSIM
Program

. ;‘h".?'.;‘a“' ;.’.{fﬁf AL "' N V)
;?s‘"‘ga"b\‘.% ". *’.}igti ’J ’; ?J‘l?

equilibrated Time equilibrated

Sorte, E. G., Lauren J. Abbott, Mark Wilson, Amalie Frischknecht, and Todd M. Alam, “Hydrophilic Domain Structure in Polymer Exchange membranes:
Simulation of NMR Spin Diffusion Experiments to Address Ability for Model Discrimination”, J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 62-78.



» 1 Connecting MD to Spin Diffusion Experiments
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=  MD structure (morphology from simulation)

= Spin diffusion constants, volume fractions, etc. are fixed.

= No adjustable parameters in these fits!!!!

= Deviations at higher hydration levels [finite simulation size]

Sorte, E. G., Lauren J. Abbott, Mark Wilson, Amalie Frischknecht, and Todd M. Alam, “Hydrophilic Domain Structure in Polymer Exchange membranes:
Simulation of NMR Spin Diffusion Experiments to Address Ability for Model Discrimination”, J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 62-78.
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2 | Estimation of Domain Size

Domain Size (nm)
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Eric G. Sorte, Amalie L. Fr?échknecht, and Todd M. Alam, “NMR Spin Diffusion Measurements in Disordered
Polymers: Insights and Limitations”, Physical Review Materials, ASAP (2019).

Continuous variation with hydration level (factor of 7) - no step with A.
Different than Nafion.

NMR spin diffusion seems appears to represent the distance based description of
the hydrophilic domain.

NMR spin diffusion does not give a clear indicator of shape or anisotropy.




I NMR Spin Diffusion and Models

Lattice Disorder
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Eric G. Sorte, Amalie L. Frischknecht, and Todd M. Alam, “NMR Spin Diffusion Measurements in Disordered
Polymers: Insights and Limitations”, Physical Review Materials, ASAP (2019).

= Heterogeneous domain structure (i.e. disorder) can have significant impact on

the NMR spin diffusion experiments.
= Need guidance for structural model (MD, SAXS, Imaging etc.)




»| NMR Diffusometry - Water in SDAPP Membranes W

oo SDAPP Water Difusion Temperature Variation of Water Diffusion
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Conductivity and Diffusion

Nernst-Einstein Equation

FZC(D D ) Only involves H* (or OH") cm(D+)
+ — — pu—
RT ° RT

Surface Grotthuss Vehicular

o= ( DSurf CSurf + DGrott CGrott DVe+h CVih )
R T H H

The transport of H* in PEMs can also be discussed in
terms of different diffusion environments.

DVeh

If we can measure diffusion individually, we can evaluate different contributions.




SDAPP Conductivity from Diffusivity
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= At low-moderate S conductivity controlled by water vehicular transport at full hydration.

=  With increasing S, Grotthuss mechanism becomes significant and leads to increased
conductivity beyond simple diffusion.

= Membrane design rule strive for the highest Dveh, but H* requires an environment
(hydrogen bond strength) allowing Grotthuss hopping.

Eric G. Sorte, Benjamin A. Paren, Christina G. Rodriguez, Cy Fujimoto, Cassandria Poirier, Lauren J. Abbott, Nathaniel A. Lynd, Karen I. Winey, Amalie L.
Frischknecht, and Todd M. Alam, “Impact of Hydration and Sulfonation on the Morphology and lonic Conductivity of Sulfonated Poly(phenylene) Proton
Exchange Membranes”, Macromolecules 52, 857-876 (2019).

DOI: 10.1021/acs.macromol.8b02013



» | Conclusions

* SDAPP membranes are shown to have H conductivity equivalent to Nafion, but with
improved thermal behavior and reduced membrane solubility in water.

* Combined experimental and computation studies used to probe the nanostructure of
SDAPP membranes.

* The loss of the ionomer peak in the SAXS is shown to be due to loss of scattering
contrast NOT a loss of nanophase separation. MD simulations suggest an increasing
degree of phase separation.

* Combining PFG NMR diffusometry and the H conductivity shows the evolution of the
conductivity mechanism evolving from vehicular transport to a hybrid mechanism
with increasing Grotthuss mechanism.

* Improved conductivity can be driven by increasing the degree of sulfonation (S > 3.5) ‘
and exceeds the simple increase in the H* concentration. |



Outline

Chain dynamics in Ferrocene cured thermosets
= Cure stress in cross-linked polymers

= TH NMR of chain dynamics




Motivation: Stress Relief in Thermoset Polymers

Cure Stress Variation
Epon 828 + MDA (C, methylenedianaline) or IPD (D, isophorene diamine) [1]
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Brad H. Jones, David R. Wheeler, Hayden T. Black, Mark E. Stavig, Patricia S. Sawyer, Nicholas H. Giron, Mathias C. Celina, Timothy N. Lambert,
and Todd M. Alam, “Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent”, Macromolecules, 50(13), 5014-5024 (2017)
DOI: 10.1021/acs.macromol.7b00501

S. Chaudhary, S. Parthasarathy, C. Rajagopal, P. Roy, D. Kumar “Simple toughening of epoxy thermosets by preformed thermoplastics”, Plastics
Research Online (2014) http://www.4spepro.org/view.php?article=005409-2014-04-09&category=Polymer+Modifiers

Yayla, P., Fracture Surface Morphology of Delamination Failure of Polymer Fiber Composites Under Different Failure Modes. Journal of Failure
Analysis and Prevention 2016, 16 (2), 264-270.




Alternative Chemistries For Stress Mediation )

(Self Repair)

Volume Expandable

0. Spiro Ortho Carbonates [a]
W\/\<: >< :>vw —_—> R\o/\%/\o o/\{\o/ "
(0] (6]
Covalent Adaptable Network (CAN)
Catalyzed Olefin Metathesis [5]

Diels-Alder [1]
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Addition-Fragmentation Chain Transfer [2,3,4]

. \)J\/ = Oxetane Ring Opening [6]
T s S = Chain Exchange Reaction [7]
» Transesterfication [8]
= Transcarbamoylation

e N
Ri . =  Transamination
A S = Transalkylation

[a] Bailey, W. J., Matrices that expand on curing for high strength composites and adhesives. Materials Science and Engineering: A 1990, 126 (1-2), 271-279.; Alcoutlabi, M.; McKenna, G. B.; Simon, S. L., Analysis of the development of isotropic residual
stresses in a bismaleimide/spiro orthocarbonate thermosetting resin for composite materials. Journal of Applied Polymer Science 2003, 88 (1), 227-244. [1] Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F., A Thermally Re-
mendable Cross-Linked Polymeric Material. Science 2002, 295 (5560), 1698-1702. [2] Scott, T. F.; Schneider, A. D.; Cook, W. D.; Bowman, C. N., Photoinduced Plasticity in Cross-Linked Polymers. Science 2005, 308 (5728), 1615-1617. [3] Kloxin, C. J.; Scott,
T. F.; Bowman, C. N., Stress Relaxation via Addition-Fragmentation Chain Transfer in a Thiol-ene Photopolymerization. Macromolecules 2009, 42 (7), 2551-2556. [4] Nicolay, R.; Kamada, J.; Van Wassen, A.; Matyjaszewski, K., Responsive Gels Based on a
Dynamic Covalent Trithiocarbonate Cross-Linker. Macromolecules 2010, 43 (9), 4355-4361. [5] Lu, Y.-X.; Tournilhac, F.; Leibler, L.; Guan, Z., Making Insoluble Polymer Networks Malleable via Olefin Metathesis. Journal of the American Chemical Society 2012,
134 (20), 8424-8427. [6] Ghosh, B.; Urban, M. W., Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks. Science 2009, 323 (5920), 1458-1460. [7] Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L., Silica-Like Malleable Materials from
Permanent Organic Networks. Science 2011, 334 (6058), 965-968.[8] Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L., Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets. Journal of the American Chemical Society 2012, 134
(18), 7664-7667.



Metallocene Curing Agents for Stress Relief W

Ferrocene Fluxional Mechanism
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Brad H. Jones, David R. Wheeler, Hayden T. Black, Mark E. Stavig, Patricia S. Sawyer, Nicholas H. Giron, Mathias C. Celina,
Timothy N. Lambert, and Todd M. Alam, “Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent”,
Macromolecules, 50(13), 5014-5024 (2017) DOI: 10.1021/acs.macromol.7b00501
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Rotation Barriers in Ferrocene Derivatives

R TCompound  TAGHUEJKImol  |Ref. |

Fe(n°-CsHs), 4.4,5.4,7.5

Fe(n>-C5Hy)(n>-CsH,CHO) 15.2 [1]

&

| | Fe(n5-C5Hs)(n3-C5H,CMe,Et) 10.2 2]
Fe Fe
15.2
i&)? ié? 8.0 [2]
11,7
9.6 [3]

55.6, 54.8 [4]
B T 7] 56.7 [4]
+—c —Cc—+ Fe(n5-CsH,(TMS),) 46.0 [4]
@ 9.6 [5]
‘ Ru(n>-C.H,(t-Pentyl),) M [4]

Fe
| 75 (6]
§ 7 Co(n5-C5 5)2 1.5 [6]
| |n Cr(n>-CsH;s), 7:5 [6]

“Fe ball bearing”

1. Pazur, R.J., et al., Proton spin-lattice relaxation time studies and atom-atom non-bonded potential calculations on ferrocenecarbaldehyde (n®-CsHs)Fe(n’-CsH,CHO). Canadian Journal of Chemistry, 1987. 65(8): p. 1940-1944.

2. Mann, B.E., et al., A determination of the activation energy of cyclopentadienyl group rotation and molecular tumbling in [Fe(h’-CsHs)(h°-CsH,R)J(R = CMe,Et or Bu") using carbon-13 nuclear magnetic resonance relaxation measurements. Journal of
the Chemical Society, Dalton Transactions, 1984(9): p. 2027-2028.

3. Appel, M.A., Ring Rotation in Ferrocene and Ferrocene-Containing Polymers. 2015, Technische Universitat: Darmstadt, Germany. p. 137.

4. Abel, E.W., et al., Dynamic NMR studies of ring rotation in substituted ferrocenes and ruthenocenes. Journal of Organometallic Chemistry, 1991. 403(1-2): p. 195-208.

5. Holm, C.H. and J.A. Ibers, NMR Study of Ferrocene, Ruthenocene, and Titanocene Dichloride. J. Chem. Phys., 1959. 30(4): p. 885-888.

6. Luke, W.D. and A. Streitwieser, Barriers to Ring Rotation in 1,1',4,4-Tetra-tert-butyluranocene and 1,1,3,3-tetra-tert-butylferrocene. J. Am. Chem. Soc., 1981. 103(12): p. 3241-3243.




Ferrocene in Polymers

(Including Epoxies)

— - [1,2] [3] [4]

S
Sl Go—(CH2)3 (CHy)3— @ @_—_/YCH
‘ l "// \ HN——N

R ‘\ ‘ l

& &

L —n

R= CH3, OCH3, OC6H13

= Propellent Burn Rate Catalyst
= Conductivity
£ Electrochemical
\ @ = Magnetic Ceramics
=

O——=0
|

= Refractive Index
= Electron Beam Resistance
[6] ! = Self Assembly (fluxional impact)

(@]
]
OO~
(6]
<£ c— CHZ—Cﬁ—\CH2
— | o
(@]

[1] Kulbaba, K.; Macdonald, P. M.; Manners, I., Molecular Motions in Poly(ferrocenes): Solid-State Deuterium NMR Studies of Poly(ferrocenylsilanes) near Their Glass Transition Temperature. Macromolecules 1999, 32 (4), 1321-1324. [2] Kulbaba, K.;
Manners, I.; Macdonald, P. M., Molecular Motions in Metal-Containing Polymers: Solid-State Deuterium NMR Studies of Polyferrocenylsilanes near Their Glass Transition Temperature. Macromolecules 2002, 35 (27), 10014-10025. [3] Wright, M. E.; Laub,
J.; Stafford, P. R.; Norris, W. P., Synthesis of new ferrocene containing diamines and their use in epoxy resins. Journal of Organometallic Chemistry 2001, 637-639, 837-840. [4] Veronelli, M.; Dechert, S.; Demeshko, S.; Meyer, F., 1,1"-Bis(pyrazol-3-
yl)ferrocene: A Clip Ligand That Forms Supramolecular Aggregates and Prismatic Hexanuclear Coinage Metal Complexes. Inorganic Chemistry 2015, 54 (14), 6917-6927. [5] Yu, H.; Wang, L.; Huo, J.; Ding, J.; Tan, Q., Synthesis and Curing Behavior of a
Novel Ferrocene-Based Epoxy Compound. J. Appl. Polymer Sci. 2008, 110, 1594-1599. [6] Yu, H.; Wang, L.; Huo, J.; Li, C.; Tan, Q., Synthesis of Glycidyl Ether of Poly(bisphenol-A-1,1'-ferrocene dicarboxylate) and Its Electrochemical Behavior. Designed
Monomers and Polymers 2009, 12, 305-313.
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Static 'TH NMR - Temperature Variations B
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'H NMR - Mapping Internal Polymer Motions B
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Static '"H NMR Line Width - Dynamics
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Static '"H NMR - Dynamics From Line Widthm
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'H NMR - Double Quantum (DQ) NMR =

DQ Excitation

DQ Reconversion

D

5 -pulse DQ sequence (Pines).
n pulses for refocusing.
etection

Variation on 1,4 for buildups.

Not increased cycle number.
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z -filter

Used extensively in rubbers for
motions in the ms range.
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"H NMR - DQ NMR Fully Cure
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DQ 'H NMR - Fully Cure Epoxy

Normalized DQ Buildups
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So What....

How is this Related to Polymer Physics? u
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DQ 'H NMR Derived Order Parameters H
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Conclusions

'H NMR line width variation used to probe local polymer dynamics as a function
of temperature.

Allows evaluation of E_ for segmental motions at glass transition.

DQ 'H NMR can be used to look at epoxy curing from purely segmental motion
viewpoint (S,).

For T > >T, the DQ build up curves allow the order parameter S, in the rubber
plateau to be measured.

The FcDA cured epoxy shows a heterogeneous cross-link (dynamic) environment.

Order parameters can be related to polymer models and crosslink properties.
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! NMR Diffusometry - SDAPP Membranes

SDAPP Membrane Weight Gain 1e-9
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= Diffusion trends are same order of magnitude as Nafion.
= Small variations as a function of IEC.



High Resolution Magic Angle Spinning (HRMAS)

st | Pulse Field Gradient (PFG) Diffusion Experiments L

“Diffusometry NMR”
A) B, B) (22, (A))=-2In[ E(q.0)/ E(0,4)]/ 4"
<Z§4> =2D t*

Diffusion Using
Stejskal-Tanner Formula

el o]

3

ST T
5048 £644
TH Chemical Shift (ppm)

Figure 8: A) Pictorial representation of the gradient produced along the magic angle of the rotor. B)
The decay of two different water signals found in a 1N methanol solution of an AEM membrane with
increasing gradient strength. Gradient strength values (G/cm) are shown above the stack plot.




NMR Diffusometry - Transport of Water

Pulsed Field Gradient (PFG) NMR

Stimulated Echo (STE)

Spin Voxel
is spatially
“tagged b
Spin Voxel
is spatially
refocused
Signal decay is measured by:
M, 7.9 o2
S(T+27,)==Fexp(-27, /T, ~T/T,)exp|-Dy’g’5” (A-51/3)]
Where:
= T, = spin-lattice relaxation time
= § = length of gradient pulse = T,= spin-spin relaxation time
= g = gradient strength = A= inter pulse delay
= y = gyromagnetic ratio = D= diffusion constant
= 7, T: inter-pulse spacing ‘
Pulse Field Gradient (PFG) NMR provides one method for characterizing

the self-diffusion transport of species within the membrane.




PFG NMR Diffusometry Equipment

Gradient control and High power
Water cooled B, emphasis unit gradient unit
diffusion probe
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Visualization of Diffusion Process

Propagator
P(F,0) = [ PG +7,7,0) py () dF
V

exp (_ (F ()
(4zDr) G

P(¥,t) =

(7 (1) = j P(7,t)F* dF: =6Dt

zj

All this water
has diffused out
of the voxel and

will not be
refocused! |
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= Will use pulse field gradient (PFG) NMR (described next) to measure this

self-diffusion constant (D).

= Signal from the PFG experiment is the FT of the diffusion propagator.

¥(g,5,A) = j P(z,A)cos(ygdz)dz




Site Resolution in MeOH Fuel Cell Membranes

! “The Odyssey Begins”™

H,0
1M MeOH
H,0/MeOH ~ 55
) MeOH
9 8 7 6 5 4 3 2 1 ppm
7-138D
Static

9 8 7 6 5 4 3 2 1 ppm
H,0
7-138D
4 kHz MAS

MeOH

9 8 7 6 5 4 3 2 1 ppm

Magic Angle
Gradient Coils

Stator

Rotor

RF Solenoid

Different water environments in polymers

Water in hot pressed Nafion, Jeong and Han, Bull. Korean Chem.
Soc. (2009), 30, 1559.

Water in PEEK, Baias et al, Chem. Phys. Lett. (2008), 456, 227;
(2009) 473, 142. MAS with SSB with no chemical shift resolution.

Mele et al., J. Incl. Phenon. Macrocycl. Chem. (2011), 69, 403.
HRMAS resolution.




| High Resolution Magic Angle Spinning (HRMAS) W
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“Magic Angle Spinning”
1
AB ~ P,(cos ) = 3(0052 Q—EJ

Tissues

Cell dispersions

Polymer gels
Hamiltonian same form as CSA and dipolar interactions!

Todd M. Alam and Janelle E. Jenkins, “ HR-MAS NMR Spectroscopy in Material Science”, in Advanced Aspects of
Spectroscopy, Muhammad Akhyar Farrukh (Ed.), ISBN: 978-953-51-0715-6, InTech, (2012).




| High Resolution Magic Angle Spinning (HRMAS) W

= “Liquid like samples”
need to retain liquid
under MAS.

= Might need to consider
centrifugation effects
under MAS.

Figure 4: The tools and inserts used for HR-MAS NMR. These include A) the specialized tool for
screw cap insertion, B) the sealing screw cap, C) the upper insert (Teflon®), D) lower Teflon® insert
for 30 pL volume, E) screw for insertion/extraction of top insert, F) top Kel-F® insert, G) bottom
Kel-F® insert for 12 puL sample volume, H) plug for disposable insert, I) disposable 30 uL Kel-F®
insert, J) 4 mm rotor cap, K) disposable inserted partially in a 4 mm rotor, L) 4 mm zirconia MAS
rotor. All these parts are for the Bruker HR-MAS system, and may vary between vendors.




1 HRMAS PFG NMR and Site Resolution

AEM 7-138" |«
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Resolution is always exciting! Can ask questions about differences
between MeOH and water association with the membrane.




s9 . 'H HRMAS NMR of Different AEM Membranes
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«! VWhere are these Associated Species!
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= The 2D NOESY data (faster spinning speeds) reveal correlation between the
associated species (both H,0 and MeOH) and the membrane.
= Short mixing times suggest near the cation (N(CH;);*). (ay . o
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| 2D 'H-'"H Exchange/NOESY Studies
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] N—" .
: | V2 e contact with membrane.
' ' S b —
: ([ : I .
' | :X~100: Il © Anion Exchange Membrane
| ' g N(CHa)s
i |y 103 P RPQP
. ' B A ~ £ [(~E-0-3
|: ] | O o @ D
] i r:,;__,"
: E : : e = "5 @N(CHs);
' 3 8
| A= g
b o s e e e [t===- | z
Boafecccccccccccccccaaas =
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2| 2D 'H-'H Exchange/NOESY Studies

I, .
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“Spin Diffusion”
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| Diffusion Analysis of Individual Species

Free Water Associated Water

el

(R*(A))=—6In[ E(q.A)/E(0,A)]/ ¢’
(R*)=6Dt

(ziy (A))=—2W[E(q.A)/ E(0,A)]/ ¢*
<Z§/[> =2D t*

@ )
i A

E(q,A)/E(0,A)

[}
&

e

00 0005 0010 0015 0020 0025 003 00 0005 0010 0.015 0020 0025 0.03 = Associated diffusion is an order of
Free Methanol Associated Methanol magnitude slower than free species
(Water and MeOH).

el

= MeOH diffusion slower than Water
in both environments.

el

= The ratio of D, ,/Dsee iS5 much
smaller for MeOH, suggesting
preferential association with
membrane.

E(q,A)/E(0,A)

e3 |

: ; : . . &2 - : . . . Todd M. Alam and Michael R. Hibbs, “Characterization of
0.0 0.005 0.010 0.015 0020 0025 0.3 00 0.005 0010 0015 0020 0.025 0.03 Heterogeneous Solvent Diffusion Environments in Anion

q2( Am-z) q2( Am-z) Exchange Membranes_”, Macromolecules, 47, 1073-1084
(2014). http://dx.doi.org/10.1021/ma402528v

e




.| Anomalous Diffusion?

AEM 138-D (308 K)

10000

1000 -

100 -

<Z?> pm?

10 A

® FreeH,0
@ Associated H,0
© Free MeOH
@® Associated MeOH 9
£¢
4
//63
e O A o
//// 0 // ./.’
£ -~ [
sl ~
- e
~ -~
@ /‘,/
O "
//

0.01

0.1
Mixing Time (s)

Anomalous diffusion can be expressed
can be expressed through the power
law.

(z)=2D,A"

o = 1, normal diffusion
o < 1, sub-diffusive
o ~ 0.7 2D fractal

Disappears with increasing temperature
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<z?> (um?)

<z?> (um?)

ATMPP

TMAC PPC,

IEC =1.48

1000 -

100 A

1000 -

100

IEC=2.13

1000 -

100 H

1000 -

100

IEC =227

1000 -

100

Diffusion Analysis of Individual Species

Extract <z?> from multiple
different A delays in PFG NMR

Evaluate possibility of anomalous
diffusion (a = 1).

Most  systems show normal
diffusion. As expected in these
membranes.

Associated water environment
reveal fractal diffusion at lower
hydration/temperatures.

Activation energies (E,) higher for
associated species.

10 1 Free H,0 ) ] o
, Free MeOH y Todd M. Alam and Michael R. Hibbs, “Characterization of
001 01 01 ' Heterogeneous Solvent Diffusion Environments in Anion Exchange |
Ay (S) Adsorbed H,0 Aey (8) Membranes”,  Macromolecules, 47,  1073-1084  (2014).
Adsorbed MeOH http://dx.doi.org/10.1021/ma402528v




66 | Diverge.... In the time remaining

HRMAS PFG NMR




Solvent Diffusion in 3D Printed Advanced
d (AM) Materials

Manusfact

Direct-write of Corning SE1700 siloxanes.
Multi-layer (4 to 8 layers).
Variable write and spacing (200 - 400 um).

Different cure protocol.

Diffusion of different penetrants?
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7.7 wt%

Penetrant Diffusion in 3D Printed Silicones

27.7 wt%

= HRMAS  NMR allows |
resolution of penetrant

diffusion.
PDMS = Especially at low swelling
PDMS concentrations (Q).
Octane Static
Octane
A Ju
5 4 s 2 1 o 4 2 5 T 5 4 5 1 1 5 a1 2z 3

46.8 wt%

Dow Corning SE1700

PDMS

= Separation in static PFG NMR
diffusion experiments impacted

directly by degree of PDMS cross-

- MAS Octane J LJL_Jp

'H (ppm) 'H (ppm)




» | Overlap in Diffusion Signal Decay

HRMAS NMR PFG Diffusion

= No need to separate/extract slowly
decaying siloxane signal from mobile
octane penetrant.

Signal

Signal

Octane

Octane +
Dow Corning
SE1700

T
22 [*1e9]

T
20

Gradient (G/cm)

[crem

1




o | Diffusion of Penetrants in Polymers

Linear PDMS Fujita (Free Volume)
1(gctane Reduced Diffusion in PDMS Effective Viscosity 2 _oxp _ B( fs — fp)
2
2500 || & 2056 . D, (O-1) 17+ 1.1,
1.0 - v 50cSt /f
/ V +V
0.8 2000 - //A Q:L:K:(Sip)
. ] j ¢, Vo vy
Q 06 =1
o ‘:; 1500 H
04 - Phillies
1000 { (Stretch Exponential)
02{¥ ® 1cStPDMS
A 20cStPDMS . B = D
Vv 50cSt 5
0.0 500 1 — =exp {—aQ }
1 2 3 4 5 6 7 8910 0.1 1 DO
Q (Volume Swelling Fraction) Polymer Volume Fraction ¢,

e e . Petit (Hydrodynamic)
= Diffusion is dependent on concentration of penetrant!

= Behavior varies with the polymer/penetrant system. D 1
= “Local” effective viscosity can extracted from D/D,. D, l+aQ™"
D=kT /¢

[1] Vrentas, Duba (1977) J. Polym. Sci., 126, 177-186. [2] Phillies, (1989) J. Phys. Chem., 93, 5029-5039.
[3] Petit, Roux, Zhu, MacDonald (1996), Macromolecules, 29, 6031-6036.



Diffusion of 3D Printed Siloxanes

Impact of Silica Filler

1.0

0.8 1

0.6 1
QO
o

0.4 1

Gl ® Linear PDMS

A ® Sylgard (non-filled)
A Dow Corning SE1700
0.0
1 2 3 4 5 6 7 8910

Q (Volume Swelling Fraction)

= Reduction diffusion in filled PDMS is present.
= Differences increase with degree of swelling.




72 . Diffusion of 3D Printed Siloxanes

Impact of Production

(Layers and Cure) Length Scale Probe
1.0 1.6e-9
@ 27.7 wt%
B 36.1wt%
0.8 1 — 1.4e-9 & 46.8 wt%
' ‘» A 13wt%
E .
0.6 - c
2
a £ 10e9 | W m =
04 | o (Lp ~ 32 pm)
| e o o © o
O 8.0e-10 |
[72]
0.2 1 - @ 3D PDMS - 8 layer £
. A 3D PDMS -5 layer 3
6.0e-10 -
o B 3D PDMS -6 layer (cure) A A A A A
——— Linear PDMS 50 cSt 4
00 T T T T
0 20 40 60 80 100 4.0e-10 . . . . .
Octane Wi% 0 100 200 300 400 500

Diffusion Delay A (ms)

= No impact on number of direct-write layers on overall diffusion.
= No restricted diffusion on 10-50 um length scale (homogeneous diffusion).
= Diffusion is not the answer to the residual stress effects (....layer gradient....)



» Penetrant Mixtures in Swollen Siloxanes

"H HRMAS NMR

PDMS

Cyclo Hexane
bOctane
Q=14
A

HRMAS

Different penetrants are unresolved
under static conditions.

Well resolved under HRMAS allowing
individual diffusion constants to be
measures.

Also reveals differential PDMS
species in swollen material.
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D/Dg

Diffusion for Penetrant Mixtures

1.0

0.8 1

0.6 -

0.4 -

0.2 1

0.0

Mixed Penetrant

(0.53)

¢ (0.66)
(0.60)

® Octane
® Octane/Cyclohexane

2 3 4 5 6 7 8 910
Q (Swelling Fraction)

Diffusion of penetrants not strongly
impact by solvent fraction
[octane/(octane+cyclohexane).

Diffusion well described by simple
free volume description.

Need to investigate non-ideal
solvent mixtures to identify
preferential surface interactions.




Resolution in Nanoporous Membrane Polymer Composites

9:1 Octane:PDMS on Al Oxide Membrane ) __ 200 nm d‘e{m_‘?f?_r )

Static

|
6 4 2 0 -2 -4 ppm
Octane
PDMS = Example of surface interactions and
D/D, =0.18 HRMAS confinement impacting diffusion.
I I | 1 T = Adsorption into Al oxide membrane
6 4 2 0 -2 -4 ppm reduces diffusion of octane by a
Octane factor 5.
= Not a simple free volume effect!
PDMS
D/D, = 0.96 Pure Liquid
[ ' [ ' I I I | I
6 4 2 0 -2 -4 ppmM



1 HRMAS NMR Diffusometry in Materials

® “Identification of Multiple Diffusion Rates in Mixed Solvent
Anion Exchange Membranes Using High Resolution MAS NMR”,
ACS Macro Letters, 1, 910-914 (2012).

® “Characterization of Heterogeneous Solvent Diffusion
Environments in Anion Exchange Membranes”, Macromolecules,
47, 1073-1084 (2014)

Swollen

ON(CHs)s OH | Static \
6 5 4 3

HRMAS NMR

Free

¢ . Associated
Swollen J‘l MeOH

4 kHz MAS Free Associated

6 5 4 3
'H Chemical Shift (ppm)

\
\

® “Characterization of Free, Restricted and Entrapped Water

Environments in Poly(N-Isopropyl Acrylamide) Hydrogels via 'H
HRMAS PFG NMR Spectroscopy”, J. Polymer Science: Polymer
Physics, 52 1521-1527 (2014).

1.2e-8

Soluble
1.0e-8 e o
e
U i
8.0e94 % 1
'IVII
“c 6.0e-9 Water
E Insoluble
(=) -
40e9d P
PNIPPAAM . f'e. o.
ey .,
20e9 . ﬂ!'a W
2 0
0.0 . . ‘e L
T T T T
300 305 310 315 320

Temperature (K)

® “The Effect of Curvature on the Dynamic and Diffusional
Properties of Phospholipids on Silica Materials using HRMAS
NMR”, In Preparation

porPc 5
Spherical Bead Discocyte a1 Echinocyte 1
A ;
3 R > N J,A' A > A k
Wy . K N AJGI e A — . =

“Measuring In-Pore Diffusion of Carbonate Solvent Mixtures in
Nanoporous Carbon”, Chem. Phys. Lett, 658, 51-57(2016).

o

'H (ppm)

H (ppm)

'H (ppm)




Diffusion in Nanoporous Membrane

71 Polymer Composites (20 nm)

Reduced Diffusion in Aluminum Oxide Membranes

1.2
éf _ V;urf é/surf + Vreeé/free
avg
10 (Vvurf +Vree)
Reduction due to polymer free volume
0.8 1 Reduction (PDMS) due to surface induced friction
QO
~ 06 T
a A4 W
cl . t of th S \l{ Reduction due to surface induced friction
- ea an 1Impact o e
conf:r):ement P near the = BRI PR
0.2 1 ‘/‘7 Perata tiSlraten's
surface. SRAASER
0.0

= Ratio of surface friction
reduction similar for

PDMS and Octane. Wt % Loading

—@— Octane in Octane/PDMS/AI Oxide

. : Octane on Octane/PDMS
* Not resolvable in static —@— PDMS in Octane/PDMS/AI Oxide

PFG experiment. —— PDMS in Octane/PDMS

0 20 40 60 80 100




78 | Grotthuss Mechanism

Grotthuss Mechanism

Proton_Zundel.gif




Ab Initio Calculations L]

Water Adsorption Energies & Hydrogen Bonding Types

N
AE = E(Clutser+nH,0)— E (Cluster) - > E°" (H,0)
DFT 6-311** =
R A=3 A=5
A=2 D Iad el
#* 1YY 2.

3 2
9 .
Hydrogen Bond (HB) (HB) Hydronium Solvated
(HB) Contact lon Pair (CIP)

(CIP)

For small clusters very limited structural impact!

T. M. Alam “Ab Initio Study of Sulfonic Acid Micro-Hydration in Sulfonated Diels Alder Poly(Phenylene) Polymers”, J. Phys. Chem. C (2018) Submitted




Large Water/Acid Clusters

(from MD Simulations)

Small Water Cluster Large Water Cluster

matic sulfonic retained

L 2
@ & . "
VJO » 2 %
Lof ep. S
J 2,00 .0
R T
L oo B9
"J ‘J. 9
9
SA=1, A =3 (repeat unit) olvmer
# SA = 8 (cluster) ik far OM ~alriilafinne) SA =4, ) =10 (repeat unit)
17 H,0, 8 H,0* s AR AT O AUt LI I # SA =11 (cluster)
Gyration = 7.6 Angstroms 42 H,0, 11 H;0*

Gyration = 7.7 Angstroms

Adsorption energies determined for each individual H,0/H;0*

AETE = AELY + (O = VAR ()+ L AR (i)
=1 i=1
Ads
AE™O (j)= E(ClusterlinH3O+}) - E(Cluster[(n —1)H3O+(j)}) —E” (H3O+ )

T. M. Alam “Ab Initio Study of Sulfonic Acid Micro-Hydration in Sulfonated Diels Alder Poly(Phenylene) Polymers”, J. Phys. Chem. C (2018) Submitted

AE (i) = E Cluster[mH,0]) - E  Cluster [ (m —1)H,0(i) |) - E* (H,0)



Adsorption Energies u

81

Large Water/Acid Clusters from MD Simulations

Small Cluster

6 3.0 6
A) HO B) C) HO R HB)
5 25 5 -18.5 kcal/mol
3 CIP H,O* (1 HB)
£ ] -39.2 kcal/mol
3 4 CIP 2.0 4
® H.O* - - H,0 (1 HB)
0 9 % % 3 ’ § 15 § 3 1 -9.4 kcal/mol
3 © H,0* (2 SA+ 1 HB) o
- ] S 2 . 2
J‘ 9 (]
1 <
@ / 1
?J
0+ 0

-200-180-160-140-120-100 -80 -40 -20 O -200 -180 -160 -140 -120 -100 -40 -20 0
Adsorption Energy (kcal/mol) Adsorption Energy (kcal/mol) Adsorption Energy (kcal/mol)

Large Cluster

14 3
H,0 "
D) 2 E) F) H,0 (15A)
12 12 KLU SR) -17.0 kcal/mol
? H,0" (solvated CIP) B Neai A
‘ g 10 10
) -1 2
J‘f E
y ¢ ;
§ H,0*(2SA +1HB)
© 6 — 6
o’ g 1
o 4 HO* 4
3
‘ 2 2
0 0 o .
-200-180-160-140-120-100 -80 -40 -20 O -200 -180 -160 -140 -120 -100 40 .20 0
Adosrption Energy (kcal/mol) Adosrption Energy (kcal/mol) Adosrption Energy (kcal/mol)

Todd M. Alam, “Computational Study of Microhydration in Sulfonated Diels-Alder Poly(phenylene) Polymers”, J. Phys. Chem. A,
122, 3927-3938 (2018). DOI: 10.1021/acs.jpca.8b01354

Increasing hydration allows formation of solvate CIP - large adsorption energy.
Inter-chain coordination of H,0/H;0* important!
This driving force counteracted by chain energetics maximizing all HB interactions.




.| 'H Magic Angle Spinning (MAS) NMR

H,0 + SO H +SO,H ,0 +SO.H
A = H,0/50,
4// L =93 A=8.9
A =14.0
y A=8.9 | o | | X = 8.1
K x=6.5 A=4.6 =27
Aromatic
A=2.6 #.../ \ =21 J - =17
18 16 14 12 10 8 6 4 2 0 2 18 16 14 12 10 8 6 4 2 0 2 18 16 14 12 10 8 & 4 2 0 2
'H (ppm) 'H (ppm) 'H (ppm)
J’"t“ 0\ Ky
I Ay ‘ %4 Only 3 'H environments (aromatic, H,0, SO;H).
y f‘\/\\ x// vl’ 4‘!
<\ j» — = H,0+505H in rapid exchange (single resonance)
\ e o,
\ >3 : : . : o
‘\\ <\ = 'H NMR chemical shift reflects relative concentration of SO; coordination.
/ /- N N
= P
! = Can chemical shift be related to “average” hydrogen bond strength?
= Similar information from IR?




Chemical Shift Hydrogen Bond Stength Correlations L

5(1H) = a+bexp[—cqf]
i n o Chemical Shift - Hydrogen Bond Correlations Experimental
r H” b 25 1
P PR O-=="H===-0 ® Combined all IEC
O O nha
\\S/ g | X Ow-H.Oy Py 10 - 6% “—q,=-0.3
—— Predicted E + =
/N T2 Epen e 3
......... ioti o
q 0 5(r1 r2) Wtaer Cluster Prediction E 9
£ &
X 2 5 8
.o © €
TN o
rl ,H H S 7
/, I
H,O 6 - Decreasing q = -0.45
qq = 0.5(r-15) Average Hydrogen ¢
0 : — (H0), , . Bond Strength
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0 2 4 6 8 10 12 14 16
q, = 0.5(r, - r,)/Angstroms i
o q’ = Abinitio 'H chemical shift calculations for all SDAPP (H,0) clusters (n =1 to 6).
S
(‘ 3’3‘ . = Correlations follow definition of Limbach and company.
J
o : : . . :
; ; el n=6 = Experimental is a dynamic average over all H environments, but provides a measure of the
& 2. changing hydrogen bond strengths with hydration.

= Reduction in hydrogen bond strength - increase in Grotthuss mechanism (proton defect).

H.-H. Limbach, P. M. Tolstoy, N. Perez-Hernandez, J. Guo, I. G. Shenderovich, G. S. Denisov, “OHO Hydrogen Bond Geometries and NMR Chemical Shifts: From
Equilibrium Structures to Geometric H/D Isotope Effects, with Application for Water, Protonated Water and Compressed Ice”, Israel J. Chem., 49, 199-216 (2009).



.| Activation Energies

. ATMPP o TMAC,PPG, Sample (IEC) E, (kJ/Mol)
' EC=148 | IEC=2.13 F-H,0 |A-H,0 |F-MeOH | A-MeOH
- IN MeOH 26.0 - 27.0 -
5 ATMPP (1.48) 200 ) [283 EX
= 3 ATMPP (1.79) 29.7 24.5 26.2 29.4
ATMPP (2.35) 26.7 28.7 27.0 29.2
TMAC¢PCCq (2.13) 37.6 O 38.6 30.6
TMACsPCCs (2.27) - 1232 o dfﬂ)
-193,16 3.20 3.24 3.28 3.32 3.36 3.40 -1:16 3.20 3.24 3.28 332 3.36 3.40 TMACGPCC6 (2.60) é
IEC=1.79 IEC =227
é:: 20 \c\\
£ ) \i\l\.\.\ . . . .
: 2 = Results similar to Nafion and Nafion
composites.
:193.16 320 324 328 3.:::EC j.326353_4o -_13.16 320 324 328 3,::;C j3266034o = NO d.irect Comparison because .ind.iv.idual
water environments not investigated.
E \\'\\

1000/Temperature (K-') 1000/Temperature (K-')



1 NMR Spin Diffusion Analysis

SDAPP (IEC = 2.4 meq/g) 7
1.09 = 2.5 (dried) } i * %
2 0.8
n
c {
9
< 0.64
8 —— MD simulation
N 944 IEC = 2.17 meg/g, 1=3
5 0.4 i ( meaq/g )
= ] ¢ SDAPP polymer
Z 0.2 % (IEC = 2.4 meq/g, 1=2.5)
00 T T T v T v T v T
0 4 8 12 16 20 24
1/2 12
t., (ms™)
Proportion to e
P Very structure/model specific
Interface Surface
Area Density & Volume Fraction

M, ( \/7 (pHA¢A + PusPs ] VD, Dy - O(\/rz)
M (2, _>OO) Viotai o Jr @495 P \/ D, +pHB\/D73 N

Spin Diffusion Constants

d — 2‘9¢B Vt;al



13C MAS NMR - Looking for Dynamics...

3C NMR Chemical Shielding Anisotropy (CSA)

Local motions will reduce CSA
Line shape specific to motion

180 160 140 120 100 80 60 40 20 O

2 kHz MAS

T T T T T
180 160 140 120 100 80 60 40 20 O

4 kHz MAS

T T T T
180 160 140 120 100 80 60 40 20 0
3C ppm

L

FcDA

P R

D-230 + EPON 828
1

D-230 OCH,

D-230 CH,

MDA + EPON 828

MDA

FcDA + EPON 828

FcDA + EPON 828
(post cure)

7T ~ Tt & ~©t T - 0 -0 ~ T - T - 1T
180 160 140 120 100 80 60 40 20

13C ppm




Solution 3C NMR Reveals Multiple Conformers g

, a
Z NH, 2
solvent H,N i r "
4-7 1
T ’ L 25°C
J 3
w wany WWWMWMM

90 80 70 60 50 40 30 20 ppm 90 80 70 60 50 40 30 20

! e
WMMW MW._J__ |

90 80 70 60 50 40 30 20 pm 90 80 70 60 50 40 30 20 ‘




"H NMR - DQ NMR During Cure

EPON 828 + 2,2’-dimethyl-4,4’-methylenebis(cyclohexylamine) |

@® 50°C Cure
® 75°CCure

150

200

® 50°C cure
® 75°C Cure (aT, a=2.3)

Cure Kinetics Followed by Segmental Topology
1.0 1
2 08
= 0.8 ‘
2 @
= ©
Slower Cooperative Modes < 06 &
2 ms-s (=] [
T S R 5 ®
- \\ Network 8 - °
Low MW . ® 7
High MW . p o
R Increasing DQ signal, S, > 0 § ®
Topological Constraints Z 02 e
©
410 min ( 0.0
300 mi 0 .
146 min 1.0 1
96 min 2 08 -
(7]
66 min 2
{ £
46 min g 0.6 1
\ o
34 min _g
= 041
5 min — _‘ No signal S, ~ 0 £
Isotropic Dynamics Z 02
T T T T T T T
300 200 100 0 -100 -200 -300
DQ 'H (ppm) 0.0 .
Martin-Gallego, M.; Gonzalez-Jiménez, A.; Verdejo, R.; Lopez-Manchado, M. A.; Valentin, J. L., Epoxy resin 0 50

curing reaction studied by proton multiple-quantum NMR. Journal of Polymer Science Part B: Polymer Physics

2015, 53 (18), 1324-1332.

100 150

Reaction Time (Minutes)

200




'H NMR - DQ NMR Fully Cure =

EPON 828 + MDA

1.6e+10

® LM Intensity

DQ Excitation Reconversio Detection
1.4e+10 ® DQ Intensity

1.2e+10 -

4 52 w2 1.0e+10

Acquisition 8.0e+9

z -filter

Raw DQ Data

6.0e+9 -

Signal Intensity

4.0e+9

[ ]
[ ]
I 2.0e+9 P... |
DQ o ©
1, pg 0.0 —*88e0 o | |

I,y +1,,—Bexp |:—22'DQ /Tz] 0 200 400 600 800 1000 1200
t__(us)
pQ

ILog = D,, 4

o
»

Normalized
DQ Data

nDQ Intensity
o
w

o
)

=4
N

D
Sb — res

Static

nDQ Intensity

50 100 150 200

Toq (H8)

o
o
o




1
DQ "H NMR )

Extraction of Effective Dipolar Coupling

MDA o6 FcDA (post cure)
°TB)

o
o

A)

o
18]

o
»

o
(N}

nDQ Intensity

@ Experimental 208 °C
Fit Egn. (3) and (4)
—— Fit Eqgn. (2) and (4)

o
—a

@® Experimental 175 °C
Fit Eqn. (3)

— FitEqn. (2) —— Fit Eqgn. (2)
0.0 T T v - v 0.0 T v x
0 10 20 30 40 50 60 0 100 200 300 400
Tog (1S) Toq (1S)
Gaussian Buildup Gaussian-Distributed Buildup

1 2 ) 1 %5;% ]
]nDQ (Dres)z— I—exp —gDreSTDQ InDQ(Dres,O'D):5 1-exp B E—— [1+§O'érég}

2 1+ 3 O'IZJTIZJQ

Lo (D2, D2, £)= fLpo (DD)+(1= ) 1,5 (D)




DQ 'H NMR Distribution of D

Fredholm Integral Equation R —

u.

.

g

g (TDQ ) B _‘:o K |:Dres »Tpo :|f (Dres )dDres
Kernel

K| D,sTpp |

s cPDMS-400
o TPDMS-c040

A-] function fit

norm. intensity £

S R R TR TH
Gaussian Buildup Kernal DQ evolution time ¢,/ ms
l')l T T T T T
LoslD )=l 1—expd—aD._ ¢ N — ePDME-100] |
nDQ res o) 5 res © DQ | '. — r P DMS-c040) 1
; 20k | l 1
[ :
";: 15 F , l -.'
Sup | ;
“Abragam-like” (A-1) Kernel S /:l .
1 L5 0 Z u |- — A A
I (r D )=— 1—ex —(O 378D 7 ) x c0s[0.583]D,,. L
nDQ \ *DQ > res 2 p : res © DQ : res © DO residual dipolar couplings I2_/2n / kHaz

Chassé, W.; Valentin, J. L.; Genesky, G. D.; Cohen, C.; Saalwéachter, K., Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of
elastomers. The Journal of Chemical Physics 2011, 134 (4), 044907.




