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2 Simulation Needs for Advanced Manufacturing
Many processing methods result in materials with non-traditional microstructures, significant defect
populations, and residual stresses.

Laser
welding

Additive manufacturing
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3 Making PSPP linkages at microscale and above

- Thermal-fluid simulation
- Heat & mass transfer

-.0.--

1Relevant Physics for AdditiveManufacturing Processing 

're'

•
Constitutive Models; Materia

Property  Definitions

•

- Direct Numerical Simulation (DNS)
- Finite Element analysis (FE)

o • e ec anica
Performance

- Crystal plasticity
- Viscoplasticity



4 Outline

Laser welding

Additive manufacturing

• Thermal Spray

• Enabling technologies & methods



Microstructure prediction for laser welding
5 John Mitchell

Heat affected zone (HAZ)

Pool
o Spline-based weld pool shapes allow rapid simulation of 3D

weld microstructures.
o Solid-state grain coarsening in heat-affected zone is also

simulated.
o Pulsed welding can be simulated.

Top surface Root surface

0.5 mm

0.5 mm



Micro-CT based models of laser welds for determination of failure
6 I Kyle Karlson,Alyssa Skulborstad, Maher Salloum

Specimen S24 Specimen S25

• • 4 ; edifa.,111I

Nonlinear solid mechanics models generated from
micro-computed tomography (mCT) scans were used
to evaluate primary drivers for observed laser weld

structural variability.

A new laser weld material model parameter set was
developed to evaluate laser failure using novel full

field calibration techniques. Results show geometric
variability (e.g. porosity, weld root geometry) is the

primary driver for global structural variability
observed among laser welds in tension.
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The upper images show simulation results calculated using models
generated from CT scans of actual laser welds and the lower plot shows
the strong agreement between simulation result predictions (lines) and

the experimental load displacement curves (dots)
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Thermofluid powder bed simulations
8 i Mario Martinez & Daniel Moser

Highly detailed level-set
simulations with extensive
physics.

Molten metal Et gas flow

Vapor recoil pressure

Very expensive to run

CD-FEM mesh, mapped to a
cubic mesh

0.75 pm mesh size



9 Powder bed results
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Example Simulated Pillar10 Daniel Moser & Fadi Abdeljawad

• 2.8 x 2.8 x 5.5 mm domain
• Process parameters calibrated for 3D Systems ProX DMP 200

machine
• Layer thickness = 30 pm
• Hatch spacing 50 pm
• Scan rate = 1400 mm/s
• Laser power = 129 W
• Scan strategy = +/-90 alternating

• Includes powder phase with 0.01 of solid conductivity
• Simulation domain boundaries fixed at 300K
• 5 pm grid
• 21.8 m of scan path simulated
• 157 layers
• Critical undercooling 5K



Microstructure evolution is quite sensitive to thermal parameters
11 Daniel Moser & Fadi Abdeljawad

Experiment Absorbed laser power

All simulations performed with nucleation densities of 8e13



12 1
Using synthetic AM microstructures in SVE crystal plasticity simulations
Hojun Lim & Judy Brown

  Microstructure generations (SPPARKS)
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Predicting macroscopic residual stress with "lumped laser" model
13 Kyle Johnson
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• Uses larger laser spot to reduce simulation time but still capture spatial
dependence of thermal gradients.
• Laser radius to layer height ratio and total inter-layer cooling time held
constant from actual conditions (-3mm laser diameter, 0.84 mm layer height).
• Bammann-Chiesa-Johnson (BCJ) material model used for response.

Predicted Axial Residual Stress

Model North
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Mechanical simulations with

14 porosity -3rd Sandia Fracture
Challenge
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1 6 Thermal spray process and example microstructures

Coatings are formed by the successive impact of molten
particles.

Resulting microstructures are stochastic and include pores,
unmelted particles, cracks and anisotropic structures.

Grain sizes often less than 1 p.m.

Wiederkehr and Mül(er, JTST 2015
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17 I Rules-based thermal spray microstructure model

Thermal Spray Microstructures

Preliminary Simulation Results

500x500x500 lattice
Particle diameters varied from 10-50 voxels
Unmelted particles are 2.5 % of incident
Particles had a "flattening ratio" of 4 (melted particle
diameters are 4x larger than incident particles)

_
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18 Thermal spray parameter study

Thermal spray model performance has been evaluated
for variation in particle/splat spreading ratio, Sr.

Porosity decreases with increasing spreading ratio
before leveling off around 5%. Increased spreading ratio
also impacts in-process surface roughness. Larger Sr
result in lower surface roughness and final total
porosity.
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Predicting plastic anisotropy using microstructure measurements
20 Hojun Lim

,
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Fig 1: Measured and computational microstructures in various directions.
Here, colors represent the orientations in 19 direction.

• XRD and EBSD data are used to generate equivalent 3D
microstructures, i.e. texture and grain morphology.

• Computational microstructure is then used to predict
anisotropic mechanical behaviors of Al7079. Predicted
anisotropic behavior agrees well with measured values.
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Fig 2: Measured and predicted stress-strain responses of polycrystalline Al7079.
Here, mechanical response along R direction is fitted and Z direction is predicted.

• These results support validity of using crystal plasticity models informed from EBSD to understand the anisotropy of
polycrystalline metals. The current approach enables characterization of plastic anisotropy without extensive mechanical tests.
Furthermore, microstructure informed simulations provide a more physically-based approach that enables investigation of
microstructural effects and variability to target optimum microstructures and properties.



21 SPPARKS framework for mesoscale microstructure simulation
Potts/Weld
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22 1
Matching part-length scales with STITCH
John Mitchell

Laser welding across a large domain is simulated using a series of smaller
overlapping sub-volumes.
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23
Applications of SCULPT technology
Steve Owen, Hojun Lim, Fadi Abdeljawad, Judith Brown

Laser Engineered Net Shaping (LENS®),
Additively manufactured 304L SS
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Free license for government work a commercial/academi
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Ahmadi et al., 2014
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24 Conclusions & Comments

Computational Materials methods are evolving to address

heterogeneities introduced by advanced manufacturing

processes.

Progress is ongoing to incorporate the effects of polycrystalline

microstructure, residual stresses, and porosity into continuum

material models.

Additional work is needed to understand multi-phase materials,

grain-scale residual stress, and dislocation densities.
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26 Direct Numerical Simulation on large-scale additive microstructures
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Conformal FE Mesh

20 voxels/MCS

Synthetic AM builds

• 4 scan velocities.
• 2 concentric circular scan paths per layer.
• Idealized molten pool
• Significant microstructure variation w.r.t.

scan velocities and w.r.t. wall thickness.

Stress response in
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, Constructing interface-conformal polycrystal FE mesh
27 Fadi Abdeljawad, Hojun Lim, Steve Owen

Grain Growth Simulation

Cubit 'Sculpt'

Realistic 3D microstructure
Conformal hex mesh at GB

Volume fractions representing Resolve grain interfaces and
percent of grains for each cell project nodes to surfaces

v, = 0.73 v, = 0.41 v, = 0.43

v, = 0.27 V, = 0.59 v, = 0.57

v, = 0.00 v, = 0.55 v„ = 0.38

V = 1.00 v, = 0.45 V, = 0.62

v„ = 0.00 v, = 0.79 v, = 1.00

v, = 1.00 v, = 0.21 v, = 0.00

Polycrystalline FE mesh

Insert layer of hex elements
at interfaces

Perform smoothing and pillowing
to improve the mesh quality.

1
1

1
Lim et al., MSMSE (2016)



28 Top view of build
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Absorbed laser power
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