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Process Systems Engineering: Computer Aided Decision Making

mwin f(z) Objective Function

s.t. c¢(z)=0 Equality Constraints
dr <d(z) < dv Inequality Constraints
ol <z < zV Variable Bounds

Mathematical programming (i.e. Optimization)
Problem types classified according to:
- Linearity/Nonlinearity of objective and constraints
- Continuous/Discrete/Mixed variables
LP, QP, NLP, MILP, MINLP

Useful for much more than... “optimization”

Solve relevant science and engineering problems using advanced modeling,

mathematical programming (optimization), and high-performance computing




Landscape of Desktop Scientific Computing
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Landscape of Desktop Scientific Computing
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Landscape of Desktop Scientific Computing
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Tick Early 2006: Presler

Tock Late 2006: Merom

Tick Late 2007: Penryn
Tock Late 2008: Nehalem

Tick Early 2010: Westmere

Intel Tick-Tock
architecture
development

model
2 designs at
Tock Early 2011: Sandy Bridge

I
each feature size
Process Early 2012: Ivy Bridge

22 nm Archltecture |\/|Id 2013: Haswell

Optimization Mid 2014: Haswell refresh

TICk Late 2014: Broadwell

Tock Mid 2015: Skylake
Early 2017: Kaby Lake

No more free lunch..
- Vo hardware
- V2 algorithms

Late 2017: Coffee Lake



EPA, Sandia FERC, Sandia U. Florida, Hopkins P2SAC, MKOPSC

Water Security Powergrid Infectious SEVCHWASIRICINS
Optimization Disease Spread Design

s~

High-level modeling languages and open-source software
(Pyomo, IPOPT, WST, WNTR, CHAMA, EGRET)

Optimization algorithms
(NLP, MINLP, SP),
Numerical analysis,
Problem formulation

Scientific computing,
parallel computing,
software development

» ) Algorithms




Protecting Drinking Water Infrastructure

Water distribution systems

Large networks of junctions
and pipes

Vulnerable to chemical and
biological contamination



Early Warning and Response System

Fixed set of sensors
= \What technology?

= Where will they be placed?
How many?
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Early Warning and Response System

Fixed set of sensors
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Real-time response
= \Where is the contaminant?

= \Where is the source”?
= \What is the best action?
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Early Warning and Response System

Fixed set of sensors

= \What technology?

'&kfjﬁgg‘& = Where will they be placed?
‘, } fatd How many?
J j x ":’f;’.} ‘.

\.7-:‘ :&{ # A"

”7

~

Real-time response
= \Where is the contaminant?

= \Where is the source”?
= \What is the best action?
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Early Warning and Response System

Vulnerability assessment
= Millions of WQ simulations

Detection hardware
=  Chemistry/Signal analysis

Mitigation System Design

Huge uncertainty space

(contamination location, hydraulics, rxns)

Optimal Real-time response

Very large-scale models (10,000s nodes)

Real-time performance required




Our work in Water Security

Santiago-Rodriguez, J., Bynum, M., Hart, D., Laird, C.D., Klise, K.A., Haxton, T., “Optimal sampling locations to reduce uncertainty in
contamination extent in water distribution systems”, (Under EPA pre-publication review)

Seth, A., Hackebiel, G.A., Klise, K.A., Haxton, T., Murray, R., and Laird, C.D., "A Stochastic Programming Formulation for Disinfectant
Booster Station Placement in Water Distribution Systems", submitted.

Seth, Arpan, et al. "Testing Contamination Source Identification Methods for Water Distribution Networks." Journal of Water
Resources Planning and Management 142.4 (2016): 04016001.

Mann, A.V., Hackebeil, G., Laird, C.D., "Explicit Water Quality Model Generation and Rapid Multi-Scenario Simulation", Journal of
Water Resources Planning and Management, Volume 14, May 2014, Pages 666-677.

Mann, A.V., McKenna, S.A., Hart, W.E., and Laird, C.D., "Real-Time Inversion in Large-Scale Water Networks Using Discrete
Measurements", Computers & Chemical Engineering, Volume 37, February 2012, Pages 143-151.

Berry, J., Hart W., Laird, C.D., and Uber, J., "A Morphing Technique to Disguise Water Networks", Proceedings of, EWRI World
Environmental and Water Resources Congress 2007, May, 2007.

Laird, C.D., Biegler, L.T. and van Bloemen Waanders, B.G., "Real-Time, large scale optimization of water network systems using a
subdomain approach”, In: L.T. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloemen Waanders, Eds., SIAM Series in
Computational Science and Engineering #3, SIAM, 2007, Real-Time PDE-Constrained Optimization, Pages 291-308.

Laird, C.D., Biegler, L.T. and van Bloemen Waanders, B.G., "Mixed-integer approach for obtaining unique solutions in source inversion
of water networks", A.S.C.E. Journal of Water Resources Planning and Management, Volume 132, June 2006, Pages 242-251.

Laird, C.D., Biegler, L.T., van Bloemen Waanders, B.G. and Bartlett, R., "Contamination source determination for water networks",
A.S.C.E. Journal of Water Resources Planning and Management, Volume 131, March 2005, Pages 125-134



Optimal Real-time Sampling Approach

Given a contamination event

= Determine the best estimate of extent
of contamination plume (probabilistic)

Account for uncertainty in
= Contamination source location/time
= Poorly characterized hydraulics
= Reaction dynamics

Computational approach
= Pre-compute contamination scenarios

= Propagate scenario probability to
contamination probability

= Bayesian updates to scenario
probability based on sample
measurements

= Optimization approach to determine
the best sampling locations
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Quickly Shape Scenario Probability Distribution
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Quickly Shape Scenario Probability Distribution
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Quickly Shape Scenario Probability Distribution
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Optimization formulation

max E
T

seS
S.t.

PSS Maximize expected value of mismatch
5 probability across all scenarios
miss match Probability that scenario s

P =1- Ps VseS mismatches on at least one

PmatCh H a Vse S Probability that scenario s

matches all measurements
neN
Maximum number of sample
> 2 < Smax
neN
Variable: which nodes will be
ITn € {0, 1} VneN sampled
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Optimization formulation

max E PsmISS
k6 5
seS

s.b. PIUSS — 1 _ pmatch v, g

_ pmatch . ey e g

neN

Z Tn < Smax

neN
z, € {0,1} VneN
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Optimization formulation

max } :Pgmss
seS

s.t. PSS — 1 _ pmatch

VseS
_ puatch . Her—g5e g
neN
P, = z r,In(as,) VseS
neN
PématCh = exp (Ps) VseS§
Z Ln S Smax
neN
v, € {0,1} vV neN
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Optimization formulation

max ZPgniSS
se€S
st pmiss _ ¢ _ pmatch
e S S

1.0

0.8

A, 04}

0.2

0.0

P;natCh > eXp(Ps)

-10

Vse S

VneN
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Reduction in Uncertainty of Contaminant Plume

800 |-

Number of Nodes

200

Cycle
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Summary: Protecting Water Distribution Systems

Water distribution systems are vulnerable to chemical or biological
contamination (accidental or intentional)

Significant research into optimal design of mitigation systems

Sensor / Booster placement (TEVA-SPOT, WST)

Current research:
= Confidence intervals as function of # of scenarios
= Optimization considering sensor failure probabilities

Optimal real-time response more challenging

Large models embedded into optimization

Real-time performance is required

Source inversion solved for large networks (continuous only)
Optimal sampling solved for large networks (hydraulics input)

Remarkably few sampling cycles (and teams) required for inversion and
plume extent

Flushing and recovery open problem (hydraulics part of solution)

20



Installed sampling and source inversion system

8 00

/ wadinesti x
_J

€& - C A [Y 127.0.0.1:5984/dinesti/gui/gui.html

“M“*: Distribution Network Security §

8 006 ’ & Water Applications Interface * | a @ Apache]

&« C | [} localhost:5984/dinesti/gui/gui.htm

(603.8630, 501.2902)

0M500QD3
OMS00QEG
OM500QHA

Source
Inversion
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Optimal gas detector placement in process facilities

THE 100 LARGEST LOSSES
1972-201

AMAGE LOSSES IN THE HYDROCARBON INDUSTRY
22 EDITION

” MARSH & MCLENNAN
COMPANIES

Marsh (2012). The 100 largestlosses 1972-2011.
London, United Kingdom.

Less than 50% of all known gas
released are detected (HSE 1997
& 2003)

Design of gas detector systems:
rule-of-thumb and semi-
quantitative methods

Optimal gas detector placement

= 100’s of leak dispersion
simulations (location, weather)

= Solve for sensor placement that
minimizes expected impact

= Handles voting / sensor failure
= Qutperforms existing guidelines

=  Most used (volumetric coverage)
was worse than random

28



Publications in Gas Detector Placement

Water
Community

Gas
Detection
for
Process
Industries

Operations

Research
Literature

-

\_ and Voting )

Sensor placement in municipal water
networks (Berry etal, 2005)

Designing contamination warning systems
for municipal water networks using
imperfect sensors (Berry etal, 2009)

SP-U& SP-UV )
(Benavides et al, 2014a)

Imperfect detector
considerations: Unavailability

4 y : : )
SP-UV Validation
(Benavides et al, 2014b)
SP-UV vs. Current detector

formulation to unforeseen
scenarios

.}

J

4 N
(Benavides et al, 2016)

Non-uniform

v
4 ) ( ) 4
SP
(Leggetal, 2012b) SP-C SP-CVaR
nitial formiation (Leggetal, 2012a) (Leggetal, 2012c)
. . / Coverage constraints and Improves the
é the resilience of the tail-behavior of the

distributions of detection
times

. J

4 )
(J. Liuetal,
MKOPSC Symposium)

}\

R unavailability Non-uniform unavailability
placement practices in the (1 backup level only) (no limitation)
industry ) )
A A A .
Backup Covering models and facility unavailability models for the LSCP and MCLP.
Reliable PMP (RPM P) (Snyder & Daskin, 2005)
\_ o
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Estimating drivers of infectious disease dynamics
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Can we use this data to better understand the fundamental drivers of
infectious disease dynamics? (transmission vector? Seasonal mixing?)

How can we use this data for improved intervention in emerging
childhood respiratory illness?
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Estimating Seasonality in Input Drivers
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Estimating Seasonality in Input Drivers
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Estimating Seasonality in Input Drivers
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Estimating Seasonal Drivers in Childhood Infectious Diseases

Childhood Infectious Diseases (e.g., measles, chickenpox)

Seasonality induced by school holidays

Pre-vaccination era: Everyone contracts the disease

Still a significant problem in developing countries (easy ID)

Estimation challenges

Long time horizons (20-30 years)

Historical aggregated monthly or biweekly

No susceptible information

Severe under reporting of cases (1/2 for UK, 1/100 for Thailand)
Missing data (1974, 1979), substantial noise, time-varying reporting
fraction

Data used:

England & Wales: 60 and 900 city datasets (1944-1963)
US: New York City, Baltimore, TYCO Data
Thailand: 76 Provinces (1972-1998)
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Estimating Seasonal Drivers in Childhood Infectious Disease

Compartment models based on status w.r.t. the disease (SIR)
Formulated as discrete-time or continuous time dynamic optimization problem
Estimate unknown seasonal transmission parameter from case data

Time-varying, restricted to

min ﬁ(EM(t)a EQ) be yearly periodic

s.t.
% 3(y(t))fgt) B) ot — vIt)
Cflf _ —B(y(}t\)f)(f)(t)f (t) “en(t) + B(?)
4Q _ Bw®)S®I)
dt N (1) "
Ry =k (Q(tk) — Q(tr—1)) +eq, VE €T
0 < I(t),S(t) < N(t)

) <
0<B(y()), Q)
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Efficient Optimization of Discretized Systems

t
. J T, At Optimize-then-discretize
LR (3;7 Y u) Variational Approach (Pontryagin, 1962)
to

s.t. F(z,z,y,u)=0

a:(to) — Xy Discretize-then-optimize
Apply NLP Solver

Simultaneous Approach

Sequential Approach

» Discretize controls only « Discretize entire problem

« Small NLP Problem (states and controls - OCFE)

« Sensitivities or adjoints for
derivatives

« Converge simulation only once
with optimization

« Converge simulation in each * Very large-scale NLP
iteration « Structured NLP
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Estimated Seasonal Patterns for NYC

60

401

B

201

| 3AN | FEB [[MAR | APR [ MAY | JUN [ JUL | AUG | SEP | OCT | NOV | DEC |

(B)

5 10 15 20 25
Time (biweeks)

0.9¢

[ 3AN [ FEB [MAR | APR | MAY [ JuN [ JuL [ AuG | sep | ocT [ Nov [ DEC |

(A)

0.8

5 10 15 20 2b
Time (biweeks)

30 [ 3AN | FEB'[ MAR | APR [MAY [ JUN | J0L [ AUG | SEP | ocT [ NOV [ DEC |

201

10}

(B) T

5 10 15 20 25
Time (biweeks)

Seasonality in transmission parameter

Seasonality in mixing coefficient

Seasonality in birth rate only

37



Our work in infectious disease modeling

Zhen, T., Cummings, D., and Laird, C.D., "A Nonlinear Optimization Approach to the Estimation of
Spatial Transmission Parameters in Infectious Disease Spread", in progress

Liu, J., Cummings, D., and Laird, C.D., “MINLP Approaches for Parameter Estimation in Deterministic
and Stochastic Disease Models”, in progress.

Word, D.P., Young, J.K., Cummings, D.A.T., lamsirithaworn, S., and Laird, C.D., "Interior-Point Methods
for Estimating Seasonal Parameters in Discrete-Time Infectious Disease Models", PLOS One, Volume 8-
10, October 2013, Pages 1-13.

Word, D.P., Cummings, D.A.T., Burke, D.S., lamsirithaworn, S., and Laird, C.D., "A Nonlinear
Programming Approach for Estimation of Transmission Parameters in Childhood Infectious Disease
Using a Continuous Time Model", Journal of the Royal Society Interface, Volume 9, August 2012, Pages
1983-1997

Word, D.P., Abbott Ill, G.H., Cummings, D, and Laird, C.D., "Estimating Seasonal Drivers in Childhood
Infectious Diseases with Continuous Time and Discrete-Time Models", Proceedings of, American
Control Conference (ACC) 2010, Baltimore, MD, June 30 - July 2, 2010, Pages 5137-5142.

Word, D.P., Young, J., Cummings, D., and Laird, C.D., "Estimation of seasonal transmission parameters
in childhood infectious disease using a stochastic continuous time model", In: S. Pierucci and G. Buzi
Ferraris, Eds., Computer Aided Chemical Engineering, Volume 28, Elsevier, 2010, 20th European
Symposium on Computer Aided Process Engineering, Pages 229-234.
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Summary: Estimation of Infectious Disease Models

Pioneering work estimating seasonal transmission with TSIR model
=  Grenfell, Bjornstadt (2000): Two-stage linear estimation

Recent approachs:

=  Cauchemez & Ferguson (2008): Sampling-based approach (single-city: 20 hrs)
=  Hooker et. al (2010): Sequential dyn. Optimization (single-city: over 2 hours)

Nonlinear Programming Approaches Provide Fast, Reliable Estimation
= Discrete-time / Continuous time models
= Very fast, (20 hours —> under 30 seconds) Changes the science

Results show strong correlation with school-term holidays over different

environments
Bangkok: New York City:
Time Horizon: 1980-1987 Time Horizon: 1947-1962
Reporting Fraction: 3.2 % Reporting Fraction: 10.7 %
- Formulat'ion (DP-B-LYT) 1 ‘ —)(— Formulaﬁon (DP—B-L‘T)

-®- Formulation (SP-B-LT) ¥y :

-®- Formulation (SP-B-LT)

FR R ) S

Transmission Parameter Pattern
Transmission Parameter Pattern

w M :
% 5 15 20 25 % 5 10 25

Time (Biweeks) Time (Biweeks) 39




Parallel Computing Architectures

UL AL B Alternative architectures (e.g,
DEF:] Data . : .
\ Graphics Processing Unit)

Single SISD SIMD Affordable -- 1000’s cores
Instruction Specialized compilers and

| tools (CUDA, OpenCL)
Multiple MISD MIMD Several complexities and
Instruction limitations

Desktop Multi-core (MIMD) HPC Cluster (MIMD)

Affordable hardware Distributed computing (networked)
Standard tools (threads/openMP) Standard tools (MPI)

Fast communication (no network) Scalable: 100-1000s of cores

Low # of cores (relatively) Bottlenecks: communication
Bottleneck: Memory access/# CPU




Nonlinear Interior-Point Methods

Original NLP

min f(x)
s.t.  c(x) =

Barrier NLP

min f(@) —p- ) In(w;)

X

s.t. c¢(z)=0

KNITRO (Byrd, Nocedal, Hribar, Waltz)
LOQO (Benson, Vanderbei, Shanno)
IPOPT (Wachter, Laird, Biegler)

T

Done Original NLLP. Converged?

Reduce Barrier

e Barrier NLP. Converged?
Parameter

Calculate Derivatives,
Residuals, etc.

Calculate Step
Direction

Perform Line Search

41



Nonlinear Interior-Point Methods

Original NLP
R e

s.t. c¢(x) =0

Original NLP Converged?

x>0
Barrier NLP .
Barrier NP Converged? Reduce Barrier
[ Parameter
min - f(z) —p- ) in(z)
)

Residuals, etc.
KNITRO (Byrd, Nocedal, Hribar, Waltz) Ca'g_‘i'agteiosr’]tep
LOQO (Benson, Vanderbei, Shanno) =
IPOPT (Wachter, Laird, Biegler)
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Nonlinear Primal-Dual Interior-Point Step

é h é )
S f(z) mgn f(x) — uz In(as;)
s.t ¢(z)=0 g '
2> 0 s.t  c(x)=0

Vf(z)+ —2=0 _ i Vf(z)+Ve(@) A —pXle=0
(z) =0 ) “=pA e e(z) =0

Xz = ue) (z > 0)

0,2>0

Wi+ Xk + 6wl  Ve(zg) } [ Az ] _ { Vi (zk) + Ve(zg) T Ax
Ve(zg)T —6.1 AN c(zr)

(Wi=V2,L, = Zp X; ")

~
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Nonlinear Interior-Point Methods

Structure in the optimization
problem induces structure in the

linear algebra
Done Original NLLP. Converged?

Parallelize all scale-dependent

operations

- Vector and mgtrlx operations N T Reduce Barrier
- Model evaluation Parameter
Compared with problem-level N

decomposition, implementation Residuals, etc.

is time consuming

Calculate Step
Direction

Retain convergence properties

of serial algorithm
Perform Line Search
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Exploiting Problem Structure

Optimization Under

Uncertainty -

= block structure because of -
coupled scenarios -

4
= common structure of many é‘ -
)

applications

Kang, J., Word, D.P.,, and Laird, C.D., "An interior-point method for efficient solution of block-structured NLP problems
using an implicit Schur-complement decomposition”, Computers and Chemical Engineering, 2014.

' . " ' t_f
Dynamic Optimization min/ s 1)
= plock structure because of v Jtg
finite element discretization s.t. F(z,z,y,u) =0
:E(to) =X

(z,y,u)’ < (z,y,u) < (z,y,u)"

Word, D.P., Kang, J., Akesson, J., and Laird, C.D., "Efficient Parallel Solution of Large-Scale Nonlinear Dynamic
Optimization Problems", Computational Optimization and Applications, 2014.
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Dl — Z ATK 1A,
qeQ

(2



D, — Z AgK;lAq AY =Ty — Z AgK;qu
9€Q 9€Q

Factor K
Blocks
2: let S = [—0.!]
3: let rgp = 1y

Form Schur-
Complement

Solve Schur-Complement

Solve Remaining
Vars




D, — Z AZKq_lAq AY =Ty — Z AZKq_l'rq
9€@Q 9€Q

Factor K
Blocks
2: let S = [—0.!]
3: let roo = 7y

Form Schur-
Complement

Solve Schur-Complement

Solve Remaining
Vars




Explicit Schur-Complement Decomposition

LDPE Process

=  Parameter estimation problem [Zavala et al. 2008]
Water network optimization

= Spatial decomposition of network [Zhu, 2011]
Operation of air separation plants

=  Dynamic load change under uncertainty

= Optimal operation with uncertain demand and energy pricing
[Zhu, Legg, Laird, 2011a,b]

N-1 Contingency constrained ACOPF (current work)

Explicit SC does not scale well to large coupling variables

= Excellent when number of coupling variables is small (~100 variables)
= Time to form and factor the Schur-complement becomes bottleneck

Implicit-PCG-SC for problems with significant coupling
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Implicit PCG Approach for Strongly Coupled Systems

Solve Schur-complement implicitly, iteratively using PCG
- Never Explicitly Form Schur-complement
- Requires Only 1 Backsolve of K-block per PCG lteration

D, — Z ATK 1Ay | ay
qeEQ

Preconditioner for the Schur-complement system

- Automatic preconditioning [J.L. Morales, and J. Nocedal, 2000]
- L-BFGS update using CG steps from the previous IP iteration

- In practice, significantly fewer than n PCG iterations

Schur-complement must be positive semi-definite
- closely tied to the inertia condition
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National

Sandia
Parallel Performance: Optimization Under Uncertainty L [

32 state variables, 35 algebraic variables
Discretize model (OCFE)
Uncertainty in mole fraction of the feed stream

|

\g

96 scenarios, 32 processors

\I/—'l___)—' [Benallou, Seborg, and Mellichamp (1986)]

T T — FS-S  ESC-S ESC-P PCGSC-S PCGSC-P

time(s) time(s) time(s)  time(s) time(s)
1 1430550 150 10.3 79.1 2.6 17.9 0.6
2 2861100 300 - - 10.8 - 1.1
3 4291650 450 - - 32.1 - 2.4
4 5722200 600 - - 70.3 - 3.2
5 7152750 750 - - 90.5 - 4.3
6 8583300 900 - - 160.5 - 5.3
7 10013850 1050 - - 218.0 - 6.3
8 11444400 1200 - - 286.6 - 8.1

Kang, J., Word, D.P., and Laird, C.D., "An Interior-point Method for Efficient Solution of Block-structured NLP Problems
using an Implicit Schur-complement Decomposition", Computers and Chemical Engineering, vol 71, Dec. 2014, pp 563—57380



Parallel Performance: Strong Scaling

512

384

256

Speedup (2 processors as base)

X Speedup
-- Ideal Speedup

256 512
Number of processors

768

1024
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Summary and Conclusions

Tremendous opportunities for rigorous mathematical
programming approaches in science and engineering

Emerging science and engineering problems continue to
push the capabillities of scientific computing tools

No more free lunch...
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Summary and Conclusions

Applications, Architectures, Algorithms, Adoption
= Need to understand the applications, assumptions
= Structure: Uncertainty, discretization, spatial/network, data

= Need to understand architectures
= E.g. Big-lron clusters, shared-memory multi-core, GPU
= Not all parallel architectures created equal

= Need for new algorithms
= Tailored decomposition based on interior-point methods
= Problem level decomposition strategies
= Strategies are problem and architecture dependent

= Need to make tools available for other researchers
= Open-source parallel algorithms
= Pyomo: Optimization Modeling in Python

83



Acknowledgements

Students/Researchers

Arpan Seth

Yankai Cao

Alberto Benavides-Serrano
Jianfeng Liu

Michael Bynum

Todd Zhen

Santiago Rodriguez

Shu (Richard) Xu

Former Students/Postdocs

Yu Zhu

Ahmed Rabie
George Abbott Il
Chen Wang

Sean Legg

Daniel Word
Angelica Wong
Xiaorui Yu
Gabriel Hackebeil
Jia Kang

Sandia
"1 National

Laboratories

Collaborators

W. Hart, C. Silva-Monroy, J.P. Watson,

K. Klise, J. Siirola, Anya Castillo - Sandia
D. Cummings - JHSPH

T. Haxton, R. Murray - EPA

Johan Akesson, Lund University

Sam Mannan, MKOPSC

Support

National Science Foundation Cyber-Enabled
Discovery and Innovation (CDI)-Type |l
National Science Foundation (CAREER Grant
CBET# 0955205).

Sandia National Laboratories (DOE ASCR,
EPA, PUB Singapore, LDRD)

MKOPSC, P2SAC, FDA

CHEMICAL

W\ ENGINEERING




