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Process Systems Engineering: Computer Aided Decision Making

min f(x)x
s.t. c(x) = 0 .

dL < d(x) < du. 
x-L < x < xri  

Objective Function

Equality Constraints

Inequality Constraints

Variable Bounds

Mathematical programming (i.e. Optimization)
Problem types classified according to:

- Linearity/Nonlinearity of objective and constraints

- Continuous/Discrete/Mixed variables

LP, QP, NLP, MILP, MINLP

Useful for much more than... "optimization"

Solve relevant science and engineering problems using advanced modeling,
mathematical programming (optimization), and high-performance computing
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Intel Tick-Tock
architecture
development

model

2 cosigns at
cach foatur  siz

\o morc too lunch...
- 1/2 harcwarc
- 1/2 algohthms

65 nm

45 nm

32 nm

22 nm

14 nm

Tick

Tock

Early 2006: Presler

Late 2006: Merom

Tick Late 2007: Penryn

Tock Late 2008: Nehalem

Tick Early 2010: Westmere

Tock Early 2011: Sandy Bridge

Process

Architecture

Optimization

Tick

Early 2012: Ivy Bridge

Mid 2013: Haswell

Mid 2014: Haswell refresh

Late 2014: Broadwell

Tock Mid 2015: Skylake

Early 2017: Kaby Lake

Late 2017: Coffee Lake
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Applications

(I- Adoption

Architectures

Algorithms

EPA, Sandia

Water Security

FERC, Sandia U. Florida, Hopkins P2SAC, MKOPSC

THE 100 LARGEST LOSSES
1972-2011

High-level modeling Ianguages and open-source software
(Pyomo, IPOPT, WST, WNTR, CHAMA, EGRET)

Optimization algorithms
(NLP, MINLP, SP),
Numerical analysis,
Problem formulation

Scientific computing,
parallel computing,

software development
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Protecting Drinking Water Infrastructure

Water distribution systems
■ Large networks of junctions

and pipes

■ Vulnerable to chemical and
biological contamination

8



Early Warning and Response System

Fixed set of sensors
■ What technology?

■ Where will they be placed?
How many?
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Early Warning and Response System

Vulnerability assessment
■ Millions of WQ simulations

Detection hardware
■ Chemistry/Signal analysis

Mitigation System Design

Huge uncertainty space
(contamination location, hydraulics, rxns)

Optimal  Real-time response

Very large-scale models (10,000s nodes)

Real-time performance required

15



Our work in Water Security

Santiago-Rodriguez, J., Bynum, M., Hart, D., Laird, C.D., Klise, K.A., Haxton, T., "Optimal sampling locations to reduce uncertainty in

contamination extent in water distribution systems", (Under EPA pre-publication review)

Seth, A., Hackebiel, G.A., Klise, K.A., Haxton, T., Murray, R., and Laird, C.D., "A Stochastic Programming Formulation for Disinfectant

Booster Station Placement in Water Distribution Systems", submitted.

Seth, Arpan, et al. "Testing Contamination Source Identification Methods for Water Distribution Networks." Journal of Water

Resources Planning and Management 142.4 (2016): 04016001.

Mann, A.V., Hackebeil, G., Laird, C.D., "Explicit Water Quality Model Generation and Rapid Multi-Scenario Simulation", Journal of

Water Resources Planning and Management, Volume 14, May 2014, Pages 666-677.

Mann, A.V., McKenna, S.A., Hart, W.E., and Laird, C.D., "Real-Time Inversion in Large-Scale Water Networks Using Discrete

Measurements", Computers & Chemical Engineering, Volume 37, February 2012, Pages 143-151.

Berry, J., Hart W., Laird, C.D., and Uber, J., "A Morphing Technique to Disguise Water Networks", Proceedings of, EWRI World

Environmental and Water Resources Congress 2007, May, 2007.

Laird, C.D., Biegler, L.T. and van Bloemen Waanders, B.G., "Real-Time, large scale optimization of water network systems using a

subdomain approach", In: L.T. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloemen Waanders, Eds., SIAM Series in
Computational Science and Engineering #3, SIAM, 2007, Real-Time PDE-Constrained Optimization, Pages 291-308.

Laird, C.D., Biegler, L.T. and van Bloemen Waanders, B.G., "Mixed-integer approach for obtaining unique solutions in source inversion
of water networks", A.S.C.E. Journal of Water Resources Planning and Management, Volume 132, June 2006, Pages 242-251.

Laird, C.D., Biegler, L.T., van Bloemen Waanders, B.G. and Bartlett, R., "Contamination source determination for water networks",
A.S.C.E. Journal of Water Resources Planning and Management, Volume 131, March 2005, Pages 125-134
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Optimal Real-time Sampling Approach

Given a contamination event
• Determine the best estimate of extent

of contamination plume (probabilistic)

Account for uncertainty in
• Contamination source location/time

• Poorly characterized hydraulics

• Reaction dynamics

Computational approach
• Pre-compute contamination scenarios

• Propagate scenario probability to
contamination probability

• Bayesian updates to scenario
probability based on sample
measurements

• Optimization approach to determine
the best sampling locations
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Quickly Shape Scenario Probability Distribution
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Optimization formulation

max
x

sES

s.t.

pilliss

plillss

pmatch 1-1 axn
s,n VSES

nEN

Maximize expected value of mismatch
probability across all scenarios

1 pmatch VsES

E xn < Smax
nEN

xn E {0,1} V nEN

Probability that scenario s
mismatches on at least one

Probability that scenario s
matches all measurements

Maximum number of sample
locations

Variable: which nodes will be
sampled
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Optimization formulation

max
x

pillisss 

sES

s.t. Pesmiss = 1 psmatch VsES

pmatch
sln VSES

nEN

E xn < Smax
nEN

xn E {0, 1} V nEN



max

Optimization formulation

pmiss

sES

s.t. Prniss = 1 ppatch VsES

prnatch
s,n VSES

nEN

Ps = Yd xn ln (as,n) VsES
nEN

ppatch exp (15,) VsES

yd xn < Smax
nEN

xn E {01 1} V nEN
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Optimization formulation

max pmiss
s

sES

s.t. plillSs = 1 pmatch

s,n

nEN

15s = xniln \CEs,n,
nEN

prnatch > exp (A)

xn Smax
nEN

xn E {07 1}

1.0

0.8

0.6

CC

OA

0.2

0.0

-10

VsES

V nEN

frtch > expo%)

,•••••°°-
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Reduction in Uncertainty of Contaminant Plume
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Summary: Protecting Water Distribution Systems

Water distribution systems are vulnerable to chemical or biological
contamination (accidental or intentional)

Significant research into optimal design of mitigation systems

■ Sensor / Booster placement (TEVA-SPOT, WST)

■ Current research:

Confidence intervals as function of # of scenarios

Optimization considering sensor failure probabilities

Optimal real-time response more challenging

■ Large models embedded into optimization

■ Real-time performance is required

■ Source inversion solved for large networks (continuous only)

■ Optimal sampling solved for large networks (hydraulics input)

■ Remarkably few sampling cycles (and teams) required for inversion and
plume extent

■ Flushing and recovery open problem (hydraulics part of solution)

26



Installed sampling and source inversion system

iLZ dinesti

c 127.0.0.1:5984/dinesti/gui/gui.html

di nesti : Distribution Network Security
Manage Network Files

Contaminant Simulation

Impact Study

Inversion Training

Past Events

Configure

Source
Inversion

(-) .z Water Applications interface n ',,,a2Arrache
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(603.8630, 501.2902)

Location Probability

OR150717

ORMYOTIQ

ORN201PP

ORN601P4

ORM901PIC

ORNETTPC

ORQOOTEA

ORQ6OTAF

ORQNOTB7

ORQUO030

ORRDO1MB

ORRFOTU9

ORRZOTCU

OR510-13A

000903026

0.00403026

0.06403026

000403026

0.00403026

600403026

0.00403026

0.00903026

0.00903026

0.00403026

0.00403026

0.00403026

0.00403026

0.00403026

0M3XOCUY
OM4XOQGU
0M4Z0C2FM
OM 500QD9
OM 500QEC
OM 500QHA
OM 52 OQH F
OM 54 OQC U
OM 5E0C1H9
OM 5H 00JD 

27



Optimal gas detector placement in process facilities

THE 100 LARGEST LOSSES
1972-2011
LARGE PROPERTY DAMAGE LOSSES IN THE HYDROCARBON INDUSTRY

22'4 EDITION

••• •ICVACIE 1 0010141..“.1.4t 11N1,1•N

Marsh (2012). The 100 largest losses 1972-2011.
London, United Kingdom.

Less than 50% of all known gas
released are detected (HSE 1997
& 2003)

Design of gas detector systems:
rule-of-thumb and semi-
quantitative methods

Optimal gas detector placement

• 100's of leak dispersion
simulations (location, weather)

• Solve for sensor placement that
minimizes expected impact

• Handles voting / sensor failure

• Outperforms existing guidelines

• Most used (volumetric coverage)
was worse than random
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Publications in Gas Detector Placement

Water
Community

Gas
Detection

for
Process
lndustries

Operations
Research
Literature

c

Sensor placement in municipal water
networks (Berry et al, 2005)

SP
(Legg et al, 2012b)

Initial formulation

c .N
SP-U & SP-UV
(Benavides et al, 2014a)

Imperfect detector
considerations: Unavailability

and Voting .1

c SP-UV Validation
(Benavides et al, 2014b)

SP-UV vs. Current detector
placement practices in the

industry

c

*
I
.i

c

 }

Designing contamination warning systems
for municipal water networks using
imperfect sensors (Berry et al, 2009)

SP-C
(Legg et al, 2012a)

Coverage constraints and
the resilience of the

formulation to unforeseen
scenarios

 }
c

(Benavides et al, 2016)

Non-uniform
unavailability

(1 backup level only)
 I

SP-CVaR
(Legg et al., 2012c)

Improves the
tail-behavior of the

distributions of detection
times

c
(J. Liu et al,

MKOPSC Symposium)

Non-uniform unavailability
(no limitation)

\

 .i

Backup Covering models and facility unavailability models for the LSCP and MCLP.

Reliable PMP (RPMP) (Snyder & Daskin, 2005)
 .J
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Estimating drivers of infectious disease dynamics
Re
po
rt
ed
 C
as
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Can we use this data to better understand the fundamental drivers of
infectious disease dynamics? (transmission vector? Seasonal mixing?)

How can we use this data for improved intervention in emerging
childhood respiratory illness?
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Estimating Seasonality in Input Drivers
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Estimating Seasonality in Input Drivers
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Estimating Seasonal Drivers in Childhood Infectious Diseases

Childhood Infectious Diseases (e.g., measles, chickenpox)

• Seasonality induced by school holidays

• Pre-vaccination era: Everyone contracts the disease

■ Still a significant problem in developing countries (easy ID)

Estimation challenges

■ Long time horizons (20-30 years)

■ Historical aggregated monthly or biweekly

■ No susceptible information

■ Severe under reporting of cases (1/2 for UK, 1/100 for Thailand)

■ Missing data (1974, 1979), substantial noise, time-varying reporting
fraction

Data used:

■ England & Wales: 60 and 900 city datasets (1944-1963)

■ US: New York City, Baltimore, TYCO Data

■ Thailand: 76 Provinces (1972-1998)
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Estimating Seasonal Drivers in Childhood Infectious Disease

Compartment models based on status w.r.t. the disease (SIR)

Formulated as discrete-time or continuous time dynamic optimization problem

Estimate unknown seasonal transmission parameter from case data

min £(6m(t), 6Q)

s.t.

Time-varying, restricted to
be yearly periodic

d I 0 (y (t))  S (t) I (t) 
e m (t) — 7 I (t)

dt N (t)

dS  —0(y(t))S(t)I(t) 
6 m (t) + B (t)

dt N (t)

dC2 NO)) S (t) I (t) 
E m (t)

dt N (t)

-Wkr = 77k (Q(4) - C2(4-1)) + 6Qk Vk E T
0 < 1(0, S(t) < N (t)
0 < 13 (y (t)) , Q (t)
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Efficient Optimization of Discretized Systems

tf
min f L(x,y,u) dt
u to
s.t. F(,x,y,u) = 0

x(to) = xo

Sequential Approach

Discretize controls only

• Small NLP Problem

• Sensitivities or adjoints for
derivatives

• Converge simulation in each
iteration

Optimize-then-discretize
Variational Approach (Pontryagin, 1962)

Discretize-then-optimize
Apply NLP Solver

• • • Simultaneous Approach

• Discretize entire problem

(states and controls - OCFE)

• Converge simulation only once
with optimization

• Very large-scale NLP

• Structured NLP

36



Estimated Seasonal Patterns for NYC
60
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Our work in infectious disease modeling

• Zhen, T., Cummings, D., and Laird, C.D., "A Nonlinear Optimization Approach to the Estimation of
Spatial Transmission Parameters in Infectious Disease Spread", in progress

• Liu, J., Cummings, D., and Laird, C.D., "MINLP Approaches for Parameter Estimation in Deterministic

and Stochastic Disease Models", in progress.

• Word, D.P., Young, J.K., Cummings, D.A.T., lamsirithaworn, S., and Laird, C.D., "Interior-Point Methods

for Estimating Seasonal Parameters in Discrete-Time Infectious Disease Models", PLOS One, Volume 8-

10, October 2013, Pages 1-13.

• Word, D.P., Cummings, D.A.T., Burke, D.S., lamsirithaworn, S., and Laird, C.D., "A Nonlinear
Programming Approach for Estimation of Transmission Parameters in Childhood Infectious Disease
Using a Continuous Time Model", Journal of the Royal Society Interface, Volume 9, August 2012, Pages
1983-1997

• Word, D.P., Abbott III, G.H., Cummings, D, and Laird, C.D., "Estimating Seasonal Drivers in Childhood
Infectious Diseases with Continuous Time and Discrete-Time Models", Proceedings of, American
Control Conference (ACC) 2010, Baltimore, MD, June 30 - July 2, 2010, Pages 5137-5142.

• Word, D.P., Young, J., Cummings, D., and Laird, C.D., "Estimation of seasonal transmission parameters

in childhood infectious disease using a stochastic continuous time model", In: S. Pierucci and G. Buzi
Ferraris, Eds., Computer Aided Chemical Engineering, Volume 28, Elsevier, 2010, 20th European

Symposium on Computer Aided Process Engineering, Pages 229-234. 4
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Summary: Estimation of Infectious Disease Models

c
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c
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Pioneering work estimating seasonal transmission with TSIR model
• Grenfell, Bjornstadt (2000): Two-stage linear estimation

Recent approachs:
• Cauchemez & Ferguson (2008): Sampling-based approach (single-city: 20 hrs)

• Hooker et. al (2010): Sequential dyn. Optimization (single-city: over 2 hours)

Nonlinear Programming Approaches Provide Fast, Reliable Estimation
• Discrete-time / Continuous time models

• Very fast, (20 hours —> under 30 seconds) Changes the science

Results show strong correlation with school-term holidays over different
environments

Bangkok:
Time Horizon: 1980-1987
Reporting Fraction: 3.2 %

—X— Formulation (DP-B-LT)
-e- Formulation (SP-B-LT)

New York City:
Time Horizon: 1947-1962
Reporting Fraction: 10.7 %

—X— Formulation (DP-B-LT) I

-0- Formulation (SP-B-LT)

00
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0
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Parallel Computing Architectures

Ell
Single

Instruction

Multiple
Instruction

Single
Data

SISD

MISD

Multiple
Data

SIMD

MIMD

_.•

Alternative architectures (e.g,
Graphics Processing Unit)

• Affordable -- 1000's cores
• Specialized compilers and

tools (CUDA, OpenCL)
• Several complexities and

limitations

Desktop Multi-core (MIMD)

• Affordable hardware
• Standard tools (threads/openMP)
• Fast communication (no network)

• Low # of cores (relatively)
• Bottleneck: Memory access/# CPU

HPC Cluster (MIMD)

• Distributed computing (networked)
• Standard tools (MPI)
• Scalable: 100-1000s of cores

• Bottlenecks: communication
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Nonlinear Interior-Point Methods

Original NLP  

min f(x)
x

s.t. c(x) = 0

x >

Barrier NLP

min f(x) — p, •

s.t. c(x) = 0

l

KNITRO (Byrd, Nocedal, Hribar, Waltz)
LOQO (Benson, Vanderbei, Shanno)
IPOPT (Wachter, Laird, Biegler)

Done Original NLP Converged*

Barrier NLP Converged?

Calculate Derivatives,
Residuals, etc.

Calculate Step
Direction

Perform Line Search

Reduce Barrier
Parameter

41



Nonlinear Interior-Point Methods

Original NLP

min f (x)
x

s.t. c(x) = 0

x > 0

Barrier NLP

min f (x) — p, ln(xi)

s.t. c(x) = 0
i.

KNITRO (Byrd, Nocedal, Hribar, Waltz)
LOQO (Benson, Vanderbei, Shanno)
IPOPT (Wachter, Laird, Biegler)

Done Original NLP Converged?

411Karrier NLP Converged .

Calculate Derivatives,
Residuals, etc.

Calculate Step
Direction

Perform Line Search

Reduce Barrier
Parameter
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Nonlinear Primal-Dual Interior-Point Step
r

min f (x)
x
s.t c(x)=0

x > 0

V f (x) + V - z = 0

c(x) = 0

X z = pe

0 ,z > 0)

z=p,X-1 e

min f (x) iu, E ln(xi)
s

i

s.t c(x) 0

I
I
I

V f (x) + V c(x)T A - p,X-1 e = 0

c(x) = 0

(x > 0)

r --

[ Wk + Z.k + (5,,I Vc(xk) 1 [ Ax 1 = _[VIP,u(xk) +Vc(xk)714 1
[ Vc(xk)T -6,1 i [ AA i c(xk)

(Wk=Vx2xLI Ek = Zidc1)



Nonlinear Interior-Point Methods

Structure in the optimization
problem induces structure in the
linear algebra

Parallelize all scale-dependent
operations
- Vector and matrix operations
- Model evaluation

Compared with problem-level
decomposition, implementation
is time consuming

Retain convergence properties
of serial algorithm

Done Original NLP Converged*

Barrier NLP Converged?

Calculate Derivatives,
Residuals, etc.

Calculate Step
Direction

Perform Line Search

Reduce Barrier
Parameter
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Exploiting Problem Structure

Optimization Under
Uncertainty

• block structure because of
coupled scenarios

▪ common structure of many
applications

Kang, J., Word, D.P., and Laird, C.D., "An interior-point method for efficient solution of block-structured NLP problems
using an implicit Schur-complement decomposition", Computers and Chemical Engineering, 2014.

Dynamic Optimization tf
min f L(x, y , dt

• block structure because of o

finite element discretization s.t. y, = 0

x(to) = x0

(x , y , u)L < (x , y , < (x , y , u)u

■

• •

Word, D.P., Kang, J., Akesson, J., and Laird, C.D., "Efficient Parallel Solution of Large-Scale Nonlinear Dynamic
Optimization Problems", Computational Optimization and Applications, 2014.

45



9-17

Col-

tr

1
tor

1
COI'

1
zor

i
pr

vor

zor

Ior

OH

tH

 = I I

 MI
it

1 
cr

J_
zr

EH

I-H



tor vr

cor

zor

Er

zr

LI lol l'or l

"Mm

±
tor

I
COI"

J_
pr

1
Mr

OH

ix

1 
Er

1
zr

17H

1

J_
ix

ZH

I 



817

por

cor

zor

MP

zr

1
cr

J_
zr ZH

J_
1.r

1 Or

1.H



617

±

i 
pr

±
MP

1
cr

±
MP

±

por

cor

zor

pr

=I 
zr

I7H

J_
zr

i 

i.or

i 

J_
1.r

1.r

I. H



Og

1
tor

1
Mr

±
pr

1

1
cr

1_ _
zr

1
1
I•Or

1

If

tor

Ea'

?Or

OH

vr

I7H

i.or

Er

zr

ler

I. H



1.9

1
tor

1
COP

1
ZOP

vor

cor

pr

zor

OH

cr

zr

± 
pr

1
cr

1
zr

i.or

17H

CH

ZH

ix

1.H



9

tor pr

cor

zor

cr

tor

i 
pr

1
MP

I
MP

OH

17H

1
cr

zr

I

CH

J_

zr

1

ix

ix
I 

1-H



Eg

tor pr

cor cr

1 1 1

i 
pr

±
MP

±
MP

OH

zr 1 I

17H

1
cr

±
I•or

CH

J_
zr

I
I, r

1.r
1 

1-H



17g

tor pr

cor

Vor
1
Mr

1
Mr

L 

J_
pr

OH

cr

1
l-or

i 
cr CH

zor

J_
zr

I,or ix
I 

1-H



99

tor pr

cor

±
Vor

±
Mr

±
Mr

L 

J_
pr

OH

1 
cr

zor

I I

cr

±
l-or

1

zr

J_
zr

I,or I. r
1 

1-H



99

tor pr

±
Vor

±
Ea'

cor

OH

Er

±

J_
pr

i 
Er

zor

I I

1

zr

i
zr

1.r
1 

1-H



H1

J1

J1
T

H2

J2

JC1
T

J2
T

JC2
T

k

JC1

JC2

H3

J3

i 

H4

HC

J4

JC3

JC4

J3
T

J4
T

JC3
T

JC4
T

57



H1

J1

J1
T

JC1

H2

J2

J2
T

JC2

H3

JC1
T

JC2
T

J3

i 

J3
T

H4

J4

HC

JC3

JC4

J4
T

JC3
T

JC4
T

58



H1

J1

J1
T

JC1

H2

J2

J2
T

JC2

H3

J3

J3
T

JC3

H4
J4
T

J4 JC4

JC1
T

JC2
T

JC3
T

JC4
T

HC

70



K1

A1T A2T

K3

A3T

K4

A4T

 1

 I

A4

HC

71



K1

K3

K4

1 

[Dv - E AgT ic lAq
qEQ

 1

 1

A4

s

72



Dy - E ATK-1Aq qqEQ

1: for each i in 1, •••Ine

1.1: factor Ki

2: let S = [—Jc-r]
3: let r8c = rs

A = r -y
qEQ

ATK - 1 rq q q

4: for each i in 1, ...,ne

4.1: for each column j in AT

4.1.1: solve the system Iciq,j> = [AT]<i>

4.1.2: let Sf<j> = S<i> + Aiq,j>

4.2: solve the system Kipi = ri

4.3: let rsc = rse — Aipi

Form Schu
Complem

6: for each i in 1, ...,ne

6.1: solve KiAvi = ri — ATAv, for Avi



[Dy - E AgTic 1Aq Ay = Ty E AqTKg lrq
qEQ qEQ

-.for each i in 1, '• '1

1.1: factor Ki
Factor K
Blocks

2: let S = [--6,1]
3: let rsc = rs
4: forTach i in 1, ..., ra,

4.1: for each column j in AT

4.1.1: solve the system Kigi> =[AT]<i>

4.1.2: let 5<i> = S<i> + Aiqi -i>

4.2: solve the system Kipi = ri

4.3: let rsc = rsc — Aipi

Form Schur
Complemen

1
5: solve SAvs = r,c for Avs Solve Schur-CompleMITI

6: for cach i in 1, ...,n,

6.1: solve KiAvi = ri — ATAv, for Avi
Solve Remainin
Vars



Explicit Schur-Complement Decomposition

LDPE Process

• Parameter estimation problem [Zavala et al. 2008]

Water network optimization

• Spatial decomposition of network [Zhu, 2011]

Operation of air separation plants

• Dynamic load change under uncertainty

• Optimal operation with uncertain demand and energy pricing
[Zhu, Legg, Laird, 2011a,b]

N-1 Contingency constrained ACOPF (current work)

Explicit SC does not scale well to large coupling variables
• Excellent when number of coupling variables is small (-100 variables)

• Time to form and factor the Schur-complement becomes bottleneck

lmplicit-PCG-SC for problems with significant coupling
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Implicit PCG Approach for Strongly Coupled Systems

Solve Schur-complement implicitly, iteratively using PCG
- Never Explicitly Form Schur-complement
- Requires Only 1 Backsolve of K-block per PCG Iteration

E AT Tz--1 A
j-lq lig j-lq

qEQ

Ay

Preconditioner for the Schur-complement system
- Automatic preconditioning [J.L. Morales, and J. Nocedal, 2000]
- L-BFGS update using CG steps from the previous IP iteration
- In practice, significantly fewer than n PCG iterations

Schur-complement must be positive semi-definite
- closely tied to the inertia condition



Parallel Performance: Optimization Under Uncertainty

Feed

Condenser

A11\191111
Reflux

is
Reboder

„

,

• 32 state variables, 35 algebraic variables

• Discretize model (OCFE)

• Uncertainty in mole fraction of the feed stream

• 96 scenarios, 32 processors

[Benallou, Seborg, and Mellichamp (1986)]

Case  // Vars. # Coupling Vars.
FS-S

time(s)
ESC-S
time(s)

ESC-P
time(s)

PCGSC-S
time(s)

PCGSC-P
time(s)

1 1430550 150 10.3 79.1 2.6 17.9 0.6
2 2861100 300 10.8 1.1
3 4291650 450 32.1 2.4
4 5722200 600 70.3 3.2
5 7152750 750 90.5 4.3
6 8583300 900 160.5 5.3
7 10013850 1050 218.0 6.3
8 11444400 1200 286.6 8.1

Sandia
National
Laboratories

Kang, J., Word, D.P., and Laird, C.D., "An Interior-point Method for Efficient Solution of Block-structured NLP Problems
using an Implicit Schur-complement Decomposition", Computers and Chemical Engineering, vol 71, Dec. 2014, pp 563-57380



Parallel Performance: Strong Scaling
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Summary and Conclusions

Tremendous opportunities for rigorous mathematical
programming approaches in science and engineering

Emerging science and engineering problems continue to
push the capabilities of scientific computing tools

No more free lunch...
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Summary and Conclusions

Applications, Architectures, Algorithms, Adoption
■ Need to understand the applications, assumptions

Structure: Uncertainty, discretization, spatial/network, data

■ Need to understand architectures

E.g. Big-Iron clusters, shared-memory multi-core, GPU

Not all parallel architectures created equal

■ Need for new algorithms

Tailored decomposition based on interior-point methods

Problem level decomposition strategies

Strategies are problem and architecture dependent

■ Need to make tools available for other researchers

Open-source parallel algorithms

Pyomo: Optimization Modeling in Python
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