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Research Group Skills

Modeling of Complex Systems
Rigorous systems modeling (steady-state and transient)

Large-scale, non-traditional, networked systems

Nonlinear and Discrete Mathematical Programming
Large-scale algorithms and problem formulation

Parallel algorithms for structured problems (e.g., uncertainty)

Software and Scientific Computing
Open-source domain-specific tools (WST, WNTR, EGRET)

General modeling and optimization tools (Pyomo, Schur-IPOPT)
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Mathematical Programming

min f(x)
x

< 

s.t. c(x) — 0

/

A 

dL < d(x) < du< 
xL < x < xti  

Objective Function

Equality Constraints

Inequality Constraints

Variable Bounds

Mathematical programming (i.e. Optimization)
Problem types classified according to:

- Linearity/Nonlinearity of objective and constraints

- Continuous/Discrete/Mixed variables

LP, QP, NLP, MILP, MINLP

Useful for much more than... "optimization"
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Convergence of Operations Research and ...

P2SAC, MKOPSC

THE 100 LARGEST LOSSES
1972-2011
LARGE PROPERTY HYDROCARBON INPUsi,

FERC, Sandia

Powergrid
Optimization

EPA, Sandia

Water Security
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The need for improved gas detector placement

THE 100 LARGEST LOSSES
1972-2011
LARGE PROPERTY DAMAGE LOSSES IN THE HYDROCARBON INDUSTRY

22,413 EDITION

RStil P. KNOW LEDGE, SOLUTiON5 WOK DV: n- MARSH&MCLENMAN
COMPANIES

Marsh (2012). The 100 largest losses 1972-2011.
London, United Kingdom.

70% attributed to fires and explosions

BSEE (2012), HSE (2007) and PSA (2012)
data do not indicate a decreasing trend.

Less than 50% of all known releases are
detected by gas detectors (HSE, 1997 &
2003)

Significant uncertainty (leak location,
weather, process conditions, etc.)

Highly complex geometries (difficult
to model)

Design of gas detector systems
currently done with rule-of-thumb,
semi-quantitative methods.

PURDUE

ECNHGE MI NI ECEARLI N G



Optimal Placement of Detectors

•
• 44,
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Optimal Placement of Gas Detectors

• Significant uncertainty in:
• Leak location

• Weather conditions

• Process conditions

• Problem scope:
• Hundreds or thousands of scenarios

• Hundreds or thousands of potential locations

• Several different technologies

• Other challenges:
• Most effective objective metric
• Leak dispersion in complex geometries

• Combinatorial explosion of decisions
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High-fidelity CFD
Facility Location

.i Models

Collaborations

MKOPSC, P2SAC
GexCon

.

Real facility
geometry
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Optimization-based Approach
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• Minimizes the expected
detection time across all events

• Summation of probabilities of
detection of scenario a

• A sensor location can only
claim detection if a sensor
exists in that location

• Constraint limiting the number
of sensors allowed

• Binary variable reflecting
existence of a gas detector

• Probability of 'first to detect'
within the range of [0,1]
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Water
Community

Gas Detector Placement Research
c

Sensor placement in municipal water
networks (Berry et al, 2005)

v

SP
(Legg et al, 2012b)

Initial formulation

What about sensor
failure?

How does this
compare with

practice?

I
*

Designing contamination warning systems
for municipal water networks using
imperfect sensors (Berry et al, 2009)

Are the number
of scenarios
sufficient?

Should we be
concerned with
mean behavior or

tail-behavior?

Non-uniform failure probabilities
(type, location, time)

  [. 

Backup Covering models and facility unavailability models for the LSCP and MCLP.
Research

Reliable PMP (RPMP) (Snyder 81Daskin, 2005)
Literature

Operations
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Water
Community

Gas
Detection

for
Process
lndustries

Gas Detector Placement Research

Sensor placement in municipal water[
networks (Berry et al, 2005)

v
SP

(Legg et al, 2012b)

Initial formulation

 1

SP-U & 
V
SP-UV

(Benavides et al, 2014a)

Imperfect detector
considerations: Unavailability

\ and Voting 1

SP-UV 
V 
Validation

(Benavides et al, 2014b)

SP-UV vs. Current detector
placement practices in the

\. industry _1

[ L 
Research
Operations

7

A

*

Designing contamination warning systems
for municipal water networks using
imperfect sensors (Berry et al, 2009)

SP-C
(Legg et al, 2012a)

Coverage constraints and
the resilience of the

formulation to unforeseen
scenarios

\ 

(Benavides et al, 2016)

Non-uniform
unavailability

(1 backup level only)

A
1

SP-CVaR
(Legg et al., 2012c)

Improves the
tail-behavior of the

distributions of detection
times

N
(J. Liu et al,

MKOPSC Symposium)

Non-uniform unavailability
(no limitation)

A

Backup Covering models and facility unavailability models for the LSCP and MCLP.

Reliable PMP (RPMP) (Snyder & Daskin, 2005)

 1

\

.1
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Optimal Gas Detector Placement

Mathematical optimization is computationally tractable (and
useful) - Several formulations exist with realistic assumptions

Optimization methods based on dispersion studies
outperform common methods for gas detector placement

Methods that use dispersion information outperform those that do not

Methods that use optimization outperform those that do not

The volumetric approach (one of the most common) behaves
the poorly (worse than random) with the data studied

Similar results for all 4 data sets

Similar results when incomplete data used for placement
(75% / 25%)
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How do I best protect the
public and the infrastructure?



Early Warning and Response System

0 Sensor Node
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Early Warning and Response System

0 Sensor Node

* Booster Node
...____G___,__,.--41 .11

Sensor Technology

Monitoring & Mitigation
System Design

Sandia
National
Laboratories

Source/Plume Identification
& Real-time Response
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Distribution System
Models

(Reformulation
Needed)

A Models

Collaborations

US EPA
Sandia Nat. Lab

.

Real (and realistic)
Network

Descriptions



Publications in Water Security

Santiago-Rodriguez, J., Bynum, M., Hart, D., Laird, C.D., Klise, K.A., Haxton, T., "Optimal sampling locations to
reduce uncertainty in contamination extent in water distribution systems", in progress

Seth, A., Hackebiel, G.A., Klise, K.A., Haxton, T., Murray, R., and Laird, C.D., "A Stochastic Programming Formulation
for Disinfectant Booster Station Placement in Water Distribution Systems", submitted.

Seth, Arpan, et al. "Testing Contamination Source Identification Methods for Water Distribution Networks." Journal of
Water Resources Planning and Management 142.4 (2016): 04016001.

Mann, A.V., Hackebeil, G., Laird, C.D., "Explicit Water Quality Model Generation and Rapid Multi-Scenario
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Mann, A.V., McKenna, S.A., Hart, W.E., and Laird, C.D., "Real-Time Inversion in Large-Scale Water Networks Using
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Berry, J., Hart W., Laird, C.D., and Uber, J., "A Morphing Technique to Disguise Water Networks", Proceedings of,
EWRI World Environmental and Water Resources Congress 2007, May, 2007.

Laird, C.D., Biegler, L.T. and van Bloemen Waanders, B.G., "Real-Time, large scale optimization of water network
systems using a subdomain approach", In: L.T. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van
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Constrained Optimization, Pages 291-308.

Laird, C.D., Biegler, L.T. and van Bloemen Waanders, B.G., "Mixed-integer approach for obtaining unique solutions in
source inversion of water networks", A.S.C.E. Journal of Water Resources Planning and Management, Volume 132,
June 2006, Pages 242-251.

Laird, C.D., Biegler, L.T., van Bloemen Waanders, B.G. and Bartlett, R., "Contamination source determination for
water networks", A.S.C.E. Journal of Water Resources Planning and Management, Volume 131, March 2005, Pages
125-134

PURDUE CHEMICAL
ENGINEERING



PURDUE

Publications in Water Security

Santiago-Rodriguez, J., Bynum, M., Hart, D., Laird, C.D., Klise, K.A., Haxton, T., "Optimal sampling locations to
reduce uncertainty in contamination extent in water distribution systems", in progress

Seth, A., Hackebiel, G.A., Klise, K.A., Haxton, T., Murray, R., and Laird, C.D., "A Stochastic Programming Formulation
for Disinfectant Booster Station Placement in Water Distribution Systems", submitted.

Seth, Arpan, et al. "Testing Contamination Source Identification Methods for Water Distribution Networks." Journal of
Water Resources Planning and Management 142.4 (2016): 04016001.

Mann, A.V., Hackebeil, G., Laird, C.D., "Explicit Water Quality Model Generation and Rapid Multi-Scenario
Simulation", Journal of Water Resources Planning and Management, Volume 14, May 2014, Pages 666-677.

Mann, A.V., McKenna, S.A., Hart, W.E., and Laird, C.D., "Real-Time Inversion in Large-Scale Water Networks Using
Discrete Measurements", Computers & Chemical Engineering, Volume 37, February 2012, Pages 143-151.

Berry, J., Hart W., Laird, C.D., and Uber, J., "A Morphing Technique to Disguise Water Networks", Proceedings of,
EWRI World Environmental and Water Resources Congress 2007, May, 2007.

Laird, C.D., Biegler, L.T. and van Bloemen Waanders, B.G., "Real-Time, large scale optimization of water network
systems using a subdomain approach", In: L.T. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van
Bloemen Waanders, Eds., SIAM Series in Computational Science and Engineering #3, SIAM, 2007, Real-Time PDE-
Constrained Optimization, Pages 291-308.

Laird, C.D., Biegler, L.T. and van Bloemen Waanders, B.G., "Mixed-integer approach for obtaining unique solutions in
source inversion of water networks", A.S.C.E. Journal of Water Resources Planning and Management, Volume 132,
June 2006, Pages 242-251.

Laird, C.D., Biegler, L.T., van Bloemen Waanders, B.G. and Bartlett, R., "Contamination source determination for
water networks", A.S.C.E. Journal of Water Resources Planning and Management, Volume 131, March 2005, Pages
125-134

CHEMICAL
ENGINEERING



Optimal Real-time Sampling Approach

Given a contamination event:
What is the uncertainty in the plume?

Where can we take additional
measurements to reduce uncertainty?

Account for uncertainty in:
Contamination location, time, profile

Hydraulics, reaction dynamics

Computational approach:
Pre-compute scenarios (M's)

Bayesian statistics:
- update scenario probabilities

- propagate probability of scenarios to
probability of contamination

- use optimization to find best sampling
locations to update the scenario
probabilities
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Maximization of number of expected scenarios that mismatch

PU 111:11111111(U E \\ CENHGINEMIECEARLI
NG

max
x

s.t.

pmisss

sES

Friss 1 pmatch

psniatch 
> exp(i3s)

Ps — ln(ces,n)
nEN

xn Smax

nEN

xn E 0, 1Vn E N

Vs E S

Vs E S

Vs E S
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Source Inversion Response System

e rZdinesti
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How do we use this data to better understand the
spread of infectious disease?

How would you use this data for improved intervention
in an emerging childhood respiratory pandemic?
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Compartment-
based SIR Models

I Models

Collaborations

Epidemiologists
Hopkins, U. Florida

Thailand MPH

►

Historical case data
different diseases
different locations



Estimating Seasonal Drivers in Childhood Infectious Diseases

• Childhood Infectious Diseases (e.g., Measles, Chickenpox)
- Seasonality Induced by School Holidays
- Pre-Vaccination Era: Everyone Contracts the Disease
- Still a Significant Problem in Developing Countries & Easily Identified

• Estimation Challenges
- Long-time Horizons (20-30 years)
- Data aggregated monthly or biweekly
- No Susceptible Information
- Severe Under-reporting of Cases (1/2 for UK, 1/100 for Thailand)
- Missing (1974, 1979), Substantial Noise, Time-Varying Reporting

• Available Data:
- England & Wales: 60 (900) Cities 1944-1963
- US: New York City, Baltimore, TYCO Data
- Thailand: 76 Provinces 1972-1998
- Library of Congress
/
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Estimating Seasonal Drivers of Infectious Disease
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Estimating Seasonal Drivers of Infectious Disease
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and we can quantify impact of school closure
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Publications

Zhen, T., Cummings, D., and Laird, C.D., "A Nonlinear Optimization Approach to the Estimation of
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Deterministic and Stochastic Disease Models", in progress.

Word, D.P., Young, J.K., Cummings, D.A.T., lamsirithaworn, S., and Laird, C.D., "Interior-Point
Methods for Estimating Seasonal Parameters in Discrete-Time Infectious Disease Models", PLOS
One, Volume 8-10, October 2013, Pages 1-13.

Word, D.P., Cummings, D.A.T., Burke, D.S., lamsirithaworn, S., and Laird, C.D., "A Nonlinear
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Pages 1983-1997

Word, D.P., Abbott III, G.H., Cummings, D, and Laird, C.D., "Estimating Seasonal Drivers in
Childhood Infectious Diseases with Continuous Time and Discrete-Time Models", Proceedings of,
American Control Conference (ACC) 2010, Baltimore, MD, June 30 - July 2, 2010, Pages
5137-5142.

Word, D.P., Young, J., Cummings, D., and Laird, C.D., "Estimation of seasonal transmission
parameters in childhood infectious disease using a stochastic continuous time model", In: S.
Pierucci and G. Buzi Ferraris, Eds., Computer Aided Chemical Engineering, Volume 28, Elsevier,
2010, 20th European Symposium on Computer Aided Process Engineering, Pages 229-234.
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Summary and Conclusions

Mathematical programming provides rigorous, computationally
tractable, solutions to many problems in safety and security

Protection of critical infrastructure

Improved system understanding

Design of mitigation systems

Real-time response

Rapid, dramatic improvements in optimization capabilities
(modeling tools, algorithms)

Increased data and desire for rigorous analysis from many
application areas

Successful convergence in research requires:
Collaboration: Importance, community

Data: Impact

Models: Enabling technology
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