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Research Group Skills

Modeling of Complex Systems
Rigorous systems modeling (steady-state and transient)
Large-scale, non-traditional, networked systems

Nonlinear and Discrete Mathematical Programming
Large-scale algorithms and problem formulation
Parallel algorithms for structured problems (e.g., uncertainty)

Software and Scientific Computing

Open-source domain-specific tools (WST, WNTR, EGRET)
General modeling and optimization tools (Pyomo, Schur-IPOPT)
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Mathematical Programming

mmin f(z) - Objective Function

S.T. c(r) =0 - Equality Constraints
dr < d(x) < dv - Inequality Constraints
2L < T < 2V - Variable Bounds

Mathematical programming (i.e. Optimization)
Problem types classified according to:
- Linearity/Nonlinearity of objective and constraints

- Continuous/Discrete/Mixed variables
LP, QP, NLP, MILP, MINLP

Useful for much more than... “optimization”
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Convergence of Operations Research and ...

P2SAC, MKOPSC FERC, Sandia EPA, Sandia U. Florida, Hopkins

Safety Systems Water Security Infectious
Design Disease Spread

Laes o>
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The need for improved gas detector placement

70% attributed to fires and explosions

THE 100 LARGEST LOSSES

I_'I~~R9GE7FR2(JF_£R2T‘O:;]«>‘.1C)E LOSSES IN THE HYDROCARBON INDUSTRY BS E E (2 0 1 2 )’ H S E (2 OO 7 ) a n d PSA (2 O 1 2 )

2270 EDITION

data do not indicate a decreasing trend.

Less than 50% of all known releases are
detected by gas detectors (HSE, 1997 &
2003)

Significant uncertainty (leak location,
weather, process conditions, etc.)

Highly complex geometries (difficult
to model)

Design of gas detector systems
currently done with rule-of-thumb,
semi-quantitative methods.

Marsh (2012). The 100 largestlosses 1972-2011.
London, United Kingdom.
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Optimal Placement of Detectors




Optimal Placement of Gas Detectors

= Significant uncertainty in:
= Leak location
= Weather conditions
= Process conditions

= Problem scope:
= Hundreds or thousands of scenarios

= Hundreds or thousands of potential locations
= Several different technologies

= QOther challenges:
= Most effective objective metric

= Leak dispersion in complex geometries
= Combinatorial explosion of decisions
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Optimization-based Approach
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® Minimizes the expected
detection time across all events

® Summation of probabilities of
detection of scenario a

® A sensor location can only
claim detection if a sensor
exists in that location

® Constraint limiting the number
of sensors allowed

® Binary variable reflecting
existence of a gas detector

® Probability of ‘first to detect’
within the range of [0,1]
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(Gas Detector Placement Research

(
: .. igni ination I
Water Sensor placement in municipal water Designing Cf)l.ltaml ationwarning sy_stems
Communt networks (B 2005 for municipal water networks using
y N (Berry etal, 2005) imperfect sensors (Berry etal, 2009)

v
SP

(Legg et al, 2012b)
Initial formulation

~N

Gas
Detection
for
Process
Industries

Operations
Research
Literature

Backup Covering models and facility unavailability models for the LSCP and MCLP.
Reliable PMP (RPMP) (snyder & Daskin, 2005)

PURDUE CHEMICAL : -
\ ENGINEERING 12



(Gas Detector Placement Research

(
Water Sensor placement in municipal water Designing Cf)r.ltammatlon warnng Sy.StemS
o networks (g 2005 for municipal water networks using
0 /4 N WIS, (Rarrietal, ) imperfect sensors (Berry etal, 2009)
\ 4
" R ~ ) 4 )
SP
(Legg et al, 2012b) _ _
Initial formulation SP-C SP-CVaR
(Leggetal, 2012a) (Leggetal, 2012c)
G S v J Coverage constraints and Improves the
aS. f SP-U & SP-UV ) the resilience of the tail-behavior of the
Detection . formulation to unforeseen distributions of detection
(Benavides et al, 2014a) R i
for Imperfect detector tmes
Process considerations: Unavailability
" \ i \
Industries and 3’ e / / /
a2 : : ) 4l ) 4 A
SP-UV Validation (Benavides et al, 2016) (J. Liuetal,
(Benavides et al, 2014b) Non-uniform MKOPSC Symposium)
SP-UV vs. Current detector unavailability Non-uniform unavailability
placemer.lt practices in the (1 backup level only) (no limitation)
A—— ——x—— ——x
Operations _ . R h
Bacearch Backup Covering models and facility unavailability models for the LSCP and MCLP.
. Reliable PMP (RPM P) (Snyder & Daskin, 2005)
Literature MY P
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Optimal Gas Detector Placement

Mathematical optimization is computationally tractable (and
useful) - Several formulations exist with realistic assumptions

Optimization methods based on dispersion studies

outperform common methods for gas detector placement
Methods that use dispersion information outperform those that do not
Methods that use optimization outperform those that do not

The volumetric approach (one of the most common) behaves
the poorly (worse than random) with the data studied

Similar results for all 4 data sets

Similar results when incomplete data used for placement
(75% / 25%)
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How do | best protect the
public and the infrastructure?

S /
PURDUE CHEMICAL
> ENGINEERING




Farly Warning and Response System () s,
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Early Warning and Response System () &
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Early Warning and Response System () &5,

Sensor Technology

Monitoring & Mitigation
System Design

Source/Plume Identification
& Real-time Response
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Publications in Water Security

Santiago-Rodriguez, J., Bynum, M., Hart, D., Laird, C.D., Klise, K.A., Haxton, T., “Optimal sampling locations to
reduce uncertainty in contamination extent in water distribution systems”, in progress

Seth, A., Hackebiel, G.A., Klise, K.A., Haxton, T., Murray, R., and Laird, C.D., "A Stochastic Programming Formulation
for Disinfectant Booster Station Placement in Water Distribution Systems", submitted.

Seth, Arpan, et al. "Testing Contamination Source Identification Methods for Water Distribution Networks." Journal of
Water Resources Planning and Management 142.4 (2016): 04016001.

Mann, A.V., Hackebeil, G., Laird, C.D., "Explicit Water Quality Model Generation and Rapid Multi-Scenario
Simulation", Journal of Water Resources Planning and Management, Volume 14, May 2014, Pages 666-677.

Mann, A.V., McKenna, S.A., Hart, W.E., and Laird, C.D., "Real-Time Inversion in Large-Scale Water Networks Using
Discrete Measurements", Computers & Chemical Engineering, Volume 37, February 2012, Pages 143-151.

Berry, J., Hart W., Laird, C.D., and Uber, J., "A Morphing Technique to Disguise Water Networks", Proceedings of,
EWRI World Environmental and Water Resources Congress 2007, May, 2007.

Laird, C.D., Biegler, L.T. and van Bloemen Waanders, B.G., "Real-Time, large scale optimization of water network
systems using a subdomain approach”, In: L.T. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van
Bloemen Waanders, Eds., SIAM Series in Computational Science and Engineering #3, SIAM, 2007, Real-Time PDE-
Constrained Optimization, Pages 291-308.

Laird, C.D., Biegler, L.T. and van Bloemen Waanders, B.G., "Mixed-integer approach for obtaining unique solutions in
source inversion of water networks", A.S.C.E. Journal of Water Resources Planning and Management, Volume 132,
June 2006, Pages 242-251.

Laird, C.D., Biegler, L.T., van Bloemen Waanders, B.G. and Bartlett, R., "Contamination source determination for
water networks", A.S.C.E. Journal of Water Resources Planning and Management, Volume 131, March 2005, Pages
125-134
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Optimal Real-time Sampling Approach

Given a contamination event:
What is the uncertainty in the plume?

Where can we take additional
measurements to reduce uncertainty?

Account for uncertainty in:
Contamination location, time, profile
Hydraulics, reaction dynamics

Computational approach:
Pre-compute scenarios (M’s)

Bayesian statistics:

- update scenario probabilities

- propagate probability of scenarios to
probability of contamination

- use optimization to find best sampling
locations to update the scenario
probabilities
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Maximization of number of expected scenarios that mismatch

max Yy P
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Uncertainty Reduction

800

Number of Nodes

200+

Cycle
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Source Inversion Response System =N
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How do we use this data to better understand the
spread of infectious disease?

How would you use this data for improved intervention
iIn an emerging childhood respiratory pandemic?
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Seasonality in Input Drivers

Reported Cases

Month of Year

Input & Nonlinear Disease | 1
Drivers 39 Spread Dynamics L A \ / \
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Estimating Seasonal Drivers in Childhood Infectious Diseases

» Childhood Infectious Diseases (e.g., Measles, Chickenpox)
- Seasonality Induced by School Holidays
- Pre-Vaccination Era: Everyone Contracts the Disease
- Still a Significant Problem in Developing Countries & Easily Identified

» Estimation Challenges
- Long-time Horizons (20-30 years)
- Data aggregated monthly or biweekly
- No Susceptible Information
- Severe Under-reporting of Cases (1/2 for UK, 1/100 for Thailand)
- Missing (1974, 1979), Substantial Noise, Time-Varying Reporting

e Available Data:
- England & Wales: 60 (900) Cities 1944-1963
- US: New York City, Baltimore, TYCO Data
- Thailand: 76 Provinces 1972-1998
- Library of Congress
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Estimating Seasonal Drivers of Infectious Disease
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Estimated patterns correlate with school holidays
and we can quantify impact of school closure




Estimating Seasonal Drivers of Infectious Disease
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Summary and Gonclusions

Mathematical programming provides rigorous, computationally
tractable, solutions to many problems in safety and security
Protection of critical infrastructure
Improved system understanding
Design of mitigation systems
Real-time response

Rapid, dramatic improvements in optimization capabilities
(modeling tools, algorithms)

Increased data and desire for rigorous analysis from many
application areas

Successful convergence in research requires:
Collaboration: Importance, community
Data: Impact
Models: Enabling technology
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ALL THINGS OPTIMAL
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Now at Purdue University
School of Chemical Engineering

Our research group has moved to the School of
Chemical Engineering at Purdue University. Please see
new contact information below. \

All Things Optimal showcases the teaching, research, and service efforts from Carl Laird's research group in the School

of Chemical Engineering at Purdue University.
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