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1 Born Qualified Project Details

3-year Grand Challenge Laboratory Directed Research & Development Project (FY16-18)
~$13M total funding
~70 staff, students, and Post Docs

Collaborators

e LANL

e LLNL

* ORNL

e KCNSC

* University of Texas at Austin
* Georgia Tech

e MIT

« CMU

* Clemson

* University of New Mexico

*  Missourt S&T

* Rochester Institute of Technology



;1 Accelerating Design to Production -

nologies into the stockpile will benefit from the
nced manufacturing

* A responsive, agile, and flexible deterrent requires capability and infrastructure
innovation to increase efficiency and responsiveness of matetial/part
development cycle

. . . . POSTU[%EEVIEW
* Developing an assurance capability for high value, high consequence, low il
volume products that exploits Additive Manufacturing (AM)
*Typical Development Cycle

Iterate

*Reduced Build Cycle with AM

+ Agility = rapid response to emerging challenges
+ Faster failures & successes

+ More build iterations = greater confidence

+ More time to design

+ Cost & schedule savings




Overview of Born Qualified
Using Metal AM Examples

Quantify &
Optimize

Densified :
Structure

thermal history during bi-
directional metal deposition

R\

Integrated Computational
Materials Engineering (ICME):

Implementing ICME in the Aerospace,

Data Analytics:
4 Re.g’:ess{on £ )y Property Aware
Classification | Y e o
v' Density Estimation 7 \ :
v Statistical [ ’
Estimation
v' Dim reduction
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Predicting Performance
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* The first 2 years focused on development, evaluation and down-selection of capabilities
to predict part performance

* Year 3 focused on executing integration plan to drive the performance predictions using
our 3 Exemplars to evaluate our progress

*  Process-Structure-Properties-Performance [l

LENS

Direct Write

time = 1.654 sec, ROl temp = 2765°C

Green stale GOM vs CAD Green shife CT

FY18 Focus for Performance Predictions
* Direct Write: bead D,T,Pe interfaces+porosityedensity+local strain
* LENS & Powder Bed: melt pool+Te microstructureeresidual stress




1 Review Progress to Date

Powder |

Densified [
. ] Structure k&

thermal history during bi-
directional metal deposition

316L SS t

Property Aware
Processing




.1 Process Control

Material Uncertainty in Early AM Metals i
17-4PH parts requested from external vendor in 2015, 1xImm gg
gage x-section %

Sandia did not know or control: feedstock pedigree, machine,
build environment, process inputs or post-processing steps

Percent

Not-surprisingly, extensive material variability observed

unexpected microstructure wi
austenite, 57% martensite

Process Knowledge & Control Reduces Material Variability
3106L stainless steel from 1830’s 3D Systems ProX 200
Sandia now controlling & logging every part, build & powder

100

cycle
¥ s 10
°  process space mapped & machine performance Z
characterized S
o
*  feedstock pedigree, build environment, process inputs, =
post-processing
*  printing & testing artifacts w/build cycles 01

*  storing feedstock, process & printed material data in

0.1

= Old lens, 2017-18

Lens upgrade, 2018-19

~600 tensile bars
27 arrays, 8 orders

Elongation, %

>o A Variable
e group 2
m group 3
¢ group 4
A group 5
» group 6
< group7
v group 8
e group 10
»» P »>
>
¢ RS
® wo A®
oqwe A ®
° mp 2
om W ®A 7
~1000 tensile bars
8 arrays, 1 order
1 10
Elongation Boyce, Adv Eng Mat, 2017

100

GRANTA

*  capabilities for in-situ machine & process monitoring

Contact Bradlev Jared, Brad Bovce



;| Process & Machine Characterization

virgin, Dso = 18um

~ virgin, Ds = 27pm
reused, Dso =
17um

f-theta lens test pattern

zd
316L SS ‘
powder i W
particle o T "":5\.:’:..._..:,_..;’ —
j SNL Prox300 Model
Bz 1000 1 75V\I}01X40 cm/(s)‘. ©
Power ™ Time = 0.000000
230 —1mm above focus
beam g j:z 7i:r‘:\sbelow focus
diameter ™ ARCS output
w/upgraded ¢t _ for a simple

0 60 120 180 240 300 360 420 480 540 600
Time, sec

Working to agree on artifacts that can be built with every build to measure

materials properties that capture process control information which can be an
indicator of build quality

Contact Bradlev Jared, Jeremyv Lechman, Mario Martinez



»1 Review Progress to Date

thermal history during 4
directional metal deposj

316L SS t

Property Aware
Processing
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In-situ Measurements

=@
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Investigating passive mm-wave thermal emission for non-contact temperature measurement in additive

manufacturing applications.
Initial use is IR Camera calibration

Linear relationship between radiated power and temperature enabling szngle-point black body calibration.

Thermal Return Reflection (TRR) technique enables real-time measurement of emissivity.
Waveguide Window | Receiver

Schematic of mm- \82299 :
Wave Radiometer  jiror
System. %j] 4

Furnace

TRR Mirror

Receiver

View Dump

Chopper \ Beamsplitter

£ & Test Specimen

N = &

Contact Eric Forrest
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In-situ Measurements

Investigating effects of view angle and surface texture on emissivity for metallic additively
manufactured parts

Focusing on emissivity for common infrared camera wavelength ranges
Results will be used to improve the accuracy of thermal monitoring of metal AM processes

MM-wave setup leveraged to simulate in build conditions for measurement environment

55.83um

Contact Samantha Tavlor
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12| Alinstante

e  Wishlist... In an Instant?

high
== throughput

tensile

tester
Properties Structure Process
Tensile strength Geometry Surface remediation
Ductility Roughness Heat treatment
Toughness Porosity Subtractive machining
Hardness Chemistry Coating
Wear & friction Phase content Joining
Permeability Grain Size Integration
Thermal expansion Crystal Texture etc. . . .
Reactivity/corrosion Retidualstress * ngh throughput automation LlSlflg
Electrical conductivity Dislocation content I'ObOtiC WOkaCﬂ
Resonance etc.
et _ * Consistent, rapid, & efficient

*  Eliminate human factor

https://youtu.be/6 UKxxU3ukoQ

e Integrate with manufacturing process

316L SS dogbone array
with 25 dogbone{
N
WS

»

g

Contact Brad Bovce



s 1 Defect Detection

T
z Ut
Y o>
ThermaViz installed in the 3D Systems P
ProX 200 P
Melt pool motion,
nominal settings g
¢
captured hole ™= tmm pyrometer data
structure UCT reconstruction reconstruction
design

Mitchell, Dagel, Madison, lvanoff, Swiler, Koepke, Jared



Analytical tools used for material reconstruction and
4| mapping pore locations to diagnostic signals

Data processing streams are crucial, complex and not optimized

<7 VOLUME
‘ GRAPHICS

Micro-computed tomography

MATLAB

Interactive Data Language

Image| I D L @ python
Adobe

Photoshop

3D reconstruction

| 3D quantification o
gyt 304 8
. ‘- =
‘ 8
ije - : :
-l ParaView
A 4 A Parallel Visualization Application 'g_
e alignment & registrat -
batch processing cropping
16bit > 8bit grayscale matchiny
conversion autoleveling
lossless filetype image filtering ) )
conversion thresholding y porosity map generated using DREAM.3D near the 10 &
\ 20um pores
3 ROBO-MET.30D" E
image processing & =
Serial-sectioning quantification. 3D

reconstructions

Contact Bradlev Jared, Laura Swiler



s | Review Progress to Date

Powder |

Densified [
. ] Structure k&

thermal history during bi-
directional metal deposition

316L SS t

Property Aware
Processing




| Materials Reliability - Metals

Bridging Length Scales — Informed Relevance
Build Scale Thermal + Mechanics

K. Johnson, K. Ford, L. Beghini, M.

LAMMPS Solidification Scale Thermal Stender & J. Bishop

M. Martinez, B. Trembacki, D. Moser

!
. | ADAG I O Free-Surface Motion *Curvature & W aragoni Stress
/ ALE *Recoil Pressure
SPPARKS coren

mises

+Ablative, Radiative &
Convective HeatLoss

Powder Spreading
D. Bolintineanu

Powder Behavior
M. Wilson

Build Scale Microstructure
T. Rodgers, J. Madison

plid Mechanics

103
Length Scale (m)




» 1 Materials Reliability - Ceramics

Bridging Length Scales — Informed Relevance

Part Scale Density & Solid
Mechanics

Sintering

’hase field formulism




18‘ Microstructure By Design

p = 5 um; Grid1849x129

™ ©

b)
BDo—é ND

10 20 30
Distance, mm

Process-dependent Microstructure
(Popovich et al., Materials & Design,
\ 2017 /

Design Optimization
k Code Such as PLATO

Site-specific optimized
microstructure through
process control

Contact Brett Clark. Theron Rodeers



» 1 Review Progress to Date

Quantify & ProceSS
Optimize

2 Performance ‘ In-Situ
Predictions thorml fstory dring - Measurements
irectional meial eposmon
Exemplar Alinstante
Properties

Data Analytics: 3
v’ Regression N Exemplar Property Aware

Classification ‘ 7 )
v’ Density Estimation MOdEIS Processing
v’ Statistical : « .
Estimation Process Materials

v Dim reduction Models : Models




» | Integration Example
Using Metal AM Exemplar

Neutron Diffraction Measurements (LANL)
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Contact Kvle Johnson, Bradlev Jared



Axial Stress (MPa)

21‘ Comparison of Approximation Methods

Predicted Axial Residual Stress
600
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200

—200 1
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Inherent Strain
with Quiet
Elements
30 mins on 60 cpus

Axial Stress (MPa)

Predicted Axial Residual Stress

600
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\ —
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200 /
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*Physical build time ~6 hours

Contact Kvle Johnson

Axial Stress (MPa)

Predicted Axial Residual Stress
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Lumped Laser with 40
Layers and ~0.4mm
Elements
6 hours on 100 cpus




2| Uncertainty Quantification (UQ)

Goals: Account for material and process variability in model predictions (forward UQ) to
understand margins, use experimental data across scales to calibrate model parameters
(inverse UQ)), and integrate optimization with UQ for robust control.

Forward UQ: propagate uncertainties to put error bars on simulation predictions

7z N 4 —
/ Uncertainty in input variables u \ .StatIStICS or
| intervals on
s | Simulation output s(u)
R — . J
: e — | Model -
probability densities intervals s(u) Obse.rvations:
physical parameters / properties, initial/boundary experimental or
Qond/t/ons, numerical accuracy, geometry, daty \_ j L upstream model )

Inference / Inverse UQ: characterize parameter uncertainty from observations

Robust Control: Integrate optimization with uncertainty for process and property design

Contact Laura Swiler, Bart van Bloemen Waanders



23| Optimization & Control

Numerical Optimization for Direct Write

-~

‘ Forward prediction |

)/\

-~

"

e
‘ Inverse problem ‘ J

= Robust

- :
.-.IllIlIIII..R

Multiscale/physics Interface for Large scale Optimization (MILO)

input file

Optimization

Automates:

« Adjoints

« Opt under un
* Unstructured
* Multiscale

«  Multiphysics

« 2D/3D Parallel

Temp
0.85

%0‘64
certainty ;

=0.42

021

E0.0

Contact Bart van Bloemen Waanders



24‘ Qualification Strategy

Requirements Design

v

Robust con

Characterization

experiments

Micro-meso
material

modeling Design

optimization
AM process modelin Sltingt
P experimental

Qualified Components

Risk averse

Quantification of |
uncertainties :
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Project Impact

20+ Journal publications, 25+ Invited Talks, 5 Patents, 4 Journal
Covers, 2 Editor assignments

Extreme-Value Statistics Reveal

Rare Failure-Critical Defects in

Additive Manufacturing

* Brad Boyce, Bradley Jared, Jeff
Rodelas, Jonathan Madison

* / ADVANCED
ENGINEERING
MATERIALS

g A Monte Carlo Model
o Erghontn. for 3D Grain Evolution
T During Welding

* Theron Rodgers

| Eization Direct numerical simulation of
mechanical response in synthetic

Engineering

additively manufactured
microstructures

van Bloemen Waanders

e NV Sahinidis, M Ulbrich, Bart

Modehmg ana Direct numerical simulation of
Simulation in

Mateias Science mechanical response in

and Engineering

synthetic additively

manufactured microstructures

* Theron Rodgers, Joseph
Bishop, Jonathan Madison

Modeling and Modeling mechanical behavior of an

Simulation in

Materials Science additive manufactured metal

and Engineering
T —

imﬁﬁ structure with local texture variations:
RS a study on model form error
* Judy Brown, Joseph Bishop

Translational o e e —
IAUEEEETES Focus on commercializing additive

manufacturing and other emerging
< mMmaterials manufacturing
technologies in an 10T world

' * O Belousova, G Dillon, S
Gardner, Y Marinakis, RA Roach,
D Tolfree, S Walsh

Sandia Impact: Changing culture and approach to qualification of high value, high

consequence, low volume products AM parts



1 Next Steps (short list)

Integrate microstructure predictions into exemplar models

* Representing local microstructure (nm to um) on full size parts (cm) 1s both a
computing power and data storage issue. Exascale? What about designers?

Fully automate Alinstante

* Need advanced high throughput testing capability coupled with Machine Learning
algorithms

Artificial Intelligence based product acceptance

Explore novel alloy development

Integrate optimization with uncertainty for process and property design

* Efficient concurrent multiscale modeling and UQ when material statistical homogeneity
does not apply using techniques such as multigrid and error estimation

*  Crystal Plasticity models need to account for as-built dislocation structures and other
microstructural characteristics unique to AM



Questions!

raroach@sandia.gov
(505) 844-6112




Full Field High Throughput Testing + Machine -
| Learning / Deep Learning L
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H. Jin and K. Long (SNL)

J. Madison (SNL)
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Laser Power (W)

Varying Microstructure & Properties w/Process Inputs

Baseline

0 500 1000 1500 2000 2500 3000

Laser Velocity (mm/s)




» | Realtime Machine Monitoring

=30

=32

ARCS (Archive, Research, ol
Control, Synchronization)
> developed by Penn State & 3D : o
Systems T S
°installed on ProX 200 “ satvo errors
> records galvo & laser (@ 100kHz
° compare programmed motion w/actual 25 20

galvo motion, laser triggering

> PSU multi-spectral sensor installed for high
rate melt pool monitoring

Exploring data streams to insure

part quality
> large data files for full part builds

example
of

desired

motion

° intermittent galvo motion errors aa iy
N
Ob Ser Ved % 5 10 A5 20 2 20

° systematic occurrence has not been
demonstrated

-44 -

-46




