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21 Born Qualified Project Details •
3ORIV QUALIFIED

• 3-year Grand Challenge Laboratory Directed Research & Development Project (FY16-18)

• —$13M total funding

• —70 staff, students, and Post Docs

Collaborators 
• LANL
• LLNL
• ORNL

• KCNSC

• University of Texas at Austin

• Georgia Tech

• MIT
• CMU

• Clemson

• University of New Mexico

• Missouri S&T
• Rochester Institute of Technology



31 Accelerating Design to Production

Moving )eyond the current nigdigm of
use of advai

10+ years to insert techno
iced materials and advancm

logies into the stockpile will
ed manufacturing

• A responsive, agile, and flexible deterrent requires capability and infrastructure

innovation to increase efficiency and responsiveness of material/part

development cycle

• Developing an assurance capability for high value, high consequence, low
volume products that exploits Additive Manufacturing (AM)

*Typical Development Cycle

*Reduced Build Cycle with AM 

*Reduced Test Cycle by Predicting Performance

benefit from the

+ Agility = rapid response to emerging challenges
+ Faster failures & successes
+ More build iterations = greater confidence
+ More time to design
+ Cost & schedule savings



4 Overview of Born Qualified
Using Metal AM Examples
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5 I Predicting Performance

• The first 2 years focused on development, evaluation and down-selection of capabilities

to predict part performance

• Year 3 focused on executing integration plan to drive the performance predictions using

our 3 Exemplars to evaluate our progress

• Process-Structure-Properties-Performance

FY18 Focus for Performance Predictions 

• Direct Write: bead D,T,P4=>interfaces+porosity<=>density+local strain

• LENS & Powder Bed: melt pool+T<=>microstructure<=>residual stress



61 Review Progress to Date

/ Performance
Predictions

Exemplar
Performance

/ AM
Process

Exemplar
Models

/ Process
Models

thermal history during bi-
directional metal deposition

Materials
Models

In-Situ
Measurements

Alinstante
Properties

.1-



71 Process Control
• Material Uncertainty in Early AlVI Metals

• 17-4PH parts requested from external vendor in 2015, lxlmm
gage x-section

• Sandia did not know or control: feedstock pedigree, machine,
build environment, process inputs or post-processing steps

• Not-surprisingly, extensive material variability observed

austenite, 57% martensite

• Process Knowledge & Control Reduces Material Variability

• 316L stainless steel from 1830's 3D Systems ProX 200

• Sandia now controlling & logging every part, build & powder
cycle

• process space mapped & machine performance
characterized

• feedstock pedigree, build environment, process inputs,
post-processing

• printing & testing artifacts w/build cycles

• storing feedstock, process & printed material data in
GRANTA

• capabilities for in-situ machine & process monitoring
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0 1 100

Contact Bradley Tared, Brad Boyce



I8 Process & Machine Characterization
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Working to agree on artifacts that can be built with every build to measure
materials properties that capture process control information which can be an

indicator of build quality

3040 QUALIFIED

Contact Bradley Jared, Jeremy Lechman, Mario Martinez



9 I Review Progress to Date
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10 I In-situ Measurements
3ORN OUAUFIED

• Investigating passive mm-wave thermal emission for non-contact temperature measurement in additive
manufacturing applications.

• Initial use is IR Camera calibration

• Linear relationship between radiated power and temperature enabling single-point black body calibration.

• Thermal Return Reflection (TRR) technique enables real-time measurement of emissivity.

Schematic of mm-
Wave Radiometer
System.

Waveguide
Windov,

\ purge
gas

Mirror

Furnace

MMW
Receiver

#2

Chopper

Test Specimen

TRR Mirro
C=

MMW
Receiver

#1

View Dump

Beamsplitter

Contact Eric Forrest



I11 In-situ Measurements

• Investigating effects of view angle and surface texture on emissivity for metallic additively

manufactured parts

• Focusing on emissivity for common infrared camera wavelength ranges

• Results will be used to improve the accuracy of thermal monitoring of metal AM processes

• MM-wave setup leveraged to simulate in build conditions for measurement environment
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šORAI QUALIFIED

Contact Samantha Taylor



121 Alinstante

• Wishlist... In an Instant?

Properties
Tensile strength
Ductility
Toughness
Hardness
Wear & friction
Permeability
Thermal expansion
Reactivity/corrosion
Electrical conductivity
Resonance

etc.

Structure
Geometry
Roughness
Porosity
Chemistry
Phase content
Grain Size
Crystal Texture
Residual stress
Dislocation content
etc.

Process
Surface remediation
Heat treatment
Subtractive machining
Coating
Joining
Integration

etc.

httos://youtu.be/6UKxxU3ukoQ

• High throughput automation using

robotic workcell

• Consistent, rapid, & efficient

• Eliminate human factor

• Integrate with manufacturing process

316L SS dogbone array
with 25 dogbones

\ I 1111

BOWN QUALIFIED

Contact Brad Boyce



131 Defect Detection

ThermaViz installed in the 3D Systems
ProX 200
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Melt pool motion,
nominal settings
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- 889

captured hole
structure
design

1 mm

pCT reconstruction

pyrometer data
reconstruction

Mitchell, Dagel, Madison, lvanoff, Swiler, Koepke, Jared



Analytical tools used for material reconstruction and
14 mapping pore locations to diagnostic signals

Data processing streams are crucial, complex and not optimized

1€i f VOLUM E
GRAPHICS

Micro-computed tomography

Imagd

Adobe
Photoshop

batch processing
16bit > 8bit
conversion

lossless filetype
conversion

160 190617-111.,
-

Serial-sectioning

FIJI

4 MATLAB
Interactive Data Language

IDL
3D reconstruction
3D quantification

0 python

ParaView
A .) Parallel Visualization ApplicationDREAM.3D

alignment & registrat
cropping

grayscale matchin1
autoleveling
image filtering
thresholding

image processing Et
quantification. 3D
reconstructions

B lueQuartz Software
Specializing In Software Tools for the Scientist

http://dream3d.bluequartz.
net
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Contact Bradley -fared, Laura Swiler



151 Review Progress to Date
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16 Materials Reliability - Metals
Bridging Length Scales — Informed Relevance

LAMMPS
ARIA
ADAGIO
SPPARKS

Powder Spreading
D. Bolintineanu

Powder Behavior
M. Wilson

10-6

Solidification Scale Thermal 
M. Martinez, B. Trembacki, D. Moser

Free-Surface Motion

-ALE

- CDFEM

Gausoan Laser Flue

-Curvature E. Maragonm stress

•Recoll Pressure

•Ablanve, Radlatrve
Cony ear. neat Loss

Mesoscale Texture/Solid Mechanics
T. Rodgers, J. Brown, K. Ford

‹..1X

10-3
Length Scale (m)

30RN QUALIFIED

Build Scale Thermal + Mechanics
K. Johnson, K. Ford, L. Beghini, M.

Stender Et J. Bishop

Build Scale Microstructure
T. Rodgers, J. Madison



17 Materials Reliability - Ceramics
Bridging Length Scales — Informed Relevance

Green State
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Overlay mesh

SOVs
Bin images into elernert Average
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BORN QUALIFIED

F
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Time



Zone 1: 250 W

181 Microstructure By Design
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Process-dependent Microstructure
(Popovich et al., Materials Et Design,

2017

Design Optimization
Code Such as PLATO

Site-specific optimized
microstructure through

process control

Contact Brett Clark, Theron Rodaers



191 Review Progress to Date
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20  Integration Example
Using Metal AM Exemplar

Neutron Diffraction Measurements (LANL)
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211 Comparison of Approximation Methods
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221 Uncertainty Quantification (UQ)

Goals: Account for material and process variability in model predictions (forward UQ) to
understand margins, use experimental data across scales to calibrate model parameters
(inverse UQ), and integrate optimization with UQ for robust control.

Forward UQ: propagate uncertainties to put error bars on simulation predictions

Uncertainty in input variables u

probability densities

physical parameters / properties, initial/boundary
onditions, numerical accuracy, geometry, data)

Simulation
Model
s(u)

Statistics or
intervals on
output s(u)

Observations:
experimental or
upstream model

Inference / Inverse UQ: characterize parameter uncertainty from observations

Robust Control: Integrate optimization with uncertainty for process and property design

Contact Laura Swiler, Bart van Bloemen Waanders



23 I Optimization & Control

Numerical Optimization for Direct Write 
Forward prediction

Inverse problem

Optimal Control of LENS using Line Scans

Os

Thermal

Robust
Control

3ORN owuFieo

Multiscale/physics Interface for Large scale Optimization (MILO)

Cornmand

line

keyword

input file

Panzer stk

Mterface

(2D, 3D)

Data

ana ysis

class

INTERFACES

Degree of

freedom

manager

Porous

media

Convection

diffusion

I Thermal
Linear

Elasticity

Navier

Stokes

intrepid Forward

solver
Adjoint

solver

I Optirnization I

Automates:
• 2D/3D Parallel
• Adjoints
• Opt under uncertainty
• Unstructured
• Multiscale
• Multiphysics

Ternp

[0.85

,70.64

I0.42

0.21

0.0

Contact Bart van Bloemen Waanders



241 Qualification Strategy

a

Requirements

■

Design

♦

Integrated AM
experiments

•:•:•:•:

::•:•:•:•••: • •

Characterization

Validation Exemplars

Quantification of
uncertainties

30RAI QUALIFIED

Qualified Components



25 Project Impact

L 20+ Journal publications, 25+ Invited Talks, 5 Patents, 4 Journal

Covers, 2 Editor assignments

ADVANCED
ENGINEERIN

Modelhng and
Simulation in
Mater& Science
and Engrneenng

.12471;iii

Extreme-Value Statistics Reveal
Rare Failure-Critical Defects in
Additive Manufacturing
• Brad Boyce, Bradley Jared, Jeff

Rodelas, Jonathan Madison

A Monte Carlo Model
for 3D Grain Evolution
During Welding
• Theron Rodgers

Optimization
Engineering

Direct numerical simulation of
mechanical response in synthetic
additively manufactured

microstructures
NV Sahinidis, M Ulbrich, Bart
van Bloemen Waanders

Modelling and
Simulation in
Materials Science
and Engineering

Modelling and
Simulation in
Materials Science
and Engineering

.01 A A A

V of V

Translational
atenals Research

Direct numerical simulation of
mechanical response in
synthetic additively

manufactured microstructures
• Theron Rodgers, Joseph

Bishop, Jonathan Madison

3ORIV OUAUFIED

Modeling mechanical behavior of an
additive manufactured metal
structure with local texture variations:
a study on model form error

• Judy Brown, Joseph Bishop

Focus on commercializing additive
manufacturing and other emerging
materials manufacturing
technologies in an IOT world
- O Beluuuva, G Dillui

Gardner, Y Marinakis, RA Roach
D Tolfree, S Walsh

Sandia Impact: Changing culture and approach to qualification of high value, high
consequence, low volume products AM parts



261 Next Steps (short list)

• Integrate microstructure predictions into exemplar models

• Representing local microstructure (nm to 1.1,m) on full size parts (cm) is both a
computing power and data storage issue. Exascale? What about designers?

• Fully automate Alinstante

• Need advanced high throughput testing capability coupled with Machine Learning
algorithms

• Artificial Intelligence based product acceptance

• Explore novel alloy development

• Integrate optimization with uncertainty for process and property design

• Efficient concurrent multiscale modeling and UQ when material statistical homogeneity
does not apply using techniques such as multigrid and error estimation

Crystal Plasticity models need to account for as-built dislocation structures and other
microstructural characteristics unique to AM



raroach@sandia.gov
(505) 844-6112
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Full Field High Throughput Testing + Machine
28 I Learning / Deep Learning

Boyce et al. 2017

High Throughput Testing with
Full Field Digital Volume

Correlation (DVC)
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Neural Network
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29 Varying Microstructure & Properties w/Process Inputs
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30 I Realtime Machine Monitoring

ARCS (Archive, Research,
Control, Synchronization)
developed by Penn State & 3D
Systems

o installed on ProX 200

records galvo & laser @ 100kHz
• compare programmed motion w/actual
galvo motion, laser triggering

• PSU multi-spectral sensor installed for high
rate melt pool monitoring

Exploring data streams to insure
part quality
o large data files for full part builds

o intermittent galvo motion errors
observed
• systematic occurrence has not been
demonstrated

-38
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• galvo errors
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