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5| WIPP Layout
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6‘ Filled Room Closure
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71 Empty Room Closure 1

Q'ay =

Auk
C'b). 4

Ash. b
oy &




8‘ Empty Room Closure 2
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Empty Room Closure 3
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10| Empty Room Closure 4
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1| Empty Room Closure 5

Openin Mos'H\/ closed due
to seH aveep. Creep vate

Slowz!i b I ==
4—;“‘4'0\,9_ steble Opeui-‘g
- ldepe.

Yu.b,l)(e Pi(e —

povos: & Pe,VMeALC(.'/-/
(A!L(LM-O W g C‘/\em“e[-s
Sue?a/éeﬁ Tnbebwee

& i - tobulav voe< b(ocl(S?

\[;é¢7lwe/m:'cvo Gec!-pweoQ
DQ‘E‘ vock “7/ 9(’00«‘ \/\eav.‘%

WM%Q mav ey be

Y N AP




12

Project Scope




13| Project Scope

1. Goal: Assess whether meshless methods are well suited to the
simulation empty underground room closure in rock salt.

a. ldentify which approaches work and which do not

2. Capability demonstration, not intensive code development
a. Minor code development is OK

3. Collaborate with Sandia to incorporate successful approaches into
Sandia code(s).

a. Approaches should be implemented with an eye on production
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Creep Closure




151 Problem Statement

1. Supplied by Sandia:
a. Creep material model
0. Boundary value problem
c. Finite element results

2. Assess whether a chosen meshless method can accurately
simulate 2D room closure due to creep alone (no fracturing)

a. Show discretization convergence
0. Record total CPU time

3. Compare discretization converged meshless simulation against
a finite element simulation

a. Horizontal and vertical closure histories
0. Room porosity histories




16| Simple Odqvist Creep Model
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|sotropic, Linear, Hypoelasticity

Associated Flow Rule

von Mises Equivalent Stress

Equivalent Viscoplastic Strain Rate

E=&%+&"P

o=C:&
C=(B-2u/3)I®1+2ur1

o OO
vp _ z2vp 99
E E 80‘
0= 13Jo




17| Panel Layout

Plan View
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18] Creep Closure Simulation Setup

Lower Horizon Disposal Room
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191 Simulation Initialization

1. Initialize rock mass with a
lithostatic stress field.

2. Apply a lithostatic pressure to the
surfaces of the room so that
everything is in equilibrium.

3. Decrease the room pressure to
zero over 0.01 seconds using a
sinusoid function.
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2o| Finite Element Solution

Horizontal and Vertical
Closure Histories
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Fracturing and Roof Falls




1Z0N

| -
O
L
| -
)
=
O
—
C
O
O
| -
)
el
O
©
| -
LL
Y
O
N
¢
Q.
&
©
X
LLI




Roof Fall on Lower Horizon

Panel 7, Room 4




Roof Fall on Uppr Horizon

E300-S3650




Roof Fall on Upper Horizon




Fracturing around Empty Rooms

1. Controlling factors
a.
0. Confining pressure
=
d. Heterogeneity

Deviatoric stress

Layering

Modified after Borns, D.J. and J.C. Stormont. (1989). Delineation of the
Disturbed Rock Zone Surrounding Excavations in Salt. SAND88-2230C.
Sandia National Laboratories. Presented at the 30th U.S. Symposium on
Rock Mechanics, 19-22 June 1989, Morgantown, WV, Paper ARMA-89-0353.

2. Impact

d.

b.

Changes the room cross-section from a rectangle to a more
enduring, stable shape

Causes a rubble pile with high permeability
I. Pile size and character depend on type of roof fall




27| Effect of Room Shape on Creep Closure
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281 Problem Statement

1. Supplied by Sandia:
a. Damage material model
0. Boundary value problem

2. Assess whether a chosen meshless method can simulate 2D
fracturing around a room and roof falls

a. Show discretization convergence
0. Record total CPU time

3. Demonstrate 3D fracturing around a room and roof falls
a. Record total CPU time




2| Tentative Simple Damage Model
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Estimation of Excavation Damaged Zone

-\ Undisturbed
: Damaged

Time 0.0 years

Herrick, C.G., et al. (2009). Estimating the Extent of the Disturbed Rock Zone around a WIPP Disposal Room.
Paper ARMA 09-82. 43rd US Rock Mechanics Symposium, Ashville, NC. June 28 — July 1, 2009.
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Rubble Pile Compaction




32‘ Crushed Salt vs. Rubble Pile

Rubble Piles

Crushed Salt

Bechthold, W., et. al. (2004). Backfilling and Sealing
of Underground Repositories for Radioactive Waste
in Salt (BAMBUS Il Project), Final Report. European
Commission, EUR 20621 EN




13| Rubble Pile Compaction

: WEFLs  Porosity reduction due to break
- grain down and rearrangement of
e Qrains

1. Important Processes
a. Rubble reorganization
0. Rubble fracture
c. Dislocation Creep
d. Pressure Solution Creep

. 200un
R b

Porosity reduction due to plastic
deformation of grains

Spangenberg (1998) (Modified)

2. Impact
a. Compaction processes control flow pathways
I. Two samples with same porosity can have different permeability
b. Rubble pile supplies back pressure to surrounding rock formation
I Larger rubble likely compacts slower than smaller rubble




| Filled Rooms Creep Closed More Slowly
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35| Problem Statement

1. Supplied by Sandia:
a. Boundary value problem

2. Assess whether a chosen meshless method can simulate 2D
rubble pile compaction due to room closure

a. Show room porosity discretization sensitivity
0. Record total CPU time

3. Demonstrate 3D rubble pile compaction
a. Compute room porosity history
b. Record total CPU time
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Time Scaling




37‘ Speeding up the Viscoplasticity
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38‘ Scaling Ramp Rate Selection
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Dates and Deliverables




s | Dates and Deliverables

1. WIPP Rock Mechanics Quarterly Review
a. April 301, 2019

2. US / German Workshop on Salt Repository Research, Design, and
Operation

a. May 28t-30th, 2019

3. Final Report
a. Sufficient detail to reproduce results at Sandia
b. Due with final invoice on September 13th, 2019

4. Present results at workshop in Albuquerque?
a. Date?
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Extra Slides




42‘ Upper vs. Lower Horizon
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43‘ Typical Fractures on Lower Horizon

Low-angle
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Schematic Fracture Pattern at Lower Horizon
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44‘ Fallen Block Shapes
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45‘ Typical Fractures on Upper Horizon

Schematic Fracture Pattern at Upper Horizon
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46‘ Crushed Salt Laboratory Testing

Triaxial compression

Specimen while measuring permeability
preparation

Permeability vs.
Void Ratio (Porosity)
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47 ‘ Scale Effects

Permeability (m?)

Permeability Scale Effect
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