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Motivation

Solution to strongly coupled multiphysics problems, often involving strong shocks:

1) be positivity preserving for p, internal energy etc. (e.g. LED schemes),
2) be applicable to widely varying timescales,

2.1) allow flexible time integrator usage (e.g. RK-IMEX schemes),

3) be on general unstructured meshes, high spatial and temporal order,

4) hyperbolic system solver applied to the multi-fluid plasma model.

Astrophysical plasma (Casey Reed/NASA) Laboratory plasma (SNL)
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Ideal compressible MHD equations @™

The inviscid MHD equations are given by:

p pv

0 |pv L. | Pv®VHRI=Tn | _

at | pE v-((pE+ p)l = Tw) ’
B Bv—vRB

Divergence free involution:

p is the density. Total energ{'
v is fluid velocity. 2, 2
pv is fluid momz_lntum. PE=pet p||v|| 20 ”B”
pE is the total energy. Ideal equatlon of state (EOS):
B is the magpnetic field.

o is the fluid permeability.
~ is the ratio of specific heats. Maxwell stress tensor:

Ty = = [B@ B 1||B||2/] .
Ho 2

pe_L,'y>0.
v—1
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Compressible Euler equations (D=

In the absence of the magnetic field B

5 P pv
pv pvR v+ pl— Ty
— V. =0.
ot [oE| TV | v ((E+ )1~ )

B B v—v®B

1 1 P
pE = pe+ >p|v]* + -—||BII*, pe= ——, v > 0.
2 200 y-1

we have the compressible Euler equations:

o lr pv
e pv|+V.-| pv@v+pl | =0.
PE v- ((pE+ p)))

1 P
pE = pe+ §P||V||2, pe=——, v>0.
v—1

Solution strategy:
m Do continuous finite element discretization in space (Pl/Ql).
m Introduce algebraic stabilization (low order diffusion + limiters).

m Do divergence cleaning for MHD (hyperbolic/parabolic/mixed).



Hyperbolic systems (=

Nonlinear hyperbolic system in a domain Q C R¢:
ur+V-fu) =0, (x,t) € Q x Ry
U(X,O) = UO(X), x € Qv
with suitable boundary conditions.
mu:R? xR, — R™ are the conserved variables.
m ug is a given function defining the initial condition.
m f:R™ — (R™)? is the physical flux which is of the form
f={f}9,, fFcR™ i=1,..d
m f'(u) the Jacobian of the physical flux.
The eigen-decomposition of f' is:
n-f (u) = R(u; n)A(u; m)R™(u; n),

where n is a unit vector in R?, R is the matrix of eigenvectors and A is the diagonal
matrix of eigenvalues.



Hyperbolic systems (0]

o

Examples of hyperbolic systems include:
m Scalar convection of a chemical in an in/compressible fluid:
u = ¢, the concentration, and f = vc, where v is the fluid velocity.

m Scalar Burgers equation (has many applications):
u = u, the conserved quantity, and f = %u2 the flux.

m Compressible Euler equations:

P pv
u = | pv|, the conserved variables, f(u) = | pv® v+ p/| the flux.
pE pEv+ pv
m Compressible inviscid MHD equations:
[P pv
pv . pvR v+ pl— Ty
u= , the conserved variables, f(u) = the flux.
pE ) v ((PE+ pP)laxd — Tm)
L B v@B-B®v

Other examples include shallow water equations, two-fluid plasma equations etc...
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Numerical methods for hyperbolic systems (0]

The design of numerical methods for hyperbolic systems seeks to achieve the following:

Elimination of spurious oscillations that may result in non-physical solutions (e.g.
negative density concentration, internal energy).

Involves:

m Adding sufficient diffusion in the region near a steep front or shock.
m Reduce diffusion in regions with smooth solution (high-resolution).
m Eliminate diffusion completely for linear solutions (linearity-preservation).

Numerical method:

m Should be second order for smooth solutions.
m Work on unstructured meshes.
m Works well with implicit time integration.
The stabilized scheme here is based on algebraic flux correction:
m Adding artificial diffusion element-wise.
m Lumping mass matrix associated with the time derivative.

m Controlling the amount of diffusion through a nodal variation based limiter.



Numerical method

High order (HO) method:

Problem
Let Sy, be a collection of elements K, that partition the domain €. Let
Vi={u: Q>R : ue Q),ulk € P(K),KE Sh}. Letu, = Zj Uj¢;j. Given

up(-,0) = ug(:) € (L3(Q))™, find up(-,t) € (V)™ a.e (0, T] such that
/¢%dx+/ ¢f(up) - ndo — /V¢ - f(up)dx = 0,
o9 Q

In matrix form, we solve for U = {U;}, where U; is an approximation to u(x;):

for all ¢ € V.

du
MCE + K(U)+ Br(U)=0, te (0, T],

where

Mc = {Mu}u 17 My = mijlyscm, my = Z"’ 2 / @ipjdx,
Ke
K(U) = Z—/K Vi f(up)dx b . Br(U) = Z/maK éif(up) - ndo

i i
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Numerical method @mES.

Burgers symmetric expansion:
Q =(0,4), T=1. The conserved variable u = u, m = 1. The flux is given by

1 v -1, x€(0,2),
)= e _{1, x € (2,4).

Discretize the HO scheme using Crank-Nicolson with Ax = 4/200, At = 0.001:
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Numerical method () i,
To fix the problem, we add some diffusion following the AFC design philosophy.

Low order (LO) method:

du
M.—- + K(U) + Br(U) + D(U)U = 0,
M(LE) = diag{ml(,e) Imxm}i, where mse) = g mgje),
J
D= E D@, 0¥ = {0}, DY = — 58
e

J#i




Artificial diffusion

Design based on the maximum propagation speed of the system.

5>0

Consider a projected Riemann problem (Guermond et al. 2015, Selmin et al. 1996):

9(f(u) - n)
=0,
ur+ —— ds
u;, s>0,

ug, s< 0.

u(x(s),0) = {
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Artificial diffusion @
The maximum propagation speed for the above problem is denoted by
Amax = )\max(ny ug, uR)~
m The maximum propagation speed is such that u(s, t) = ug whenever s/t > Amax
and u(s, t) = uy for all s/t < —Amax.
The max propagation speed is bounded above by the Lipschitz constant for f- n.
It is determined by the spectral radius of n- f'.

For nonlinear scalar problems, it is Amax(n, u;,ug) = max(|n- ' (u.)|, |n- f(ug)|).

In finite elements u; g represent nodal states i and j, where i # j.

Artificial diffusion is constructed for the finite element formulation:

= {D(E)}I,jv (E) d(e lm><m7

'J

o9 = max {||c,‘-f‘)uxmax(u,, n), 1 le ||Amax(w,nf,e>)} , JE

(e)

C.

dﬁie) = — g d,g.e)7 n'(.je) ;JE) (e) —/ Voipjdx, for each Ke € Sp.
p llei” I
J#i

e
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Limiting algorithm (0]

Pros of artificial diffusion and mass lumping:

m eliminates the spurious oscillations.

m makes the (nonlinear) problem easier to solve.
Drawback of artificial diffusion and mass lumping:

m Diffusion smears the profile
m Diminished accuracy
Solution to this problem:
m Limiting that controls the amount of diffusion introduced.
m Limiting that preserves the quality of the solution as possible.
Limiter for a quantity up = Zj ojuj:
ag = min &7
i€ Np(Ke)
oY € [0,1] for i=1,..., Nj, satisfies the following conditions:
m ®Y(u; — uj) depends continuously on uj, j € N;.
m ®Y(u; — uj) = 0 at a local maximum and local minimum.
m OY(u; — uj) = (uj — uj) if up is linear on Q;.
T A A A A A AN A AR AR AR A AN AR AN A R AR AN RN} R AR AR R AR} e e



Limiting algorithm (D=
Limiter form on unstructured meshes for u (Kuzmin et al. 2018):
Zj?g,' 6’](”] - U,') +e

/=1~ , e~ 10719, > 1,
Zj#iﬁi.f'uj —uil +e

where S > 0 such that Z#iﬁ;jg,- - (x;—x;) = 0.

ag = min o

i€ Np(Ke)

u
e
The final stabilized scheme

ML%I + K(U) + Br(U) + D(U)U — F(U) = 0,

where
Fu)=Y ),
&
is assembled from

FO(U) = az [ - M) %+




Limiting algorithm () i,
With limiting, the Burgers symmetric expansion has a steepened profile:
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AFC for Euler equations

Recall that the Euler system has form

Ou
— +V-f(u)=0,
5 TV fw)
where
o pv
u= |pv|, flu) = |pvR v+ pl
pE pEv+ pv

The maximum propagation speed is computed from

Amax(u;n) = v-n+c,

where

is the speed of sound.




AFC for Euler equations (=

Limiting procedure for Euler:
m Synchronized limiting: based on taking a minimum of several element limiters.
For example,
. E
ae = min{af,a, al"Vimxm-

m Segregated limiting: limiting each sub-equation using a different limiter. For

example,
e = diag{af, af”, ab”, afP, ot}
Then,
Fu)=Y) FIW),
e
where

FO(U) = ae [(M‘; M(e))d +D(e)(U)U}
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Transient HD results abors

Problems solved: Sod shocktube, Woodward-Colella blast wave, Sedov point blast
etc... (Mabuza, Shadid and Kuzmin, 2018, JCP)
1D results; Top: Sod shock tube, Bottom: Woodward-Colella

0
o 02 04 06 08 10 0z o4 L o8 1

- 1
P VS X p Vs xat Ax = 1000




Transient HD results

Sod ShockTube - Mesh Convergence 100-3200 cells

L1 Slope L1 Slope L1 Slope L1 Slope L1 Slope
(100-200) (200-400) (400-800) (800-1600) (1600-3200)

9.36689e-01 9.65261e-01  8.5246%e-01  8.06609e-01  8.60413e-01
rhoE 1.03158e+00 1.06352e+00 9.39890e-01  8.16929e-01  1.01285e+00

rhou 9.87064e-01 9.94115e-01  8.30446e-01  7.41841e-01 8.76973e-01

Sod Shock Tube AFC 101 Sod Shock Tube AFC 102 Sod Shock Tube AFC

10?2

L1 Error Norms
—
2
L1 Error Norms
L1 Error Norms
=
=)

10* 103 107 10* 10? 107 10* 10% 107




Transient HD results

LeBlanc ShockTube Profiles - Conservative CFD Formulation

AFC LeBlanc Shock Tube, t=6 AFC LeBlanc Shock Tube, t=6 AFC LeBlanc Shock Tube, t=6
1 0.25 07
analytic —— ‘analytic —— “analytic ——
dx=9/900 —— dx=9/900 ——
dx=9/1800 06 [ dx=0/1800
02 dx=9/3600 —— dx=9/3600 ——
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1 p 025 e
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Transient HD results

LeBlanc ShockTube - Mesh Convergence

L1 error L1 error L1 error Slope
(9/900) (9/1800) (9/3600) (900 1800) (1800 3600)

1.31065e-03 6.72218e-04 3.48644e-04  9.63279e-01  9.47172e-01

rhou 4.98398e-04 2.60317e-04 1.38587e-04  9.37030e-01  9.09481e-01
rhoE 1.91591e-04 9.83755e-05 5.14695e-05  9.61657e-01  9.34582e-01
AFC LeBlanc Shock Tube 10 e LeBlaE Shbck Tube 10 AK€ LeBlanc Shock Tube

T

L1 Error Norms
=
S
L1 Error Norms
L1 Error Norms

—
=)
-

._.
<

107 102 107




Transient HD results

2D results; Top: Radial Riemann, Bottom: Sedov point blast

Ax = Ay =0.0125 and At =1 x 1075,

0 05

p Vs xtraceat x = yand y = —x

A

pvsx, L=225andt=0.24.




Steady HD result

Steady Ma = 3 supersonic combustion ramjet engine:

R
RN

R

v,

0
S

Density

Mach
65256 elements and 33859 degrees of freedom per variable.




AFC for MHD WE.

AFC for MHD with parabolic divergence cleaning:
The induction equation is given by (Dedner 2002)

B
%+V.[V®B—B®v]—V-(C,2,V'B’d><d):0-
MHD system has form

where

h(u) = [07 0,0, ‘C‘%V . BIdXd]'

The maximum propagation speed is computed from
Amax(u;n) = v-n+ cr

At the semi-discrete level

¢cp = \/chcr, where ¢, = 0.3,

where,

(€)

(€) ., (6)} (€) S

cp = max < max |||c;;”[| A Uj; n;; , n = 5
h < {J#’ [|| ij ” max( g Ui ) } ij ”cEJe)”




AFC for Euler & MHD equations (D=

Limiting procedure for MHD:
m Synchronized limiting: based on taking a minimum of several element limiters.
For example,
, E
Qe = mm{agz Olg, ag }Imxm~

m Segregated limiting: limiting each sub-equation using a different limiter. For

example,
1ign2  1ngi2  limI2
. E 5Bl 3 11Bll 3118l
Qe = dlag{ag7a€e7a§e7a£ea ch 7ae? 7ae2 7ag }
Then,
FU) = § Fo(v),
&
where

du

v . e }
& oYU

FI(U) = ac (M7~ M)




1D MHD test @mES.

Example (Brio-Wu test)
Q=(0,1), T=0.1, B, =0.75 and = 2, explicit RK4,
(p: VX7 Vyv sz ,D, By: BZ)L = (13 0: 07 07 17 17 0)7

(pa Vx; Vy, Vz, Py B}’? BZ)R = (01257 07 07 07 017 _17 0)

Ax = 8(1)—0, At = 2.5 x 10~* Different synchronized limiting combinations vs Athena:




1D MHD test @mES.

Q =(0,1), T=0.1, B, = 0.75 and v = 2, explicit RK4,
(pa VX: Vy» V27 P, B}/7 BZ)L = (17 07 07 07 17 17 0)7

(pz Vx, Vy, Vz, Py B,V7 BZ)R = (0125> 07 07 07 011 _17 0)'

Synchronized p, pp limiting on various meshes:

1 2
— = 11200 — k= 11200
09 — =100 . e dx = 1/400
dx = 1/800 : e dx = 1/800
08| ———dx=1/1600 ——— dx=1/1600
dx = 1/3200 dx = 1/3200
16
07
06+ 14
0.5 12+
04
ik
03
0.8
g2 r
0.1 0.6
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 08 1
(a) density (b) total energy



1D MHD test @mES.

Example (Ryu-Jones test)
Q=(-1,1), T=0.2, By = —2_ and vy = %, explicit RK4,

x
(0, Vi, vy, Ve, b, By, Be)- = (1.08,1.2,0.01,0.5,0.95, —2 2
g WX VY s VR Py ALYy LT '7'7'7'7'7\/4—71_7\/4—71_7
4 2
y Vxs Vy, Vz, 7BvB L: 1705070717—7_-
(p > Vy, Vz, P, By Z) ( \/E 47T)

Synchronized p, pp limiting on various meshes:

05 0 05 05 o 0s 5 o 05

P Vs X P Vs X By vs x




2D MHD test @&

Example (Orszag-Tang)

Q=(0,1) x (0,1), T=0.2, B,= —%= and v = 3, Crank-Nicolson + div. cleaning,

25 N 5
(95 Vs Vy, Vz, p) = (36—71" —sin(2my), sin(27x), 0, E) ,
sin(2my) sin(4mx) )
By, By, B;) = (—2MeTY) SIITX) o) .
(8880 = (- 2%

Synchronized p, pp limiting, Ax = Ay = 1/256, At =10"*

l‘“m
[w
10001

lnzem

03

[nz
97002

7
DENSITY

DENSITY

(a) no cleaning (b) parabolic cleaning




2D MHD test s

Example (Orszag-Tang)

Q=(0,1) x (0,1), T=0.2, B,= —%= and v = 3, Crank-Nicolson + div. cleaning,

25 N 5
(95 Vs Vy, Vz, p) = (—3671_, —sin(2my), sin(27x), 0, —12ﬂ_) ,
sin(2my) sin(4mx) )
By, B,, B,) = <——,—,o .
B Bri2) Var | ar

Synchronized p, pp limiting, Ax = Ay = 1/256, At =10"*

(a) no cleaning (b) parabolic cleaning




2D MHD test @mES.

Example (Orszag-Tang)
Q

(o) e (0Nl NIF—028 B — \/% and v = 5 Crank-Nicolson + div. cleaning,

(P, Vx; Vy, Vz, P) = (% —S|n(271'y),sm(27rx) 0 ) )
sin(2my) sin(4mx) 0)

- (-2 2

Synchronized p, pp limiting, Ax = Ay = 1/256, At=10"%; ||V - B”LZ(Q) vs t:

—— no cleaning
—— parabolic

0.8

Q9
o

DIV_B_Error
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