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Motivation

Solution to strongly coupled multiphysics problems, often involving strong shocks:

1) be positivity preserving for p, internal energy etc. (e.g. LED schemes),

2) be applicable to widely varying timescales,

2.1) allow flexible time integrator usage (e.g. RK-IMEX schemes),

3) be on general unstructured meshes, high spatial and temporal order,

4) hyperbolic system solver applied to the multi-fluid plasma model.

Astrophysical plasma (Casey Reed/NASA) Laboratory plasnna (SNL)



ideal compressible MHD equations

The inviscid MHD equat ons are given by:

P pv
a [pv

+7 • Pv®v+pl-TNi
at PE v • ((pE p)I - TA4)

B 6® v- vo B -

Divergence free involution:

V B = O.

= O.

p is the density.
v is fluid velocity.
pv is fluid momentum.
pE is the total energy.
B is the magnetic field.

Po is the fluid permeability.
7 is the ratio of specific heats.

Total energy:
1 1

pE= pe+ -
2
PN12 

2A0 
—11/3112.

Ideal equation of state (EOS):

pe = > O.

Maxwell stress tensor:
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TA4 = — [B 6- 
2
-11B1121] •



Compressible Euler equations

In the absence of the magnetic field B

pv
[ppv [pv® T

iwpE v v • ((pE+ p)I — TA4) 
n

B BO v— vOB

1 1
PE= Pe+ 2 + 

2Po 
—11B1121 Pe = y P 1, 7> O.

we have the compressible Euler equations:

a p pv
pv + V • pv® v+ pl = O.
pE v • ((pEd- p)I)

1
PE= Pe+ —21°11 1'12, Pe= ,7 —P 1, -y > O.

Solution strategy:

• Do continuous finite element discretization in space (Pl/Q1).

• Introduce algebraic stabilization (low order diffusion + limiters).

• Do divergence cleaning for MHD (hyperbolic/parabolic/mixed).



Hyperbolic systems

Nonlinear hyperbolic system in a domain f2 C Rd:

ur + V • f(u) = 0, (x, t) E 1.2 x R+

u(x, 0) = u0(x), x E f2,

with suitable boundary conditions.

• u : Rd x IR+ Rm are the conserved variables.

• uo is a given function defining the initial condition.

• f : Rm (Rm)d is the physical flux which is of the form

f = {f;}d 1, fi E

• f(u) the Jacobian of the physical flux.

The eigen-decomposition of f is:

, i = 1, ..., d.

n • r(u) = R(u; n)A(u; n)R-1(u; n),

where n is a unit vector in Rd, R is the matrix of eigenvectors and A is the diagonal
matrix of eigenvalues.



Hyperbolic systems

Examples of hyperbolic systems include:

• Scalar convection of a chemical in an in/compressible fluid:
u = c, the concentration, and f = vc, where v is the fluid velocity.

• Scalar Burgers equation (has many applications):
u = u, the conserved quantity, and f = 2 u2 the flux.

• Compressible Euler equations:
pv

u = pv , the conserved variables, f(u) = [pv® v + pl the flux.
pE pEv+ pv

• Compressible inviscid MHD equations:

pv
pu =[l
pE 

,

B

the conserved variables,
[

pv
A4

f(u) — 
pv 0 v + pl — T

v • ((pE+ P)Idxd — TM)
v0B— BO v

the flux.

Other examples include shallow water equations, two-fluid plasma equations etc...

17) Lnea atoms



Numerical methods for hyperbolic systems

The design of numerical methods for hyperbolic systems seeks to achieve the following:

Elimination of spurious oscillations that may result in non-physical solutions (e.g.
negative density concentration, internal energy).

Involves:

• Adding sufficient diffusion in the region near a steep front or shock.

• Reduce diffusion in regions with smooth solution (high-resolution).

• Eliminate diffusion completely for linear solutions (linearity-preservation).

Numerical method:

• Should be second order for smooth solutions.

• Work on unstructured meshes.

• Works well with implicit time integration.

The stabilized scheme here is based on algebraic flux correction:

• Adding artificial diffusion element-wise.

• Lumping mass matrix associated with the time derivative.

• Controlling the amount of diffusion through a nodal variation based limiter.



Numerical method

High order (HO) method:

Proble

Let Sh be a collection of elements K, that partition the domain f2. Let
= : C2 —>H18 : u E C3(1-1), 1.11K E Pl(K),K E SO. Let uh =Ei yi0i. Given

uh(•, 0) = uo(•) E (L2(f2))m , find uh(•,t) E (1./h)'" a.e (0, T] such that

aun0—at dx f Of(uh) • nda — f v(1) • f(uh)cbc = 0,
81-2

for all 0 E Vh.

In matrix form, we solve for U = {(1,}, where U, is an approximation to u(xi):

dU
McTit + K(U) + Br(U) = 0, t E (0,

where

fMc = {A4,;}:iL1, KJ= momxm, m, _ E ,y,;), ril.7) = 4,14,idX,

e K,

K(U) = {E_ f Vq5; • f(uh)dx} , Br(U) = ,if(uh) • nda
e rnaK,

NatoreSM I



Numerical method

Example

Burgers symmetric expansion:
fl = (0,4), T= 1. The conserved variable u = u, m = 1. The flux is given by

f(u) 
= 1 = {17,1, x E (0,2),

xE (2,4).

Discretize the HO scheme using Crank-Nicolson with Ax = 4/200, At = 0.001:
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Numerical method

To fix the problem, we add some difFusion following the AFC design philosophy.

Low order (LO) method:

dU
ML—

dt 
K(U) Br(U) D(U)U = 0,

K Le) = diagfm(ie)imxmli, where rt, e) = E

D = E D(e), D(e) = C;1 e) = — E E;ije).
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Artificial diffusion

Design based on the maximum propagation speed of the system.

i j

s < 0

Consider a projected Riemann problem (Guermond et al. 2015, Selmin et al. 1996):

a(f(u) • n)
Lit + = 0,

u(x(s),

as

0) = s>
UR, S < 0.



Artificial diffusion

The maximum propagation speed for the above problem is denoted by

Amax = Amax(n, UL, UR)•

• The maximum propagation speed is such that u(s, = UR whenever s/ t > Amax
and u(s, = tiL for all s/t < —Amax.

• The max propagation speed is bounded above by the Lipschitz constant for f • n.
• It is determined by the spectral radius of n • r.
• For nonlinear scalar problems, it is Amax(n, UL, UR) = maxan • r(uL)1, In • fi(u01)•
• In finite elements uL,R represent nodal states i and j, where i

Artificial diffusion is constructed for the finite element formulation:

D(e) = = elmxm,

d(;) = max { Amax (Lk, nl!)), McCP Amax(Uj, nCP )1

e) =il 

n(e) 
C(e)

VOi¢iidx, for each Ke E Sry.
d McCe)11' f



Limiting algorithm

Pros of artificial diffusion and mass lumping:

• eliminates the spurious oscillations.

• makes the (nonlinear) problem easier to solve.

Drawback of artificial diffusion and mass lumping:

• Diffusion smears the profile

• Diminished accuracy

Solution to this problem:

• Limiting that controls the amount of diffusion introduced.

• Limiting that preserves the quality of the solution as possible.

Limiter for a quantity uh

(24' = min IT.
iE N5(Ke)

<11 E [0,1] for i= Nh, satisfies the following conditions:

• (1);:1(u1 — uf) depends continuously on j E A11.

• 4:T(ui — uj) = 0 at a local maximum and local minimum.

• 4:1(u; — uj) = (Li; — uj) if uh is linear on 1-2;.



Limiting algorithm

Limiter form on unstructured meshes for u (Kuzmin et al. 2018):

E 
.W1

.0,.(.•- u) c

= 1 c 10-16 , q > 1,
2_,yi 1.1j — Lid E 1

where 011 > 0 such that E Ougi • (xi — xi) = 0.

= IENnihrire)(1)11•

The final stabilized scheme

where

is assembled from

U
Mt 

d
 + K(U) -I- (U) D(U)U — F(U) = 0,
dt

F(U) = EF(e)(U),

ge)(1.1) = Coe, [(mie) wi(

c

e
)) 

dt 

dU
+D(e)(U)U].



Limiting algorithm

With limiting, the Burgers symmetric expansion has a steepened profile:
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AFC for Euler equations

Recall that the Euler system has form

at+ V • f(u) = 0,

where

pv
u = pv , f(u) = [pv® v+ pl .

pE pEv+ pv

The maximum propagation speed is computed from

Amax(u; = v • n + c,

where

C =

is the speed of sound.



AFC for Euler equations

Limiting procedure for Euler:

• Synchronized limiting: based on taking a minimum of several element limiters.
For example,

ae = minfa:, a:E}GX m.

• Segregated limiting: limiting each sub-equation using a different limiter. For
example,

Then,

where

= diag{ce:, , , , .

F(U) = Fe)(U),

e

P(e)(u) = ae [(M1_e) — M(c.e)TidUt D(e)(U)U] .



Transient HD results

Problems solved: Sod shocktube, Woodward-Colella blast wave, Sedov point blast
etc... (Mabuza, Shadid and Kuzmin, 2018, JCP)
1D results; Top: Sod shock tube, Bottom: Woodward-Colella

p vs x

p vs x

OA

primitive variables vs x, for Az = 8+0

01 D4

p vs x at Ay =

OB



Transient HD results

Sod ShockTube - Mesh Convergence 100-3200 cells

L1 Slope
(400-800)

L1 Slope
(800-1600)

11 Slope
(1600-3200)

rho 9.36689e-01

rhoE 1.03158e+00

rhou 9.87064e-01

9.65261e-01 8.52469e-01 8.06609e-01 8.60413e-01

1.06352e+00 9.39890e-01 8.16929e-01 1.01285e+00

9.94115e-01 8.30446e-01 7.41841e-01 8.76973e-01
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Transient HD results

LeBlanc ShockTube Profiles - Conservative CFD Formulation
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Transient HD results

LeBlanc ShockTube - Mesh Convergence

L1 error L1 error L1 error Slope Slope
(9/900) (9/1800) (9/3600) (900-1800) (1800-3600)

rho 1.31065e-03 6.72218e-04 3.48644e-04 9.63279e-01 9.47172e-01

rhou 4.98398e-04 2.60317e-04 1.38587e-04 9.37030e-01 9.09481e-01

rhoE 1.91591e-04 9.83755e-05 5.14695e-05 9.61657e-01 9.34582e-01
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Transient HD results

2D results; Top: Radial Riemann, Bottom: Sedov point blast

?0 0 5

Ax = Ay = 1/128 and At = 1 x 10-3 p vs x trace a x = y and y = —x

Ax = Ay = 0.0125 and At = 1 x 10-5.

OS

p vs x, L = 2.25 and t = 0.24.



Steady HD result

Steady Ma = 3 supersonic combustion ramjet engine:

';',50PROACTOC9i.

Coarse unstructured mesh

Density Mach

65256 elements and 33859 degrees of freedom per variable.



AFC for MHD

AFC for MHD with parabolic divergence cleaning:

The induction equation is given by (Dedner 2002)

OB

at 
1-0•[v®B—BOv] —V•(c2pV• Bldxd) = O.

MHD system has form

au
at+ V • f(u) + V • h(u) = 0,

where
h(u) = [0,0,0, —q,,V Bldx
The maximum propagation speed is computed from

At the semi-discrete level

where,

Amax (u; = v • n cf.

cp = Vcncr, where cr = 0.3,

cC7)
ch = max {max Ellc7)11.Xmax(1/•• nCe))] nc!) =  

e yi ' u 
McC,P11



AFC for Euler & MHD equations

Limiting procedure for MHD:

• Synchronized limiting: based on taking a minimum of several element limiters.
For example,

ae = min{4, cri;, cin/mx

• Segregated limiting: limiting each sub-equation using a different limiter. For
example,

Then,

where

ce, = diagfry': 
ar, ape, ape, a,:E, 4 118112 118112, al 1181121.
,

F(U) = Fe) (U),

e

T-(e)(u) = ae  
[(,84e) 

— 
ro(o)dU 

D(e)(U)U] .
C dt



1D MHD test

Example (Brio-Wu test)

ft = (0,1), T= 0.1, Bx

(P, Vx, Vy, Vz, P, By, Bz)L =

(p, v„, vy, vz, p, By, Bz)R =

= 0.75 and 7 = 2, explicit RK4,

(1,0,0,0,1,1,0),

(0.125, 0, 0, 0, 0.1, —1, 0).

Ax= 
800 ' 

At = 2.5 x 10-4 Different synchronized limiting combinations vs Athena:

p vs x

0.0

Byvsx vx x

pE vs x



1D MHD test

Example (Brio-Wu test)

= (0,1), T= 0.1, Bx = 0.75 and 7 = 2, explicit RK4,

(P, vx, vy, vz, P, By, Bz)L = (1,0,0, 0,1,1, 0),

(P, vx, vy, vz, P, By, Bz)R = (0.125, 0, 0, 0, 0.1, —1, 0).

Synchronized p, pp limiting on various meshes:
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1D MHD test

Example (Ryu-Jones test)

f2= (-1,1), T= 0.2, Bx = and 1, = 1, explicit RK4,

3.6 2
(p, vx, vy, vz, p, By, Bz)l- = (1.08, 1.2, 0.01, 0.5, 0.95,    ),

-0/T2r

(p, Vx, Vy, Vz, p, By, Bz)l- = (1,0,0,0,1, 
4 
— , 

2 
).

z.7r \/47r

Synchronized p, pp limiting on various meshes:

p vs x p vs x By vs x



2D MHD test

Example (Orszag-Tang)

f2= (0,1) x (0,1), T= 0.2, Bx = * and 7 = 3, Crank-Nicolson div. cleaning,

(p, vx, v3„ vz, 13) = (-
25 

367r, 
— sin(27ry), sin(27 

127
x), 0, ,

sin(27y) sin(47x)
(Bx, By, Bz) —

17r 47r )

Synchronized p, pp limiting, Ax= Ay= 1/256, At= 10-4

(a) no cleaning (b) parabolic cleaning



2D MHD test

Example (Orszag-Tang)

f2= (0,1) x (0,1), T= 0.2, Bx = * and 7 = 3, Crank-Nicolson div. cleaning,

(p, vx, v3„ vz, 13) = (-
25 

367r, 
— sin(27ry), sin(27 

127
x), 0, ,

sin(27y) sin(47x)
(Bx, By, Bz) —

17r 47r )

Synchronized p, pp limiting, Ax= Ay= 1/256, At= 10-4

(a) no cleaning (b) parabolic cleaning



2D MHD test

Example (Orszag-Tang)

D = (0,1) x (0,1), T= 0.2, Bx = \+, and 7= 3, Crank-Nicolson div. cleaning,

(p, v„, vz, p) = (-
25 

367r, 
— sin(27ry), sin(27rx), 0, 

127r 
,

sin(27ry) sin(47rx) 

)
(Bx, By, Bz) =

T7r L/Trr 

Synchronized p, pp limiting, Ax= Ay= 1/256, At= 10-4; 11.7 • BIL2(.2) vs t:

0.0 0.1 0.4
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