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Bubble migration under a pressure gradient:
Chaotic behavior
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| D flow through saturated bentonite under constant volume
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71 Time Series Decomposition

The additive model used is:
Y[t] = Trend [t] + Periodic [t] + Stochastic][t]

The multiplicative model used is:
Y[t] = Trend [t] * Periodic [t] * Stochastic [t]

STL Model (Polynomial regression--variation of the additive model)

There are three components of a time series:

- trend of the overall changing

- Periodic component

- Stochastic -- error/residual/irregular component not explained by
the trend or the periodic value




Graphical Comparison of Decomposition Models:
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Embedding dimension of all time series trends is 4, which is a diagnostic

feature of low-dimensional chaos.
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Calculations of the spectrum of 3 Local exponents
Lyapunov

No zero Lyap exp for original data - there is a random component
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All time series contain a positive Lyapunov exponents, which is a typical feature of
deterministic chaos.

Trends have 1 exponents ~0, and the sum of Lyapunov exponents is <0, which are typical
features of deterministic chaos. (Calculations will be performed with 4 Local Lyapunov
exponents).

All diagnostic parameters indicate that all time series data are deterministic chaotic.
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11 I Correlation between parameters
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Instability of immiscible fluid invasion in deformable
media: Model formulation

Domain I: Gas + bentonite Domain Il: Water + bentonite
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Advection and diffusion Visco-capillary flow of gas and Dilatancy controlled gas Gas transport in tensile
of dissolved gas water phase ("two-phase flow”) flow ("pathway dilation”) fractures ("hydro-/gasfrac”)




13 1 Model formulation: Domain |l

Continuity for mass: Continuity for momentum:
6(¢Pw)+v(¢ I—/‘):O Ij'V[(l—d))Gs]:O

ot Pwlw —[+V- ($0,,)=0
a[(1 — _ ST

Constitutive relationship:
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14 I Model formulation: Domain | )

Continuity for mass: Continuity for momentum:
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15 I Model formulation: At water-gas interface F(x,y, z, t)=0
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DECOVALEX19 TASK F: Fluid
Inclusion and Movement in Tight
Rocks (FINITO)
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Possible chaotic behaviors of fluid release from rock
17 1 salt ()
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#1 1997 WIPP Unheated Brine Inflow Study
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19 1 More observations

BRINE MIGRRTION TEST AT ASSE MINE
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Shear-induced brine localization and episodic
release
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21 | Positive feedback
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2 | Mathematical model
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| Linear stability analysis o
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New mechanism for brine migration

Episodic release

Brine localization
Heterogenous brine
chemistry
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