
PROTECTING BARE-METAL SYSTEMS
FROM REMOTE EXPLOITATION

•
•• hexhive

Abraham A. Clements

Final Exam

April 5th 2019

Supported by the Laboratory Directed Research and Development program at
Sandia National Laboratories, a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA-0003525. SAND - X)0(X

PURDUE
UNIVERSITY.

SAND2019-3837PE

THESIS STATEMENT

Using static and dynamic analysis, modern micro-controllers
can:

Employ defenses against memory corruption and control-
flow hijack attacks that match or exceed those deployed on
desktop systems, and

Utilize state-of-the-art testing techniques to identify and
prevent memory corruption errors

• hive• 2/59

OUTLINE

► Background Information
► Bare-metal Systems

► Memory Corruption and Control-Flow HijackAttacks

Static and Dynamic Analysis

Thesis Statement

Thesis Impact

Case Studies to Demonstrate Thesis Statement

EPDXY: Protecting Bare-metal Applications with Privilege Overlays

2 ACES: Automatic Compartments for Embedded Systems

HALucinator: Firmware Re-hosting Through Abstraction Layer Emulation

• hive• 3 / 59 PURDUE
UNIVERSITY.

BACKGROUND

• hive• 4/59 PURDUE
UNIVERSITY.

BARE-METAL SYSTEMS

Systems without an OS

Constraints

Small memory sizes

+ Tight run-time constraints

+ Low power requirements

Single Application

No kernel/user space separation

Tightly coupled to hardware

Limited execution observability

• hive•

Examples

Security left out and
testing limited by coupling to

hardware

5 / 59 PURDUE
U N I V E R S I T Y.

DEFAULT: NO DEFENSES
Bare-metal Application

RAM

Flash

ecurity Hardwar

Sensitive 10

Global Data

Code

Single (Root)
execution domain

•-
• hive 6 / 59

Unused or trivially
bypassed

Always accessible

Vulnerable to:
Stack smashing
Code injection

Global data corruption

No ROP defenses

PURDUE
U N I V E R S I T Y®

MEMORY CORRUPTION

#define UARTRX Ox40000100

void get_uints(){

uint32 t i = 0;

uint32 t buf[2];

buf[i] = *(UARTRX)

(buf[i] !=

++i;

buf[i] = *(UART RX)

}

}

Input:

rmrnaddr

OxCOOOAD80

OxBBBBBBBB

OxAAAAAAAA: OxBBBBBBBB: OxC000AD80:

OxFF000000:

Writes OxFF000000 to OxE000ED94
Disabling Memory Protection

0,0k 7/59• hive•

0x20004020

Ox20004010

PURDUE
UNIVERSITY.

CONTROL-FLOW HIJACK
#defin(UARTRX Ox40000100

void get_uints(){

uint32 t i = 0;

uint32 t buf[2];

buf[i] = *(UARTRX)

whilL (buf[i] !=

++i;

buf[i] = *(UART RX)

}

}

0x20004011

P 0)(0000000:1
OKAABBACAD

B pc, #0

Input: OxAAABACAD: OxAABBACAD: Ox00000002:

Ox20004011: Ox00000000:

• hive• 8 / 59

0x20004020

Ox20004010

PURDUE
UNIVERSITY.

STATIC AND DYNAMIC ANALYSIS

Static Analysis

► Examining application without executing it

► Used to determine control and data flow through a program

Precise static analysis is intractable due to aliasing

Approximations are used

► Dynamic Analysis
Examining the execution of the program

Is precise — observed control and data flow actually occur

Incomplete — have to observe every possible input to be complete

• hive• 9 / 59 PURDUE
UNIVERSITY.

THESIS STATEMENT

Using static and dynamic analysis, modern micro-controllers
can:

Employ defenses against memory corruption and control-
flow hijack attacks that match or exceed those deployed on
desktop systems, and

Utilize state-of-the-art testing techniques to identify and
prevent memory corruption errors

• hive• 10 / 59 PURDUE
UNIVERSITY.

THESIS IMPACT

Advance bare-metal security several decades

Enable protections beyond those currently used on desktop system

► Force attacks to be individually tailored per device

Single vulnerability does not compromise entire system

Enables state-of-the-art testing of bare-metal systems

• hive• I I / 59 PuRDUE
UNIVERSITY.

THESIS CASE STUDIES

EPDXY: Protecting Bare-metal Systems with Privilege Overlays

Presented at I EEE Security and Privacy 2017

► ACES: Automatic Compartments for Embedded Systems
Presented at Usenix Security 2018

HALucinator:

Under review at Usenix Security 2019

• hive• 12 / 59 PURDUE
UNIVERSITY.

EPDXY: PROTECTING BARE-METAL
APPLICATIONS WITH PRIVILEGE
OVERLAYS
Presented at IEEE Security and Privacy 2017

Authors: Abraham Clements, Naif Almakhdhub, Khaled Saab, Jinkyu Koo,
Saurabh Bagchi and Mathias Payer

heyhive 13 / 59

EPDXY
Embedded Privilege Overlay across X hardware forY software

LLVM based compiler

Protects against
Code injection

. Control flow hijacking

► Data corruption

Direct manipulation of 10

Privilege Overlays
Creates two privilege levels

► Created using static analysis

► Foundation for other defenses

Low overhead
1.8% Runtime

0.5% Energy

• hive•

Random

Seeds

EPDXY

LLVM-based

compiler

Sensitive

10

14 / 59

Source

Code

Hardened

Application

Hardene

Applicatiol

Hardened

Application

PURDUE
UNIVERSITY.

THREAT MODELAND REQUIREMENTS

Threat Model

Arbitrary memory corruption

Attacker goals:

► Control-flow hijacking

► Corrupt specific global data

Does not have physical access

Requirements

Hardware support for two execution privilege modes

Memory Protection Unit (MPU)

Hardware that enforces access permissions on physical memory

Memory usage determined a priori

• hive• 15 / 59 PURDUE
UNIVERSITY.

BEFORE EPDXY

• hive•

Application

SeclifirMkrare

Sensitive 10

10

Global Data

Stack

Code

Privileged
Execution

16 / 59 PURDUE
UNIVERSITY.

PRIVILEGE OVERLAY EXAMPLE

Default

#define UART RX Oxdeadbeef

char menu_option;

• • •

menu_option = *(UART_RX)

switch (menu_option):

case 'l':

handle case 1;

break;

• • •

• hive•

Privileged
Execution

Privilege Overlay

#define UART RX Oxdeadbeef

char menu option;

request privileges;

menu_optio (UART RX)

drop privileges;

switch (menu option):

case '1':

handle case 1;

break;

Unprivileged Execu ion

17 / 59 PURDUE
UNIVERSITY.

EPDXY -ALL PROTECTIONS

Isolated Unsafe

Global Data Protected

Stack Smashing Protection
ROP Protections

ROP Protections

• hive•

Hardened Application

TT

Sensitive 10

10

UnSafeStack

Global Data

Stack

Privirged
Execution

Enabled enforcing DEP
Access Restricted

Access Restricted

Set to RW-NX
Stopping Code Injection

Set to RX
Providing Code Integrity

Unprivileged Execution

18 / 59 PURDUE
UNIVERSITY.

ACES:AUTOMATIC COMPARTMENTS
FOR EMBEDDED SYSTEMS

Presented at Usenix Security 2018

Authors: Abraham Clements, Naif Almakhdhub, Saurabh Bagchi, and
Mathias Payer

:‘'k hey hive 19 / 59

ACES INTRODUCTION

► ACES creates many compartments
Applies least privileges

Creates sub-thread compartments

Protects integrity of sensitive data
and peripherals

Uses static analysis to automatically I
infer compartments using a policy

Separates compartmentalization
from application development

Each compartment has associated
data/peripherals

Compartmented Application

Application Logic 1

• hive•

Image
Proc.

Camera
HAL

Camera

TCP
Stack
WIFI
HAL

2.4Ghz
Radio

Serial
Coms
UART
HAL

Lu
ART

Comp.
Switcher

Signal
Proc.
ADC
HAL

ADC

Privileged code

l —1 Compartmented unprivileged code

Li Hardware peripheral

20 / 59 PURDUE
UNIVERSITY.

COMPARTMENTS

► Set of concurrently accessible 1 Comp
memory regions and i

A i
i
1 0

authorized control-flows I OnBtf) I 7t_
I cu

between them 1
i _c 0_
1 .i- (L)i ci-► Compartments restrict

Accessible memory

Control-flow between
compartments

Control-flow 0 Function

Memory Regions

7 Code
-119

Data 7 Peripheral
• Accessible for compartment

•
,

hive•

TakeImg

Z

26
o

!Comp B

21 / 59

A B
I I

WIFI

CAMERA

GPIO

UART

Region 1

Region 2

Comp A

Comp B ti

PURDUE
UNIVERSITY.

CREATING COMPARTMENT

Static analysis identifies code, data, and peripheral dependencies

► ACES ensures compartments can access all required data and peripherals

► Mirco-Emulator used to dynamically identify missed dependencies due to aliasing

Compartments are code centric

i.e. code belongs to only one compartment

Policy determines how functions, global variables, and peripherals are
grouped to create compartments

Different policies possible

We evaluate: NaIve Filename, Optimize Filename, and Peripheral policies

MPU is used to restrict access to memory regions

• hive• 22 / 59 PURDUE
U N I V E R S I T Y®

PROGRAM DEPENDENCY GRAPH
void Takelmg()

CAMERA.take_pic = 1

g_image.buf = "AMERA.rx reg

GPIO.led = OFF

void OnBtn()

GPIO.led = ON

CAMERk.pwr = ON

g_btn = PUSHED

TakeImg()

TxImg()

void Txlmg()

g_tx state = ACTIVE

TcpTx(g_image.buf)

g_image.sent = TRUE

void TcpTx(*buf)

GPIO.led tx = ON

WIFI.tx_reg = buf

g_tcp_stats.tx_count++

g_tx_state = IDLE

• hive„R. 23 / 59

nBtn

Txlmg

PURDUE
UNIVERSITY.

REGION GRAPH

PDG mapped to a Region Graph

Functions I:

Control edges not transferred

Data I:I

Data edges transferred

Peripherals I :Many

Unique region created per
dependency edge

• hive• 24 / 59

Takelmg

(2nBtn

TxImg

TcpTx

CAMERA

GPIO

GPIO

g_btn-mmin

gimage

g tx state

g tcp stats
AI - - md

GPIO

PTJRDUE
UNIVERSITY.

COMPARTMENTALIZATION POLICY

Defines what should be grouped
to form compartments

Implemented policies

Naive Filename

Optimized Filename

Peripheral

Many more are possible

• hive• 25 / 59

Takelmg

OnBtn

Txlmg,

TcpTx

CAMERA

GPIO

CAMERA

GPIO

g_btn,

g_image

g_tx_state

g_tcp_stats-11

WIFI

GPIO

PURDUE
UNIVERSITY.

OPTIMIZE

Improve security

Improve performance

• hive• 26/59

Takelmg,

OnBtn

Txlmg,

TcpTx

CAMERA

GPIO

CAMERA

GPIO

g_btn:117-

gimage

g tx state

g_tcp_stats

WIFI

GPIO

PURDUE
UNIVERSITY.

LOWERING

Reduces graph to meet HW
constraints

Degree of each code regions must
be less than the number of MPU
regions

Lowest cost regions merged
until constraints are met

Lowing may increases
permissions of compartments

Merging peripherals may capture
additional peripherals

• hive• 27/59

Takelmg,

OnBtn

Txlmg,

TcpTx

CAMERA

GPIO

g_btn,

g_image

Fri

g_tx_stat

g_tcp_stats

UART, GPIO,

CAMERA,WIFI

PuRDUE
UNIVERSITY.

MAPPING TO MEMORY

Comp. A

Takelmg,

OnBtn

Comp. B

Txlmg,

TcpTx

•ID he> hive

CAMERA
GPIO

Region I
g jotn,

g_image

Region 2
g_tx_state,

g_tcp_stats jm.

UART, GPIO,
CAMERA, WIFI

28 / 59

1

a)

o

A B
I

WIFI

CAMERA

GPIO

UART

Region I

Region 2

Comp A

Comp B

PURDUE
UNIVERSITY.

RESTRICTING CONTROL-FLOW

Instrument calls and returnsr " e I
I I I I

crossing compartment boundaries Eoi 1 1nBtn) I I Txling 1
I

Invoke compartment switcher 1 I I I
I ---------- I I

Compartment switcher 1 ,T.,:ce11ag I1 1 TcpTx
I

authenticates both directions 'Comp A
i

i Comp EP
1 -1

Memory permissions only changed for
valid transitions

• hive•

Call

COnBtn >

29 / 59

Comp.
Switcher

PURDUE
UNIVERSITY.

MICRO-EMULATOR

Emulates store instructions in software

Overcomes limitations of static analysis in
generating PDG

Authenticated writes outside a compartment's
regions

Dynamic profiling run creates white-list of
accesses per compartment

Used for stack protection

• hive• 30 / 59

ap
ed

s
X
j
o
w
a
k
i
 >
pe
ls

Previous Stack

New Locals

R
w

su
o!
ss
!u
ua
d
nd
lA
l

PURDUE
UNIVERSITY.

EVALUATION

► Evaluated policies for security, runtime, resource usage
► Naive Filename

► Optimized Filename

Peripheral

Five applications run on Cortex-M4

PinLock

FatFs-uSD

TCP-Echo

LCD-uSD

Animation

• hive• 31 / 59 PURDUE
UNIVERSITY.

PINLOCK CASE STUDY

Attacker trying to unlock lock

Assume write-what-where vulnerability in HAL_UART Receive IT

Policy

Overwrite Control Hijack

Global GPIO Direct Deputy

Naive Filename

Opt. Filename

Peripheral

• hive• 32 / 59 PURDUE
UNIVERSITY.

RUNTIME EVALUATION

X
 O
v
e
r
h
e
a
d

6

5

4

3

2

1

0

MI= Total

Entry

Exit

Emulation

Fat Fs-uSD
1.95 1.90

Pin Lock
1.0tt00 1.00

TCP-Echo
3.69

1
CN1

(1) Naive Filename

C I 01

(2) Filename

LCD-u SD
5.69

1
.7 .7

Animation
5.70

i

.1 13

(3) Peripheral

Can have moderate runtime impact

Emulating instructions accounts for largest increase in execution time

Wykhexhive - 33 / 59 PURDUE
UNIVER SIT Y•

MEMORY OVERHEAD

Flash Overhead

160
Baseline

140 Frag

Code

120 Runtime

Metadata

100

80

60

40 Pi n Lock

20

0

C cn

TCP-Echo

■

LCD-uSD

1.11

An im ation

(1) Naive Filename (2) Filename (3) Peripheral

•••• hexhive•

N

50

40

30

20

10

0

RAM Overhead

FatFs-uSD

Pi n Lock

TCP-Echo

111
LCD-uSD

Baseline

Frag

Runtime

Animation

N

C I CO C

(1) Naive Filename (2) Filename (3) Peripheral

Largest impact from fragmentation

34 / 59 PURDUE
UNIVERSITY.

ACES CONCLUSION

Applies least privileges to bare-metal loT devices

► Does not require changes to application logic

► Uses existing hardware

ACES automatically creates and enforces sub-thread

Decouples security policy from application

Frees developer from having to manage underlying security hardware

Enables research in creating compartmentalization policies

Code available at:

https://github.com/embedded-sec/ACES

• hive• 35 / 59 PURDUE
UNIVERSITY.

HALUCINATOR:
FIRMWARE RE-HOSTING THROUGH
ABSTRACTION LAYER EMULATION
Under review at Usenix Security 2019

Authors: Abraham Clements, Eric Gustafson,Tobias Scharnowski, Paul
Grosen, David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi,
and Mathias Payer

•E"It
•••• heyhive 36 / 59 PURDUE

UNIVERSITY.

CONTRIBUTIONS

Equal collaboration with Eric Gustafson

My contributions:

Identification that HAL's provide decoupling point suitable for emulation

► Development of models for replacing HALs

Eric's contributions:

Development of LibMatch

Implementation of Fuzzer

Primary contribution of HALucinator lies is in combination of these

• hive• 37 / 59 PTJRDUE
UNIVERSITY.

GOAL
Re-host micro-controller firmware in generic system emulator

O Smart Watches

• AMI (Smart Meters)

o Wireless Network SoC

• hive• 38 / 59

FA Edit VWw Search Teroall Help

IN 0:SD-POIC:Init Write: Slot 8, Block Num 8192, ABlocks: 1
IN 0,SD-POIC:LR: BAN.
INFO:SD-MC:Write: Slot SRC ea20001fac, aBlocks: 1
INFO:SD-W:1A. ext,79
INFO,SDCardModel.SOCardModle Writeing: 0.08000
INFO,SD-MMC,End Write Blocks
INEO,SD-MMC: R: BAIA)
INFO:SD-MMC:SDMMC_Check Executed
INFO:SD-MMC:LR: OX.19

0:SO-1111C:Get SI Type Executed
IN 0:50-MPICA_R: .9
IN 0:SAMR21-BSART:TOdata: T
INFO:SAMR21-BSART:Todata: e
INFO:SAMR21-USART:Tx data: s
INFO:SARR21-usART:Txdata: t
INFO:SARR21-MART:Txdata:
INFO:Sa1R21-1.15ART:Txdata:
INFO:SMIR21-LISART:Tx—data: s
INFO:SMR21-LISART:Txdata:
INFO:SAPIR21-LISART:Txdata: s
IN arSAPIR21-LISART:Tx:data: u
IN OrSAPIR21.LISART:Tx data: c
IN 0:SAMR2I-USART:TX:data: c
INFO:SAMR21-USART:To data: e
INFO:SAMR21-USART:Todata: s
INFO:SAMR21-USART:Tx:data: s
INFO:SAMR21-11SART:Tx data: f
INFO:SA1R21-11SART:Tx—data: u
INFO:SAMR21-LISART:Txdata:
INFO:SMR21-1.1SART:Txdata:
INFO:SOPIR21-1.1SART:Tx:data:

IN 0:SAMR21-BSART:Tx data:
IN 0:SAMR21-USART:Tx:data: P
INFO:5AMR21-USART:Tx data: l
INF0:5AMR21-USART:Tx—data: e
INFO:5AMR21-USART:Tx:data: a
INFO:5AMR21-11SART:Tx data: s
INFO:5A1R21-MART:Txdata: e
INFO:SAMR21-BSART:Tx:data:
INFO:SA/IMAM/WIT:Tx data: u

PURDUE
UNIVERSITY.

WHY RE-HOSTING

Enables dynamic analysis of bare-metal systems

► Vulnerability Analysis

► Fuzzing

Automated testing

Remove dependency on hardware

Enables large scale analysis

Simplifies test setup and tear down

We use HALucinator to emulate 12 firmware from 2 manufactures

Found: buffer overflows, buffer overreads, double frees, and use-after- free bugs

• hive• 39 / 59 PURDUE
UNIVERSITY.

RE-HOSTING CHALLENGE

••'T&•• hex hive•

Emulation Requires

Internal

CPU

AES Accelerator

External

Ethernet

SD-MMC

10

-nera

D

ach Screen

reless EEPROM

This is one chip

Mouser lists:
41K micro-controllers with

3,100 unique data sheets from

33 manufactures

IAP

DMA

Providing proper values for large variety of peripherals
is primary challenge of re-hosting these systems

40 / 59

Serial

CAN

Analog 10

USB

PURDUE
UNIVERSITY.

CURRENT APPROACHES

Manually implement all required hardware in emulator

3, I 00 datasheets

► Forward hardware accesses to real hardware (AVATAR2I, Surrogates2)
Require

High lat,

Record an

Restrict_

None allow scalable emulation without
hardware

r r

[1] Muench, Marius, et al. "Avatar 2:A Multi-target Orchestration Platform." Workshop on Binary Analysis
Research. 2018
[2] Koscher, Karl, et al. "SURROGATES: Enabling Near-Real-Time Dynamic Analyses of Embedded Systems."
Workshop on Offensive Technologies. 2015
[3] Tancreti, Matthew, et al. "TARDIS: software-only system-level record and replay in wireless sensor
networks." Information Processing in Sensor Networks. 2015.

• hive• 41 / 59 PURDUE
UNIVERSITY.

HALUCINATOR CONCEPT

Software Stack

HTTP Server

OS Library (e.g. mbed)

TCP Stack (e.g. lwlP)

Temp
Sensor
Library

Peripheral Models

Emulator Host Resources

• -t-:• he> hive

Application Logic

E.g. HTTP Server

Developer Implemented

Middleware

For this to scalably we need:
I. To automatically identify abstraction in firmware
2. A scalable way to develop peripheral models
ar ware Anstraction LiDraries kriAL)

Abstracts hardware

Provided by micro-controller manufacture

Source commonly available

Peripherals

Hardware performs 10

42 / 59 PURDUE
UNIVERSITY.

HALUCINATOR OVERVIEW

Intercept abstraction library functions

► Use peripheral models to enable I/0

► Fix up state so firmware executes as if function executed

Scalable

Changes supporting number of devices to number of HALs

e.g., 33 Manufactures vs 3,100 parts

Peripheral Models

Core functionality of peripherals is independent of micro-controller

Implement once per peripheral type (e.g. Ethernet)

► Intercept Handlers
► Unique handler to map each HAL to peripheral model

► Implement once per HAL

• hive• 43 / 59 PURDUE
UNIVERSITY.

REQUIREMENTS

Firmware to emulate

Emulator for ISA

► Instruction Set Architecture

► General memory layout of device

Libraries with symbols to replace

Compiled with same flags as firmware

Ability to hook execution specific addresses

Read/Write processor state within the hook

• hive• 44 / 59 PURDUE
UNIVERSITY.

DESIGN

Firmware

FW -
-

• -1-••• he> hive

LibMatch

Library Binaries

HAL
Addresses

45 / 59

HALucinator

ISA Emulator
(e.g., QEMU)

0,4

Uart
Handler

Uart
Model

• • •

• • •

Ethernet
Handler

Ethernet
Model

10 Server

PURDUE
IINIVER SITY•

LIBMATCH CONTRIBUTIONS

Identifies location of abstraction
functions in firmware

Resolve binary equivalent functions

E.g Getters and setters on MMIO registers

Callbacks/Override function

Identify code statically called by HAL (e.g.
weal< functions)

• hive• 46 / 59

11

Firmware LibMatch
1111

FW

1111

ck HAL
Addresses

Library Binaries

PURDUE
UNIVERSITY•

HALUCINATOR

Input

► HAL addresses from LibMatch

► Mapping of HAL function to intercept handlers

Intercept handler

Maps HAL to peripheral model

Peripheral Model

Abstracts peripheral

Common for peripheral type

10 Server

Enables flexible external communication

Sends and receives tagged messages

• hive• 47 / 59

♦

1

HALucinator

ISA Emulator
(e.g., QEMU)

Uart
Handler

[Uart
Model

Ethernet
Handler

Ethernet
Model

10 Server

♦

• • •

• • •

PURDUE
UNIVERSITY.

INTERCEPT HANDLERS

STM32Cube Ethernet TX Frame

HAL StatusTypeDef

HAL ETH TransmitFrame(

ETH HandleTypeDef *heth,

uint32 t FrameLength);

Intercept Handler

f ptr = heth->TxDesc->buf

frame = read memory(f ptr,

FrameLength)

model.send frame (frame)

return 0 #(HAL OK)

•
•

4T- he)(hive

ATMEL Ethernet TX Frame

void ksz8851 fifo write(

uint8 t *buf,

uint32 t len);

Intercept Handler

frame = read memory(buf,len)

model.send frame (frame)

48 / 59 PTJRDUE
UNIVERSITY.

HALUCINATOR IMPLEMENTATION

Build on Avatar2

Provides python API to instrument
QEMU, GDB, and angr.

ISA Emulator is QEMU

Interception done using GDB

Everything written in Python

• hive• 49 / 59

♦

HALucinator

ISA Emulator
(e.g., QEMU)

t
Uart

1 Handler

[UartModel

• • •

• • •

10 Server

Ethernet
Handler

Ethernet
Model

PURDUE
UNIVERSITY.

HAL-FUZZ

► Replaced QEMU with AFL-Unicorn*
Stripped down QEMU integrated with AFL

► Use Fuzz model to replace input with
fuzz output from AFL

Control sources of non-determinism

► Timers tied to basic blocks executed

► Interrupt execution tied to basic blocks

► Rand() deterministic

*https://github.com/Battelle/afl-unicorn

• hive•
50 / 59

HAL-Fuzz
4000/01

•

ILLAFL-Unicor

[Uart r Ethernet
Handler • • •

Handler

Uart Fuzz
[

• • •
Model M941.el

AFL- 1111

•

PURDUE
UNIVERSITY.

HALUCINATOR EVALUATION

Determine effectiveness of LibMatch

Evaluate interactive emulation

Validate Black Box behavior with external interaction

Assess complexity of implementing handlers and models

Demonstrate usefulness of HALucinator by fuzzing

Execution not constrained to single path

• hive• 51 / 59 PuRDUE
UNIVERSITY.

EXAMPLE APPLICATIONS

► ATMEL SAMR21
► USART-Terminal

► SD-Card

HTTP-Server

6LoWPAN Sender and Receiver

STM32F479 Eval Board

UART

SD-Card

UDP-Echo Server and Client

► TCP-Echo Server and Client

► PLC

• hive• 52 / 59 PURDUE
UNIVERSITY.

LIBMATCH ANALYSIS
H
A
L
 S
Y
M
B
O
L
S

I 00%
90%
80%
70%
60%
50%
40%
30%
20%
I 0%
0%

1
98

•

Correct • Unresolved Collision l Incorrect Missing

7 7 5 4
794

275
111

2$0

•

I 42 2

L

9

23

1- •

1
<t) ,‹S 4S 6 6 6 ' <t)

4 • e 4e, IC
</

`‘ \) ei.C‘ cD6 45 <<eb'

c'D‘i 4R-gl 0 0 0 cP

<<5'‘5‘ <<e6
4A4°'s 4c5R .04R a a

• hive•

Atmel STM32F4

53 / 59 PURDUE
UNIVERSITY.

INTERACTIVE EMULATION

Atmel

en

1 1
4<c, ,<<ct e4y- <</SL-

.)' <<\'" •Z• <<>
o c.,<</ <<,(1c, So-

0 44
\• 0kc)

• hive•

‘.0
D̀

STM32F4

cV
en CO

1/40
Le)

COI 031 COI

QEMU • Black Box

— o
— o

en

.4* 'S<<c) <<"' <<Y-

\)\'' e;cct <<•
e•-% c>. c)-c,

c/ 0
e`` eN •• ``
l.1 1/4.1

<<, <<,

.0 '0 Ci

54 / 59 PURDUE
UNIVERSITY.

PERIPHERAL MODEL COMPLEXITY

140

120

100

80
O

60
62

40

20

SLOC for Peripheral Handlers and Models

21
25

0
\<„ & ,6.,e.c

C>c) Q Nc\e'
<<.`'

123

67
19

47

32

52

36

136

95

55
66

59

77

3

• STM32 Handlers • ASFv3 Handlers HALucinator Models

• hive•
4 55 / 59 PURDUE

UNIVERSITY.

KEY FUZZING RESULTS

Fuzzed the nine network connected firmware samples

Bugs either fixed or reported to application vendor

Application os • le Attack Fuzzing Layer

LWIP HTTP Buffer Overread Memory Leak TCP

LWIP HTTP Double free,
Use-after free

Denial of Service Ethernet

6LoWPAN

PLC

Buffer Overflow

Buffer Overflow

Remote Code Exe 802.15.4

Remote Code Exe TCP

• hive• 56 / 59 PURDUE
UNIVERSITY.

HALUCINATOR CONCLUSION

Presents novel concept of high-level emulation to enable re-hosting
bare-metal firmware

Enables interactive emulation and fuzzing of firmware in scalable way

• hive• 57 / 59 PURDUE
UNIVERSITY.

THESIS CONCLUSION

Case studies show that using static and dynamic analysis, we can
automatically enable protections against memory corruption and control-
flow hijack attacks on bare-metal systems

EPDXY

Demonstrates bare-metal applications can enjoy protections as strong as desktop
computers with negligible overhead

ACES

Shows many small compartments can be automatically formed within a single
application reducing the impact a single vulnerability has on entire system

HALucinator

Scalably emulates bare-metal systems enabling dynamic analysis

► Enabling state-of-the-art coverage based fuzzing of bare-metal systems

• hive• 58 / 59 PURDUE
UNIVERSITY.

PUBLICATIONS

I . A. A. Clements, N. S.Almakhdhub, S. Bagchi, M. Payer, "ACES:Automatic Compartments for
Embedded Systems", Usenix Security 2018.

2. A. A. Clements, N. S.Almakhdhub, K. Saab, J. Koo S. Bagchi, M. Payer, "Protecting Bare-metal
Systems with Privilege Overlays", IEEE Security & Privacy 2017.

3. N.S.Almakhdub, A. A. Clements, M. Payer, and S. Bagchi, "loT2:A benchmark for the things in
the Internet of Things", To Appear at Dependable Systems and Networks 2019.

4. A. R. Hota, A. A. Clements, S. Bagchi, and S. Sundaram, "A Game-Theoretic Framework for
Securing InterdependentAssets in Networks,"(To Appear) Game Theory for Security Risk
Management — From Theory to Practice, Springer/Birkhauser's series on "Static & Dynamic
Game Theory: Foundations and Applications." editors: Stefan Rass, Stefan Schauer, pp. 1-28,
2018.

5. A. R. Hota, A. A. Clements, S. Sundaram, and S. Bagchi, "Optimal and Game-Theoretic
Deployment of Security Investments in InterdependentAssets." GameSec 2016.

Under Review

I . A. A. Clements, E. Gustafson,T. Scharnowski, P. Grosen, D. Fritz, C. Kruegel, G.Vigna, S. Bagchi,
and M. Payer "Halucinator: Firmware Re-hostingThrough Abstraction Layer Emulation"

• hive• 59 / 59 PURDUE
U N I V E R S I T Y®

QUESTIONS

• hive• Kr-iviTa

BACKUP

• hive• 61 / 59

EPDXY BACKUP

• hive• 62 / 59 PURDUE
UNIVERSITY.

EPDXY -AFTER PRIVILEGE OVERLAY

Hardened Application

TV

Sensitive 10

10

Global Data

Stack

Code

Privileged
Execution

• hive•

Enabled enforcing DEP
Access Restricted

Access Restricted

Set to RW-NX
Stopping Code Injection

Set to RX
Providing Code Integrity

Unprivileged Execution

63 / 59 PURDUE
UNIVERSITY.

SAFESTACK

SafeStack from Code Pointer Integrity *

Protects against stack smashing

"Unsafe" variables moved to separate stack

We adapted to bare-metal systems

RAM

Stack40_ .data .bss heap

Stack .data .bss heap UnSafeStack

*V. Kuznetsov et al., Code Pointer Integrity, OSDI 2014

• hive• 64 / 59

Guard Region

PURDUE
UNIVERSITY.

DIVERSIFICATION

ir Further protects against ROP attacks

► Corruption of specific global data

Seed I

Seed

• hive•

Source
Code

-41

Seed 2

Seed 3

Seed 4

Binary I

Binary 2

65 / 59 PURDUE
UNIVERSITY.

DIVERSIFICATION

ir Further protects against ROP attacks

► Corruption of specific global data

.data .bss Padding

A Stack b d 1 a c heap D UnSafeStack E

RAM

Flash
Binary I

handler foo foo2 bar2 bar baz

invalid execution

• hive• 66 / 59 PURDUE
UNIVERSITY.

MEMORY USAGE

PinLock 3,390 (29%) 14.6 (I%)

FatFs-uSD 2,839 (12%) 18.2 (I%)

TCP-Echo 3,249 (8%) 7.2 (0%)
Absolute units are bytes

Stack increase because two stacks used

104 (25%)

164 (4%)

128 (29%)

Stacic size is max size of deepest regular stack and deepest SafeStack

• hive• 67 / 59

ROP COMPILER

Used ROPgadget compiler* to identify gadgets across 1000 variants

Gadget survives if same instructions (ending with a branch) at same address

App Total

Surviving Across

2 5 25 50 Last

Pin Lock 294K I 4K 8K 313 0 48

FatFS-uSD 1,009K 39K 9K 39 0 32

TCP-Echo 676K 22K 9K 985 700 107

* J. Salwan, ROPgadget, http://shell-storm.org/project/ROPgadget/

• hive• 68 / 59 PURDUE
UNIVERSITY.

LIBMATCH ALGORITHM

Statistical Comparison

Number BB

Number unique functions called

Basic Block Comparison

Does VEX IR match

► Call Graph Contextual Matching
Resolves conflicts

Gives names to callback functions

• hive•

Ethernet Ethernet

tx_frame rx_frame

41 Ethernet 4i Ethernet

write_ri get_status

69 / 59

Uart
send_buf

PURDUE
UNIVERSITY.

RELATED WORK

General Computing Defenses

Artificial Diversity (Larsen et al, SoK IEEE S&P 2014)

ASLR (Pax Team 2003)

Code Pointer Integrity (Kuznetsov et al., OSDI 2014)

Control Flow Integrity (Burow et al., ACM Computing Surveys 2018)

► Embedded Systems
Cui and Stolfo Symbiotes (RAID 201 1)

FreeRTOS-MPU

Firmware Attestation

Eldefrawy NDSS 2012, Francillon EDAA 2014, Abera CSS 2016, Li CCS 2011

ARM-Trust Zone

• hive• 70 / 59 PURDUE
UNIVERSITY.

PERIPHERAL MODEL COMPLEXITY

SLOC handlers and models
140

120

1
100

80

(21
60

40

20

0

\() \I- 6
61, ,. xiI2)
cb

\d "
e

1 6

0
5

9

.kb 4\ kez, e
cer,4 • 4c\

Peripheral

• STM32 Handlers • ASFv3 Handlers HALucinator Models

• P' h ive

14

12
1

10

71 / 59

6

4

Functions and Average CC

14

ID& CP

‘

c• 6C.
♦

c> ,0 „<„

<<
• STM32F4 Func

• Model Func

• ASFv3 Ave CC

0 6 R\ •tc.,
("(Z\ c,4 c' ctsz

'CN
• ASFv3 Func

• STM32F4 Ave CC

• Model Ave CC

JP

PURDUE
UNIVERSITY.

FUNCTIONS INTERCEPTED AND MMIO

45

40

35

30

25

20

15

10

5

0

Atmel

36 36

UART SD FatFs IwIP HTTP 6LoWPAN 6LoWPAN
Sender Receiver

• Black Box Funcs • Reduced MMIO Funcs

• -.1

• he> hive

STM32F4

25

UART SD FatFs UDP Echo UDP Echo TCP Echo TCP Echo PLC
Client Server Client Server

• Black Box MMIO • Reduced MMIO

72 / 59 PURDUE
UNIVERSITY.

INTERACTIVE EMULATION

rn rn
co

Atmel

1 .0 0
03 •Co •Co

.o

STM32F4

QEMU

• Black Box

■ Reduced MMIO

O rn

--

•0
Lr)

W

co N..
rn

sz,

C") 4SL Si— <<C) <<,<Ct— <<"" Ci
vs," •<< .0<s‹, <<e

<<\7'- (<>
\)\7'. <ciS </N-- 4R\

‹tZ C)<</ C>' C,<<' C>/

<

 C)<</

`, 4A ,-. st- cp o 0 o 0
,Z, •• •?, •?,C. Ci c., C,

<<, <<, <<, <<,
.tz <z 4R 4R
0 0 C., Ci
J J ,S

QP-

0 44
1,0\, 0\,

• hive• 73 / 59 PURDUE
UNIVERSITY.

PERFORMANCE

BEEBs Runtime loT Apps Runtime

SS I PO I All

Min -7.3% -1.3% -1 1.7%

Ave -3.5% 0.1% 1.10h

Max 4.4% 2.1% 14.2%

BEEBs Power

SS I PO I All

Min -4.2% -10.3% -10.2%

Ave 0.2% -0.2% 2.5%

Max 7.3% 2.8% 17.9%

• -=-:• hexhive

%
 I
n
c
r
e
a
s
e

R
u
n
t
i
m
e

15

10

5

0

5

10

15

♦ SS

* PO

O

F
a
t
F
S
-
u
S
D

T
C
P
-
E
c
h
o

SS - SafeStack Only, PO - Privilege Overlay Only

74 / 59
%
 I
n
c
r
e
a
s
e

E
n
e
r
g
y

loT Apps Energy

15

10

5

0

5

10

15

-s-

O

F
a
t
F
S
-
u
S
D

O

LIJ

PURDUE
IINIVER SITY•

