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THESIS STATEMENT

Using static and dynamic analysis, modern micro-controllers
can:

Employ defenses against memory corruption and control-
flow hijack attacks that match or exceed those deployed on
desktop systems, and

Utilize state-of-the-art testing techniques to identify and
prevent memory corruption errors
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BACKGROUND
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BARE-METAL SYSTEMS

Systems without an OS

Constraints

Small memory sizes

+ Tight run-time constraints

+ Low power requirements

Single Application

No kernel/user space separation

Tightly coupled to hardware

Limited execution observability

• hive•

Examples

Security left out and
testing limited by coupling to

hardware
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DEFAULT: NO DEFENSES
Bare-metal Application

RAM

Flash

ecurity Hardwar

Sensitive 10

Global Data

Code

Single (Root)
execution domain

•-
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Unused or trivially
bypassed

Always accessible

Vulnerable to:
Stack smashing
Code injection

Global data corruption

No ROP defenses
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MEMORY CORRUPTION

#define UARTRX Ox40000100

void get_uints(){

uint32 t i = 0;

uint32 t buf[2];

buf[i] = *(UARTRX)

(buf[i] !=

++i;

buf[i] = *(UART RX)

}

}

Input:

rmrnaddr

OxCOOOAD80

OxBBBBBBBB

OxAAAAAAAA: OxBBBBBBBB: OxC000AD80:

OxFF000000:

Writes OxFF000000 to OxE000ED94
Disabling Memory Protection

0,0k 7/59• hive•

0x20004020

Ox20004010
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CONTROL-FLOW HIJACK
#defin( UARTRX Ox40000100

void get_uints(){

uint32 t i = 0;

uint32 t buf[2];

buf[i] = *(UARTRX)

whilL (buf[i] !=

++i;

buf[i] = *(UART RX)

}

}

0x20004011

P 0)(0000000:1
OKAABBACAD

B pc, #0

Input: OxAAABACAD: OxAABBACAD: Ox00000002:

Ox20004011: Ox00000000:
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STATIC AND DYNAMIC ANALYSIS

Static Analysis

► Examining application without executing it

► Used to determine control and data flow through a program

Precise static analysis is intractable due to aliasing

Approximations are used

► Dynamic Analysis
Examining the execution of the program

Is precise — observed control and data flow actually occur

Incomplete — have to observe every possible input to be complete
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THESIS STATEMENT

Using static and dynamic analysis, modern micro-controllers
can:

Employ defenses against memory corruption and control-
flow hijack attacks that match or exceed those deployed on
desktop systems, and

Utilize state-of-the-art testing techniques to identify and
prevent memory corruption errors
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THESIS IMPACT

Advance bare-metal security several decades

Enable protections beyond those currently used on desktop system

► Force attacks to be individually tailored per device

Single vulnerability does not compromise entire system

Enables state-of-the-art testing of bare-metal systems
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THESIS CASE STUDIES

EPDXY: Protecting Bare-metal Systems with Privilege Overlays

Presented at I EEE Security and Privacy 2017

► ACES: Automatic Compartments for Embedded Systems
Presented at Usenix Security 2018

HALucinator:

Under review at Usenix Security 2019
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EPDXY: PROTECTING BARE-METAL
APPLICATIONS WITH PRIVILEGE
OVERLAYS
Presented at IEEE Security and Privacy 2017

Authors: Abraham Clements, Naif Almakhdhub, Khaled Saab, Jinkyu Koo,
Saurabh Bagchi and Mathias Payer
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EPDXY
Embedded Privilege Overlay across X hardware forY software

LLVM based compiler

Protects against
Code injection

. Control flow hijacking

► Data corruption

Direct manipulation of 10

Privilege Overlays
Creates two privilege levels

► Created using static analysis

► Foundation for other defenses

Low overhead
1.8% Runtime

0.5% Energy

• hive•

Random

Seeds

EPDXY

LLVM-based

compiler

Sensitive

10
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THREAT MODELAND REQUIREMENTS

Threat Model

Arbitrary memory corruption

Attacker goals:

► Control-flow hijacking

► Corrupt specific global data

Does not have physical access

Requirements

Hardware support for two execution privilege modes

Memory Protection Unit (MPU)

Hardware that enforces access permissions on physical memory

Memory usage determined a priori
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BEFORE EPDXY

• hive•

Application

SeclifirMkrare

Sensitive 10

10

Global Data

Stack

Code

Privileged
Execution

16 / 59 PURDUE
UNIVERSITY.



PRIVILEGE OVERLAY EXAMPLE

Default

#define UART RX Oxdeadbeef

char menu_option;

• • •

menu_option = *(UART_RX)

switch (menu_option):

case 'l':

handle case 1;

break;

• • •

• hive•

Privileged
Execution

Privilege Overlay

#define UART RX Oxdeadbeef

char menu option;

request privileges;

menu_optio (UART RX)

drop privileges;

switch (menu option):

case '1':

handle case 1;

break;

Unprivileged Execu ion
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EPDXY -ALL PROTECTIONS

Isolated Unsafe

Global Data Protected

Stack Smashing Protection
ROP Protections

ROP Protections

• hive•

Hardened Application

TT

Sensitive 10

10

UnSafeStack

Global Data

Stack

Privirged
Execution

Enabled enforcing DEP
Access Restricted

Access Restricted

Set to RW-NX
Stopping Code Injection

Set to RX
Providing Code Integrity

Unprivileged Execution
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ACES:AUTOMATIC COMPARTMENTS
FOR EMBEDDED SYSTEMS

Presented at Usenix Security 2018

Authors: Abraham Clements, Naif Almakhdhub, Saurabh Bagchi, and
Mathias Payer
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ACES INTRODUCTION

► ACES creates many compartments
Applies least privileges

Creates sub-thread compartments

Protects integrity of sensitive data
and peripherals

Uses static analysis to automatically I
infer compartments using a policy

Separates compartmentalization
from application development

Each compartment has associated
data/peripherals

Compartmented Application

Application Logic 1

• hive•

Image
Proc.

Camera
HAL

Camera

TCP
Stack
WIFI
HAL

2.4Ghz
Radio

Serial
Coms
UART
HAL

Lu
ART

Comp.
Switcher

Signal
Proc.
ADC
HAL

ADC

Privileged code

l —1 Compartmented unprivileged code

Li Hardware peripheral
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COMPARTMENTS

► Set of concurrently accessible 1 Comp
memory regions and i 

A i
i 
1 0

authorized control-flows I OnBtf) I 7t_
I cu

between them 1 
i _c 0_
1 .i- (L)i ci-► Compartments restrict

Accessible memory

Control-flow between
compartments

Control-flow 0 Function

Memory Regions

7 Code 
-119 

Data 7 Peripheral
• Accessible for compartment

• 
,

hive•

TakeImg

Z

26
o

!Comp B
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CREATING COMPARTMENT

Static analysis identifies code, data, and peripheral dependencies

► ACES ensures compartments can access all required data and peripherals

► Mirco-Emulator used to dynamically identify missed dependencies due to aliasing

Compartments are code centric

i.e. code belongs to only one compartment

Policy determines how functions, global variables, and peripherals are
grouped to create compartments

Different policies possible

We evaluate: NaIve Filename, Optimize Filename, and Peripheral policies

MPU is used to restrict access to memory regions
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PROGRAM DEPENDENCY GRAPH
void Takelmg()

CAMERA.take_pic = 1

g_image.buf = "AMERA.rx reg

GPIO.led = OFF

void OnBtn()

GPIO.led = ON

CAMERk.pwr = ON

g_btn = PUSHED

TakeImg()

TxImg()

void Txlmg()

g_tx state = ACTIVE

TcpTx(g_image.buf)

g_image.sent = TRUE

void TcpTx(*buf)

GPIO.led tx = ON

WIFI.tx_reg = buf

g_tcp_stats.tx_count++

g_tx_state = IDLE

• hive„R. 23 / 59
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REGION GRAPH

PDG mapped to a Region Graph

Functions I:

Control edges not transferred

Data I:I

Data edges transferred

Peripherals I :Many

Unique region created per
dependency edge

• hive• 24 / 59
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COMPARTMENTALIZATION POLICY

Defines what should be grouped
to form compartments

Implemented policies

Naive Filename

Optimized Filename

Peripheral

Many more are possible
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Takelmg

OnBtn

Txlmg,

TcpTx

CAMERA

GPIO

CAMERA

GPIO

g_btn,

g_image

g_tx_state

g_tcp_stats-11

WIFI

GPIO
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OPTIMIZE

Improve security

Improve performance
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Takelmg,

OnBtn

Txlmg,

TcpTx

CAMERA

GPIO

CAMERA

GPIO

g_btn:117-

gimage

g tx state

g_tcp_stats

WIFI

GPIO
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LOWERING

Reduces graph to meet HW
constraints

Degree of each code regions must
be less than the number of MPU
regions

Lowest cost regions merged
until constraints are met

Lowing may increases
permissions of compartments

Merging peripherals may capture
additional peripherals

• hive• 27/59

Takelmg,

OnBtn

Txlmg,

TcpTx

CAMERA

GPIO

g_btn,

g_image

Fri
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MAPPING TO MEMORY

Comp. A

Takelmg,

OnBtn

Comp. B

Txlmg,

TcpTx

•ID he> hive

CAMERA
GPIO

Region I
g jotn,

g_image

Region 2
g_tx_state,

g_tcp_stats jm.

UART, GPIO,
CAMERA, WIFI
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RESTRICTING CONTROL-FLOW

Instrument calls and returns .....r " e   I
I I I I

crossing compartment boundaries Eoi 1 1nBtn ) I I Txling 1
I

Invoke compartment switcher 1 I I I
I ---------- I I

Compartment switcher 1 ,T.,:ce11ag I1 1 TcpTx
I

authenticates both directions 'Comp A 
i 

i Comp EP
1    -1

Memory permissions only changed for
valid transitions

• hive•

Call

COnBtn >
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MICRO-EMULATOR

Emulates store instructions in software

Overcomes limitations of static analysis in
generating PDG

Authenticated writes outside a compartment's
regions

Dynamic profiling run creates white-list of
accesses per compartment

Used for stack protection

• hive• 30 / 59
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EVALUATION

► Evaluated policies for security, runtime, resource usage
► Naive Filename

► Optimized Filename

Peripheral

Five applications run on Cortex-M4

PinLock

FatFs-uSD

TCP-Echo

LCD-uSD

Animation
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PINLOCK CASE STUDY

Attacker trying to unlock lock

Assume write-what-where vulnerability in HAL_UART Receive IT

Policy

Overwrite Control Hijack

Global GPIO Direct Deputy

Naive Filename

Opt. Filename

Peripheral
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RUNTIME EVALUATION

X
 O
v
e
r
h
e
a
d
 

6

5

4

3

2

1

0

MI= Total

Entry

Exit

Emulation

Fat Fs-uSD
1.95 1.90

Pin Lock
1.0tt00 1.00 

TCP-Echo
3.69

1
CN1

(1) Naive Filename

C I 01

(2) Filename

LCD-u SD
5.69

1
.7 .7

Animation
5.70

i

.1 13

(3) Peripheral

Can have moderate runtime impact

Emulating instructions accounts for largest increase in execution time
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MEMORY OVERHEAD

Flash Overhead

160
Baseline

140 Frag

Code

120 Runtime

Metadata

100

80

60

40 Pi n Lock

20

0

C cn

TCP-Echo

■

LCD-uSD

1.11

An im ation

(1) Naive Filename (2) Filename (3) Peripheral

•••• hexhive•

N

50

40

30

20

10

0

RAM Overhead

FatFs-uSD

Pi n Lock

TCP-Echo

111
LCD-uSD

Baseline

Frag

Runtime

Animation

N
---

C I CO C

(1) Naive Filename (2) Filename (3) Peripheral

Largest impact from fragmentation
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ACES CONCLUSION

Applies least privileges to bare-metal loT devices

► Does not require changes to application logic

► Uses existing hardware

ACES automatically creates and enforces sub-thread

Decouples security policy from application

Frees developer from having to manage underlying security hardware

Enables research in creating compartmentalization policies

Code available at:

https://github.com/embedded-sec/ACES
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HALUCINATOR:
FIRMWARE RE-HOSTING THROUGH
ABSTRACTION LAYER EMULATION
Under review at Usenix Security 2019

Authors: Abraham Clements, Eric Gustafson,Tobias Scharnowski, Paul
Grosen, David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi,
and Mathias Payer
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CONTRIBUTIONS

Equal collaboration with Eric Gustafson

My contributions:

Identification that HAL's provide decoupling point suitable for emulation

► Development of models for replacing HALs

Eric's contributions:

Development of LibMatch

Implementation of Fuzzer

Primary contribution of HALucinator lies is in combination of these

• hive• 37 / 59 PTJRDUE
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GOAL
Re-host micro-controller firmware in generic system emulator

O Smart Watches

• AMI (Smart Meters)

o Wireless Network SoC

• hive• 38 / 59

FA Edit VWw Search Teroall Help

IN 0:SD-POIC:Init Write: Slot 8, Block Num 8192, ABlocks: 1
IN 0,SD-POIC:LR: BAN.
INFO:SD-MC:Write: Slot SRC ea20001fac, aBlocks: 1
INFO:SD-W:1A. ext,79
INFO,SDCardModel.SOCardModle Writeing: 0.08000
INFO,SD-MMC,End Write Blocks
INEO,SD-MMC: R: BAIA)
INFO:SD-MMC:SDMMC_Check Executed
INFO:SD-MMC:LR: OX.19

0:SO-1111C:Get SI Type Executed
IN 0:50-MPICA_R: .9
IN 0:SAMR21-BSART:TOdata: T
INFO:SAMR21-BSART:Todata: e
INFO:SAMR21-USART:Tx data: s
INFO:SARR21-usART:Txdata: t
INFO:SARR21-MART:Txdata:
INFO:Sa1R21-1.15ART:Txdata:
INFO:SMIR21-LISART:Tx—data: s
INFO:SMR21-LISART:Txdata:
INFO:SAPIR21-LISART:Txdata: s
IN arSAPIR21-LISART:Tx:data: u
IN OrSAPIR21.LISART:Tx data: c
IN 0:SAMR2I-USART:TX:data: c
INFO:SAMR21-USART:To data: e
INFO:SAMR21-USART:Todata: s
INFO:SAMR21-USART:Tx:data: s
INFO:SAMR21-11SART:Tx data: f
INFO:SA1R21-11SART:Tx—data: u
INFO:SAMR21-LISART:Txdata:
INFO:SMR21-1.1SART:Txdata:
INFO:SOPIR21-1.1SART:Tx:data:

IN 0:SAMR21-BSART:Tx data:
IN 0:SAMR21-USART:Tx:data: P
INFO:5AMR21-USART:Tx data: l
INF0:5AMR21-USART:Tx—data: e
INFO:5AMR21-USART:Tx:data: a
INFO:5AMR21-11SART:Tx data: s
INFO:5A1R21-MART:Txdata: e
INFO:SAMR21-BSART:Tx:data:
INFO:SA/IMAM/WIT:Tx data: u
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WHY RE-HOSTING

Enables dynamic analysis of bare-metal systems

► Vulnerability Analysis

► Fuzzing

Automated testing

Remove dependency on hardware

Enables large scale analysis

Simplifies test setup and tear down

We use HALucinator to emulate 12 firmware from 2 manufactures

Found: buffer overflows, buffer overreads, double frees, and use-after- free bugs

• hive• 39 / 59 PURDUE
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RE-HOSTING CHALLENGE

••'T&•• hex hive•

Emulation Requires

Internal

CPU

AES Accelerator

External

Ethernet

SD-MMC

10

-nera

D

ach Screen

reless EEPROM

This is one chip

Mouser lists:
41K micro-controllers with

3,100 unique data sheets from

33 manufactures

IAP

DMA

Providing proper values for large variety of peripherals
is primary challenge of re-hosting these systems

40 / 59
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CAN

Analog 10

USB
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CURRENT APPROACHES

Manually implement all required hardware in emulator

3, I 00 datasheets

► Forward hardware accesses to real hardware (AVATAR2I, Surrogates2)
Require

High lat,

Record an

Restrict_

None allow scalable emulation without
hardware

r r

[1] Muench, Marius, et al. "Avatar 2:A Multi-target Orchestration Platform." Workshop on Binary Analysis
Research. 2018
[2] Koscher, Karl, et al. "SURROGATES: Enabling Near-Real-Time Dynamic Analyses of Embedded Systems."
Workshop on Offensive Technologies. 2015
[3] Tancreti, Matthew, et al. "TARDIS: software-only system-level record and replay in wireless sensor
networks." Information Processing in Sensor Networks. 2015.
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HALUCINATOR CONCEPT

Software Stack

HTTP Server

OS Library (e.g. mbed)

TCP Stack (e.g. lwlP)

Temp
Sensor
Library

Peripheral Models

Emulator Host Resources

• -t-:• he> hive

Application Logic

E.g. HTTP Server

Developer Implemented

Middleware

For this to scalably we need:
I. To automatically identify abstraction in firmware
2. A scalable way to develop peripheral models
ar ware Anstraction LiDraries kriAL)

Abstracts hardware

Provided by micro-controller manufacture

Source commonly available

Peripherals

Hardware performs 10
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HALUCINATOR OVERVIEW

Intercept abstraction library functions

► Use peripheral models to enable I/0

► Fix up state so firmware executes as if function executed

Scalable

Changes supporting number of devices to number of HALs

e.g., 33 Manufactures vs 3,100 parts

Peripheral Models

Core functionality of peripherals is independent of micro-controller

Implement once per peripheral type (e.g. Ethernet)

► Intercept Handlers
► Unique handler to map each HAL to peripheral model

► Implement once per HAL

• hive• 43 / 59 PURDUE
UNIVERSITY.



REQUIREMENTS

Firmware to emulate

Emulator for ISA

► Instruction Set Architecture

► General memory layout of device

Libraries with symbols to replace

Compiled with same flags as firmware

Ability to hook execution specific addresses

Read/Write processor state within the hook

• hive• 44 / 59 PURDUE
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DESIGN

Firmware

FW -
-

• -1-••• he> hive

LibMatch

Library Binaries

HAL
Addresses

45 / 59

HALucinator

ISA Emulator
(e.g., QEMU)

0,4

Uart
Handler

Uart
Model

• • •

• • •

Ethernet
Handler

Ethernet
Model

10 Server
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LIBMATCH CONTRIBUTIONS

Identifies location of abstraction
functions in firmware

Resolve binary equivalent functions

E.g Getters and setters on MMIO registers

Callbacks/Override function

Identify code statically called by HAL (e.g.
weal< functions)

• hive• 46 / 59
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HALUCINATOR

Input

► HAL addresses from LibMatch

► Mapping of HAL function to intercept handlers

Intercept handler

Maps HAL to peripheral model

Peripheral Model

Abstracts peripheral

Common for peripheral type

10 Server

Enables flexible external communication

Sends and receives tagged messages

• hive• 47 / 59
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HALucinator

ISA Emulator
(e.g., QEMU)

Uart
Handler

[ Uart
Model

Ethernet
Handler

Ethernet
Model

10 Server

♦

• • •
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INTERCEPT HANDLERS

STM32Cube Ethernet TX Frame

HAL StatusTypeDef

HAL ETH TransmitFrame(

ETH HandleTypeDef *heth,

uint32 t FrameLength);

Intercept Handler

f ptr = heth->TxDesc->buf

frame = read memory(f ptr,

FrameLength)

model.send frame (frame)

return 0 #(HAL OK)

•
• 

4T- he)(hive

ATMEL Ethernet TX Frame

void ksz8851 fifo write(

uint8 t *buf,

uint32 t len);

Intercept Handler

frame = read memory(buf,len)

model.send frame (frame)
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HALUCINATOR IMPLEMENTATION

Build on Avatar2

Provides python API to instrument
QEMU, GDB, and angr.

ISA Emulator is QEMU

Interception done using GDB

Everything written in Python

• hive• 49 / 59

♦

HALucinator

ISA Emulator
(e.g., QEMU)

t
Uart

1 Handler

[ UartModel

• • •

• • •

10 Server

Ethernet
Handler
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Model
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HAL-FUZZ

► Replaced QEMU with AFL-Unicorn*
Stripped down QEMU integrated with AFL

► Use Fuzz model to replace input with
fuzz output from AFL

Control sources of non-determinism

► Timers tied to basic blocks executed

► Interrupt execution tied to basic blocks

► Rand() deterministic

*https://github.com/Battelle/afl-unicorn

• hive•
50 / 59

HAL-Fuzz
4000/01

•

ILLAFL-Unicor

[ Uart r Ethernet
Handler • • • 

Handler

Uart Fuzz
[

• • • 
Model M941.el

AFL- 1111

•
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HALUCINATOR EVALUATION

Determine effectiveness of LibMatch

Evaluate interactive emulation

Validate Black Box behavior with external interaction

Assess complexity of implementing handlers and models

Demonstrate usefulness of HALucinator by fuzzing

Execution not constrained to single path
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EXAMPLE APPLICATIONS

► ATMEL SAMR21
► USART-Terminal

► SD-Card

HTTP-Server

6LoWPAN Sender and Receiver

STM32F479 Eval Board

UART

SD-Card

UDP-Echo Server and Client

► TCP-Echo Server and Client

► PLC
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LIBMATCH ANALYSIS
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INTERACTIVE EMULATION

Atmel

en

1 1
4<c, ,<<ct e4y- <</SL-

.)' <<\'" •Z• <<>
o c.,<</ <<,(1c, So-

0 44
\• 0kc)

• hive•

‘.0
D̀

STM32F4

cV
en CO

1/40
Le)

COI 031 COI

QEMU • Black Box

— o
— o

en

.4* 'S<<c) <<"' <<Y-

\)\'' e;cct <<•
e•-% c>. c)-c,

c/ 0
e`` eN •• ``
l.1 1/4.1

<<, <<,

.0 '0 Ci

54 / 59 PURDUE
UNIVERSITY.



PERIPHERAL MODEL COMPLEXITY
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KEY FUZZING RESULTS

Fuzzed the nine network connected firmware samples

Bugs either fixed or reported to application vendor

Application os • le Attack Fuzzing Layer

LWIP HTTP Buffer Overread Memory Leak TCP

LWIP HTTP Double free,
Use-after free

Denial of Service Ethernet

6LoWPAN

PLC

Buffer Overflow

Buffer Overflow

Remote Code Exe 802.15.4

Remote Code Exe TCP
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HALUCINATOR CONCLUSION

Presents novel concept of high-level emulation to enable re-hosting
bare-metal firmware

Enables interactive emulation and fuzzing of firmware in scalable way
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THESIS CONCLUSION

Case studies show that using static and dynamic analysis, we can
automatically enable protections against memory corruption and control-
flow hijack attacks on bare-metal systems

EPDXY

Demonstrates bare-metal applications can enjoy protections as strong as desktop
computers with negligible overhead

ACES

Shows many small compartments can be automatically formed within a single
application reducing the impact a single vulnerability has on entire system

HALucinator

Scalably emulates bare-metal systems enabling dynamic analysis

► Enabling state-of-the-art coverage based fuzzing of bare-metal systems
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QUESTIONS
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BACKUP
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EPDXY BACKUP
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EPDXY -AFTER PRIVILEGE OVERLAY

Hardened Application

TV

Sensitive 10

10

Global Data

Stack

Code

Privileged
Execution

• hive•

Enabled enforcing DEP
Access Restricted

Access Restricted

Set to RW-NX
Stopping Code Injection

Set to RX
Providing Code Integrity

Unprivileged Execution
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SAFESTACK

SafeStack from Code Pointer Integrity *

Protects against stack smashing

"Unsafe" variables moved to separate stack

We adapted to bare-metal systems

RAM

Stack40_ .data .bss heap

Stack .data .bss heap UnSafeStack

*V. Kuznetsov et al., Code Pointer Integrity, OSDI 2014
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DIVERSIFICATION

ir Further protects against ROP attacks

► Corruption of specific global data

Seed I

Seed

• hive•

Source
Code

-41

Seed 2

Seed 3

Seed 4

Binary I

Binary 2
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DIVERSIFICATION

ir Further protects against ROP attacks

► Corruption of specific global data

.data .bss Padding

A Stack b d 1 a c heap D UnSafeStack E

RAM

Flash
Binary I

handler foo foo2 bar2 bar baz

invalid execution
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MEMORY USAGE

PinLock 3,390 (29%) 14.6 (I%)

FatFs-uSD 2,839 (12%) 18.2 (I%)

TCP-Echo 3,249 ( 8%) 7.2 (0%)
Absolute units are bytes

Stack increase because two stacks used

104 (25%)

164 ( 4%)

128 (29%)

Stacic size is max size of deepest regular stack and deepest SafeStack
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ROP COMPILER

Used ROPgadget compiler* to identify gadgets across 1000 variants

Gadget survives if same instructions (ending with a branch) at same address

App Total

# Surviving Across

2 5 25 50 Last

Pin Lock 294K I 4K 8K 313 0 48

FatFS-uSD 1,009K 39K 9K 39 0 32

TCP-Echo 676K 22K 9K 985 700 107

* J. Salwan, ROPgadget, http://shell-storm.org/project/ROPgadget/
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LIBMATCH ALGORITHM

Statistical Comparison

Number BB

Number unique functions called

Basic Block Comparison

Does VEX IR match

► Call Graph Contextual Matching
Resolves conflicts

Gives names to callback functions

• hive•

Ethernet Ethernet

tx_frame rx_frame

41 Ethernet 4i Ethernet

write_ri get_status
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PERIPHERAL MODEL COMPLEXITY

SLOC handlers and models
140

120

1
100

80

(21
60

40

20

0

\() \I- 6
61, ,. xiI2)
cb 

\d " 
e

1 6

0
5

9

.kb 4\ kez, e
cer,4 • 4c\

Peripheral

• STM32 Handlers • ASFv3 Handlers HALucinator Models

• P' h ive

14

12
1

10  

71 / 59

6

4

# Functions and Average CC

14

ID& CP 

‘ 

c• 6C.
♦

c> ,0 „<„

<<
• STM32F4 Func

• Model Func

• ASFv3 Ave CC

0 6 R\ •tc.,
("(Z\ c,4 c' ctsz

'CN
• ASFv3 Func

• STM32F4 Ave CC

• Model Ave CC

JP

PURDUE
UNIVERSITY.



FUNCTIONS INTERCEPTED AND MMIO
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INTERACTIVE EMULATION
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PERFORMANCE

BEEBs Runtime loT Apps Runtime

SS I PO I All

Min -7.3% -1.3% -1 1.7%

Ave -3.5% 0.1% 1.10h

Max 4.4% 2.1% 14.2%

BEEBs Power

SS I PO I All

Min -4.2% -10.3% -10.2%

Ave 0.2% -0.2% 2.5%

Max 7.3% 2.8% 17.9%
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