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International URL Portfolio in a Nutshell

Key R&D Issues
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Spent Fuel Waste Science Technology (SFWST) Campaign:

Disposal in Argillaceous Clay Rock
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] Upper rock formation
] Host rock formation
] Lower rock formation

Coupled process modeling of Thermal-Hydrological-Chemical-Mechanical (THCM) with decay heat effects
. Engineered barrier system (EBS) model integration with performance assessment (PA)

+  Thermodynamic modeling of barrier material interactions (clay, cement, metal) and thermodynamic database
(TDB) development

«  Clay interaction experiments:
— High temperature mineral phase stability, clay — metal interactions (waste package material (steel)
corrosion)

— Low temperature radionuclide (RN) sorption/diffusion in bentonite & modeling
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Conceptual Model for Transport in Bentonite
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= Bentonite (montmorillonite) is the proposed backfill material in the EBS.

= Diffusion — dominant transport mechanism in the EBS
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= Temperature and chemical gradients (e.g., solution chemistry) are expected over time and

across the EBS.

Goals:

* Investigate the effects of temperature on bentonite clay barrier interactions: clay phase change /
degradation, smectite swelling, and structure / composition

Investigate the effects of changing chemical conditions and temperatures on uranium(VI) sorption and
diffusion.
Reduce the uncertainty in actinide sorption / diffusion sub-models that are part of performance assessment
(PA) models for waste repositories.
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Understanding radionuclide adsorption to clay under realistic

waste-disposal scenarios

» Heat-generating waste canisters
increase temperatures of
surrounding engineered barriers

« Groundwater Intrusion from
surrounding host rock

» Variable saturation across clay barrier

« Changes in pore water chemistry

« Changes in accessory mineral
assemblage (e.g., calcite, ferrihydrite)

« Changes in clay structure/composition
(e.g., illitization, ion exchange)

Groundwater

Clay Barrier
ister

« Changes in aqueous radionuclide
(RN) speciation

« Changes in mineral sorption capacity

« Changes in swelling behavior
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FEBEX Full Scale Heater Test Experiment
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Compacted / \/ Source: Huertas et al. (2000)
bentonite blocks cold-zone  heated-zones

» Conducted by ENRESA under auspices of the EU at the Grimsel Test Site (GTS) in Switzerland

« Bentonite was compacted into blocks at 1650 kg/m?3 dry density and placed in a radial
arrangement surrounding 2 heaters

» Heaters operated at a maximum of 100 °C — Heater 1 operated for 5 years; heater 2 operated
for 18 years

« FEBEX-DP samples were obtained from heater 2 dismantling in 2015 after 18 years of heating

» Unique opportunity for long-term full-scale heater test and sample / data availability
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FEBEX-DP Experiment:

Sampled Sections

FEBEX-DP
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FEBEX-DP Bulk Bentonite Samples: X-ray Fluorescence (XRF)
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= Mg enrichment towards the heater surface — zones of increasing dry out conditions
= Bulk MgO content far from heater nominally within the bounds of other lab analyses
= Overall, CaO content is relatively variable close to the heater surface
= Mg enrichment(?):

= Enhanced Mg content due to elevated temperatures?

= SEM-EDS didn’t show newly-formed Mg-bearing phases within the clay matrix
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FEBEX-DP Bulk Bentonite Samples: X-ray Fluorescence (XRF)
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= Large uncertainties on Na,O content — Issues with detection limits
= Slightly enriched in Fe, O relative to reference bentonite compositions
» Fe,0,, SiO,, & K,O fall within the range of reference bentonite compositions
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FEBEX-DP: Bentonite X-ray Diffraction (XRD)
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Base Case FEBEX Bentonite (glycolated) = Overall, XRD profiles are similar to those

oo reported by FEBEX-DP project

16.461A
» Clay Structural Characterization:
= Comparison of XRD spectra across

sampled domain

d(002)
8.3425

» Evaluate d(001)-spacings as a function of

o s 5 18 2 - - o8 distance from heater surface
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Glycolated d-spacing vs Distance from Gallery Axis
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» No apparent effect of elevated temperatures on d(001) spacing for

glycolated clay samples

« Slight decrease in swelling extent for samples in contact or close to the

heater surface

* Prolonged exposure of bentonite to T = 95 — 100 °C causes some

changes in swelling

— Correlate with compositional changes in clay close to heater surface
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FEBEX-DP: Shotcrete — Bentonite Interface Core Extraction
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FEBEX-DP Sampling Plan

= Shotcrete/bentonite
interface sampling

= Characterization studies
cement/bentonite
interactions

= Phase identification (SEM-
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Bentonite — Concrete Interface Characterization (X-ray CT Scan)

lain Features:

— Occurrence of microcracks and pore spaces —
connected in many cases

2 e P — “Craquelure” or “chickenwire” microcrack
f pattern (desiccation)

: | — Some embedded granular material in bentonite
aflce matrix with radiating cracks

— Heterogeneous microcrack spatial distribution >
localized regions with no cracks

-rack — Pore pathways:

Continuous and discontinuous pore-microcrack
networks (2D & 3D)

Large pores tend to be connected to microcracks

Shotcrete

10tcrete:

Bentonite: Large pores tend to be connected to
microcracks

No or little microcracks
Isolated pores except at the interface
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Shotcrete - Bentonite Interface Characterization

* Main Features

e Se — Compositional map at thin
« 30um Spot to Spot Distance, =
+  25um Spot Size, section (mm) scale —
+ X-ray Energy 50kV/200pA -
. -903rfnin toi{)mplete sat'nple Scannlng at the pm Scale
— Sharp compositional
e iR ca changes at the bentonite-
\ﬁ]M' o | T 'S .
,|J s 28 shotcrete interface
=Y S 1
£ .0 i' g | | N lg _ - -
L \[@ﬂ M ML‘?‘?"'””E ConS|st.ent spatial
3. Bk Y correlation among various
B —— elements across interface
N g g S . .
28 T 1z - Compositional Gradients
5 £ A 1S 3
S S T — U\L N 13 gentonite ] — Depletion on shotcrete side of
NN 3 1 o | . N
S8 A A W the interface - Leaching?
i : S : — Bentonite seems compositional
i o Al € g s homogeneous at the interface
3 O 7. L 8 !I8 ¥ ] P .
T 5 l \ 8§ 1|8 & — Limited reaction front?
SR £ e
N F dobeot B 1 @ :"Ben&e it
g :cJ & /«J& I N 1 i
;.; :: Jl \/\\"‘_{‘_‘;AL\_/_[‘_,_,H_/ , ,
: T = Jové Colon et al. (2017)

energy.gov/ne

Carlos F. Jové Colon Thermal Implications on Transport in Bentonite (NWTRB April 2019) 15



Authigenic zeolite produced from clinoptilolite / glass in bentonite

iInteraction experiments

Analcime (Bentonite only) Jové Coldn et al. (2017)
| AL A 2 56 @52 @ g poonte @
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Bentonite — Steel Interaction Experiments

20 . Cheshire et al. (2014)
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« Experiment
— T =300°C; STRIPA brine :
— Wyoming Bentonite : $ 304 SS Surface
— 316 Stainless Steel (SS), 304SS, low-C steel

* Results

— Fe-Saponite growth perpendicular to metal substrate

— S is generated from pyrite degradation in bentonite

— Concurrent surface sulfide precipitation with Fe-saponite
More work needs to assess metal passivation effects D '
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U(VI) adsorption experiments: FEBEX-DP clay samples that experienced

different temperature and moisture regimes

Heated Zone: Cold Zone:
R i | * 50cm from axis (Section 48) * 50 cm from axis (Sectio 59)
Y e T=95°C e T=20°C
-5 ... | * Moisture Content=18% S R i e e
Original FEBEX Bentonite Mineral Composition*
92 % smectite (illite-smetite mixed layer, with ~11% illite layers)
2% plagioclase
2% quartz
y 2% cristobalite
I I I | ” <1% potassium feldspar, calcite, trydimite, Fe- and Al-oxides
1.0m 1.2m *Fernandez et al. (2004)

Composite samples were created from 3 replicate blocks from
each location, air-dried and sieved to < 63 um.

Moisture content and temperature from Villar et al. (2018)
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Lower U(VI) Sorption onto Heated Bentonite

< 63 um fraction, bentonite composite samples, 0.5 g/L bentonite

100 100

80 -

g 8 60 -

i < 40
> —@— 95°C, 0.1 mM Ca N =
=) —¥— 20°C, 0.1 mM Ca oL >

20 1 | -O- 95°C,2mM Ca = N 20 A

—57~ 20°C,2mM Ca oV
0 T T T T 0 I T T T
6.8 7.0 7.2 7.4 7.6 7.8 00 0.1 0.2 03 0.4 05
pH DIC (mM)

Up to 10% lower U(VI) adsorption on heated bentonite.
* Adsorption is lower in presence of 2 mM Ca compared to 0.1 mM Ca.
* Adsorption decreases as pH and DIC increase.

Possible reasons for lower U(VI) adsorption:

* aqueous U(VI) speciation

* relative fraction of clay (montmorillonite) mineral phase

* structure/composition of clay mineral fraction

* structure/composition of accessory mineral fraction (e.g., Fe-oxides)

energy.gov/ne
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U(VI) adsorption onto purified bentonite

< 2 um fraction, carbonate minerals removed
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Lower U(VI) adsorption on 95°C heated bentonite persists after purification.
* Consistently lower U(VI) adsorption onto 95°C heated sample in presence of 0.1 mM Ca

* Smaller difference in presence of 2 mM Ca
* As with bulk samples, U(VI) adsorption is lower at higher Ca concentration

energy.gov/ne
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Summary

» International collaborations on URL activities and partners provide
unique opportunities for data and sample collection from heater tests

» Characterization and sorption studies of post mortem FEBEX-DP
bentonite samples indicate:

Mg-enrichment in clay observed in bentonite close to the heated surface

Slight decrease in bentonite swelling also observed close to the heated
surface

Lower U(VI) sorption for samples subjected to 95°C relative to those
exposed to ambient temperatures

Bentonite-cement interactions and cement leaching effects appear largely
constrained to the interface

» Bentonite-metal interfacial interactions at elevated temperatures:

Produces zeolites (analcime) and sulfide phases
Fe-saponite growth perpendicular to the metal substrate
More work is needed to assess metal passivation effects
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EBS fits in the DOE Underground Research

Laboratory (URL) Portfolio

Key R&D Issues

COSC

Crystalline

Streaming

Near-Field Perturbation
Potential

Engineered Barrier Integrity

Bedrichov Tunnel

/7

Radionuclide Transport TDSE (Asse) LTDE

Demonstration of
Integrated System Behavior

Heater Test at WIPP

GREET
FINAL VERSION OF THIS FIGURE BRIE
WILL BE PROVIDED LATER
FEBEX & HotBENT

Salt

.........

| Heater Tests at
¢ Bure
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Repository Phases and Relevant Processes

Key R&D Issues BATS BRIE

Near-Field Perturbation FEBEX & HotBENT Gas Migration _

Engineered Barrier Integrity BB Thermo-Hydraulic- "
Mechanical-Chemical (THMC) Processes Equilibrium

Flow and Radionuclide
Transport

Release of radionuclides
‘sorption and diffusion

- -@ﬂor failure |
ister corrosion with hydrogen generation, microbial activity I

!?Sﬂt?rtg:go?szr?énite Normal hydrological conditions —»

l transport fridn canister :

Demonstration of
Integrated System Behavior

Normal geothermal conditions >
bentonite 3nd rock 9

‘Oxidising Eonditions

Reducing conditions —>

10° 10°  (years)

Construction and
Open Drift Stage

Exploitation Stage Long-Term Post-Closure Stage

TED, ALC, HE-E

FE
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Conceptual Model for Transport in

Bentonite

* Location
— Hosting nation or program
— Host rock type

* Purpose of the test

— E.g., provide basic in-situ data
regarding brine flow in heated
salt

* Rock properties
* Fluid composition, etc.

— E.g., provide an opportunity
for model
validation/benchmarking with
field data

* Why this is important in the
context of the conceptual
model for the medium (if this
takes an extra slide, okay)
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Body of the talk (~6-14 slides,

depending on time available)

« Additional information on test design
* Results
* Analysis/interpretation: what have we learned?

* How results will be used in supporting the safety
case/safety assessment
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What is the Engineered Barrier System (EBS)?

B EBS definition from the US Nuclear
Regulatory Commission (10 CFR -
60.2) —_—
— “Engineered barrier system means the e e k

waste packages and the underground
facility”

B EBS definition from to the — :
NEA/OECD EBS State-Of-The-Art e

Report (2003): :
— “The “engineered barrier system” einforced buffer materia

represents the man-made, engineered

materials placed within a repository, _ _ :

including the waste form, waste Generio EES concaptwith bentonite
) ) . barrier showing a canister breaching

canisters, buffer materials, backfill and scenario (Jerden et al. 2019)

seals.”
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Argillite Disposal R&D

«  Reactive-transport modeling (THC) with decay heat effects GDSA PA Level Of Integration
: : F K “Seosphere Biosphere
= 1D - 3D EBS Simulation Capability i — |

«  Engineered barrier system (EBS) model integration with 1/
performance assessment (PA) I

e Envir >

and Dose Factors

Thermodynamic modeling of barrier material interactions (clay,
cement, metal) and thermodynamic database (TDB)
development

« Clay interaction experiments:
— High temperature mineral phase stability, clay — metal
interactions (waste package material (steel) corrosion)

— Low-T RN sorption/diffusion in bentonite & modeling

» High temperature coupled thermal-hydrological-mechanical-
chemical (THMC) modeling

304 SS Surface

+  Spent fuel matrix degradation model development

* International collaborations: FEBEX-DP (GRIMSEL URL),

DECOVALEX19, SKB EBS Task Force, Mont Terri URL (Switzerland) camosan pebdodes
D

Steel Corrosion
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What has been done for EBS? (Cont.)

 |International Activities: B " Sondbertoie mivue
entomte pe ets
— Underground Research Laboratories Plug 3

(1st section) Host rock
(URLSs):

umldlty:;\rc‘isgerr:perature Plug 2 ik of

» Mt. Terri (Opalinus Clay, Switzerland)

« Grimsel (Granite, Switzerland)

« Tournemire (Argillite, France)

* Meuse/Haute-Marne (BURE) (Callovo-Oxfordian
Clay, France)

« FEBEX (Mock-Up, Spain; Granite, Site-Scale,
Grimsel site, Switzerland) cable channel _

. KAERI/KURT (Granite, South Korea) HE-E heater test at Mont Terri

* Horonobe (Mudstones) and Mizunami (Granite) Sites
(Japan)

— International Collaborations

« DECOVALEX (Development of Coupled Models and
their Validation Against Experiments, International
Collaboration) FEBEX (in situ experime

e SKB EBS Task Force (1) Steel canisters
(2) Waste

(3) Horizontal drift :
(4) High-density compacted bento i
blocks

tunnel

Source: Garitte et al. (2011)

Source: http://www.grimsel.com

For more details, see Birkholzer et al. (2017)
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Conceptual Model for Transport in

Bentonite

The long-term management of nuclear waste requires reliable predictions
of radionuclide transport through engineered barrier systems (EBS).

= Compacted bentonite (montmorillonite) Cross utting
is the proposed backfill material in EBS.

= Diffusion will be the dominant transport
mechanism in EBS that contributes to
radionuclide dose in the environment.

Nuclear
waste

= Gradients of chemical solution
conditions and temperature are
expected over time and across EBS.

g
:
f
i

Goals:

« Decrease the uncertainty in actinide sorption / diffusion sub-models
that are part of performance assessment models for waste repositories.

* Investigate effects of changing chemical conditions and temperatures
on uranium(VI) sorption and diffusion.



SFWST Needs for EBS?

* Highest ranked issues:

« \Waste Form THMC Processes in the EBS

« THM Processes Pressure

* Waste Container lv ‘ ‘ ‘

« Radionuclide speciation and solubility

Gas Flux E
«  Buffer/Backfill material Heat | (diffusion, advection ~ — | Heat
In Liquid » Liquid Out
. : i Condensation
« THMC processes relevant to interactions at = Evaporation  yeat Flux =
EBS interfaces: || ‘ l
. . . Solute Flux Liquid
* Loci for important degradation = (diffusion, advection) =
. . inera
processes in the near-field i R Tan PDissqution =
. . Sorption recipitation
« Shares a boundary with far-field
region = l =
Heat Flow (Conduction) v
« THMC models must assess the = Solid

generic aspects of EBS design f t f t
concepts
Pressure
Modified After Olivella et al. (2011)
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Coupled Processes in the Near- and Far-Field

Far-Field Process Models

Far-Field / Near-Field
Fluxes

I Pressure
3 333 GDSA PA Level
™ e G ~| Barrier Domains .
g P e el Backfill / Buffer Of Integration
c Evaporation Heat Flux Condensation| Canister/ Liner
2 —r— Seals
é Solute Flux Liguid
o H oo 0. Adiion Sdbection]  muperal — Coupled Processes
- - Dissolution
] ion ~ Heat & Liquid FIUX pyocipitation Thermal
i — Hydrological
= Heat Flow (Conduction) Mechanical
g Diffusion\, = Solid Chemical
Pressure =S b BlosPhere
Fluxes from
Waste Package

— | Used Fuel Degradation Process Models

Wasterform
i EBS 4 Geosph Biosphere Envi t
Interactions \‘_mvimnmem,/ En:;::‘ ":-'::‘t i tozzdeézs::::tr:;en
EBS . .
] Modified After Sassani et al. 2013
Interactions
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Bentonite — Metal Interaction Experiments

20 T . T T Cheshire et al. (2014)
1 = |
{ log aFey* =-6 ! T=295°C
| log aGry™= - | P=79.9 bars
15[ reor? 1 log aNi*? =-8 : ’
1 FeO' 1 1
| : i
! 1 hematite '
] 1 1
: i e i trevorite
: i s
E : ; Folly
& S “outer !
i
1
1
1
1
1
1
i
, “inner oxide” !
05 ]
chromite H \
. ' N 20um_ 316L SS
Iron ! “‘-‘ N
10 [ ) ! HFeO,~~. 11_7‘
o 2 4 6 8 =
] w{ \5’9 A ::::S'S'::r.': :’;:r:‘mue
« Experiment i
— T =300°C f T%
—  STRIPA Brine i . .o
— Wyoming Bentonite @
— 316 Stainless Steel (SS), 304SS, low-C steel Ak & :
. Results (W e ot i

o o 0 w0 % 0

— Fe-Saponite growth perpendicular to metal
— Concurrent sulfide precipitation
— Observations consistent with thermodynamic relations
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FEBEX-DP: Bentonite — Concrete Interface Characterization

(X-ray CT Scan)

| 2D Slice Stack

Z direction

B 2D - 3D Stacked Image Evaluation:

Red arrows: — Microcrack aperture

microcrack enlargement/shrinking

segments — Crack segments and junctions
evolving into evolving into pores

pores — Microcrack pathways can be highly

heterogeneous
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Clay Hydration Modeling: Comparison with BRIE Water

Retention Data + MX80 Bentonite

Cantera Results for Na-smectite Hydration

¢ Berendetal. (1995), ads. Data reported by Sedighi &

5 ® Berendetal. (1995), desorp. Thomas (2014) Corrected
O Cases etal.(1992), desorp. for 5.5 H20s
= = Vieillard et al. (2011); ads. model 08 End-M b Thermodynamic
— — Vieillard et al. (2011); Theor. Equil. Desorption na-NMember Model
‘ Monovalent
- = Vieillard et al. (2011); desorp. model

¢ ’ ° Cations
antera; ads.
; 06 End-Member
Cantera; Theor. Equil. . .
3 ) Divalent Cations
w— Cantera; desorp. -
3

—Na-Smectite (Cantera)

N0 (Per 044(0H),)

\ 0.4
: Adsorption

ww K-Smectite (Cantera)
w——Ca-Smectite (Cantera)
—Mg-Smectite (Cantera)

Theoretical 92 © MX80 (Sedighi & Thomas 2014; Corr.)
Equilibrium O FEBEX (Sedighi & Thomas 2014; Corr.)
A SKB BRIE (Fransson et al. 2016; Corr.)
U'U o 0.2 0.4 06 08 1 12 2 04 0.6 08 1
RH Mole Fraction Hydrated Smectite (X,,)
Fitting H,O adsorption data for various
smectite clay compositions .

Use thermodynamic model to predict changes
in mineral volume with RH

195

B Relationships between clay composition and
swelling behavior

185

175

B Data retrieval from URL and laboratory experiments
—  FEBEX
— Bentonite MX80

V °(cm3/mol)
&
w

145 | = Cantera; Na-Smectite (Theor. Equil.)

B Trends for monovalent and divalent cationic
composition consistent with thermodynamic model
predictions for clay hydration 125

== (Cantera; Ca-Smectite (Theor. Equil.)
135 === Cantera; K-Smectite (Theor. Equil.)

===Cantera; Mg-Smectite (Theor. Equil.)

0 0.2 0.4 0.6 0.8 1 1.2
RH
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