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Outline

= Solid hydrogen storage: why is it important?
= Magnesium borohydride as high-capacity material
= Chemical stability and melting of Mg(BH,),

= Formation and characterization of nanoscale
Mg(BH,),@C composites

= Conclusions
= Future work




Anthropogenic Climate Change
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Shift from Fossil to Renewable Energy
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The Hydrogen Economy
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Storage as Hydrogen

= High gravimetric energy density
= 1 kg H, equivalent to 3 kg (1 gallon) gasoline

= Very low volumetric energy density
= >3000 gallons H, (STP) equivalent to 1 gallon gasoline
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Vehicular Hydrogen Storage Goals

20
1 © Sorbents

18 1 © Interstitial hydrides |
. skl eiidee DOE 2020 System
o 9] S o o °Liquid carriers Targets
] °, "5.5 Wt% H,
Bl e b o ) 40 g H, /L
2 o}
S10] % o ° o o =85° C max delivery temp.
O & fy © (AH=20-30 kJ/mol H,)
[ 7 =Reversible (1500 cycles)
'% = 1.5 kg H, / min fill rate
O

Enthalpy, AH°, kJ mol" H,

DOE EERE FCTO

Need “Goldilocks” thermochemical properties and fast kinetics!

=

D




‘BIMARC

https://hymarc.org/

Sandia
National
Laboratories

Goals

“Foundational understanding, synthetic
protocols, new characterization tools, and
validated computational models” for
hydrogen storage materials to meet
": :" N R E L industry requirements for vehicles
=y

NIST

National lnstitute of

Pacific Northwest

NATIONAL LABORATORY

Standords and Technology

N
— A
rreerrer Ill|

BERKELEY LAB

Lawrence Berkeley National Laboratory

NATIONAL ACCELERATOR LABORATORY




Magnesium Borohydride

= One of the highest
capacity light complex ¢
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Mg(BH,),

2.5 wt.V -8.1 wt.% H 1 \c:wt.% H
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Very complex boron cluster chemistry

High temperature (~ 600 °C) needed for complete desorption

Reversibility only at high H, pressures (> 500 bar)




Nanoconfinement
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Hydride/MOF Aerogel Porous Carbon 1 " UH _ bulk
« Graphiti A LN {
7z : gt S 5 0.5 L NH LiNH, 1
i ®. % c & =2 ¥
,,,,,, 5
— g °
DA
é 2nm |
0.51
0
0 10 20 30

Pressure P/FP,

Nanoconfined Li;N has

_ _ no Li,NH intermediate,
* Constrict hydride to nanoscale avoids kinetic trap

*Improve thermodynamics
 Enhance kinetics
*Reduce intermediate formation
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Chem. Rev. 2018, 118, 10775-10839
Adv. Mater. Interfaces 2017, 4, 1600803




Thermodynamics of Mg(BH,),

103

1/6 MgB,H,, +
5/6 Mg + 3 H,

= (Calculated phase diagram: No
Mg(BH,), melting as claimed

by several reports
= Fast temperature ramps for 10°
melting fail to outpace 5
“10!

decomposition
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J. Phys. Chem. C 2012, 116, 15231

Need stable determination of melting point!
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Utilizing High H, Backpressure

Custom high-pressure
hydrogen system (B976)
0-1000 bar, 25-400 °C

r Load up to 4 samples in

1 - ' vessel inside glovebox




Pressure-Dependent Stability

Heated 3-Mg(BH,), samples up to 400 °C
X-ray Diffraction

Intensity (a.u.)

Melting (and resolidification)
observed at highest pressures

Initial
Amorphization and ’i

decomposition below 700 bar
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Further characterization

FTIR Solid-State "B NMR
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— Mg(BH,), is stable only under very high H, backpressures

* spinning side bands




Melting Point Determination

Pressurized Mg(BH,), to 1000
bar and heated, then cooled

340 °C (powder, not shown) 357 °C, top

(compacted
monolith)

top (melt) mid (monolith) bottom (powder)
367 °C

— Mg(BH,), melting point is ~370 °C, 90 °C higher than previously reported
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Heated Sample Characterization
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— MgO XRD peaks and loss of Mg-B-H fragment
IR peaks indicate partial oxidation upon melting




Application of Melting to Nanoconfinement

Melt Infiltraﬂon Wetness Impregnation Solution-based Synthesis
Mll buik metal 'Wdﬂde and supportil‘lg matrix Dissolve bulk metal hvdrlde in soivent Mix precursors and supportins materials
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Methods with solvents limit loading, introduce contaminants that are hard to remove

Melt infiltration of hydride into nanoporous host occurs by capillary action




Porous Carbon Hosts

Ordered Mesoporous Carbons
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Carbon N, Adsorption Porosimetry

(m?/g) (cclg) Radius (nm)

|GA1050 EREED: 3.25 5.5
GA2000 ERETS 0.77 9.0
CMK-3 [V 0.96 2.5

CMK-8 629 0.87 2.8

Chosen carbons have large pore
volumes for holding hydride:
minimize inactive dead weight
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Melt Infiltration

= Physically mix Mg(BH,), and carbon

= Aim for ratios based on carbon’s total pore volume or total mass
= Melt at 400 °C with 1000 bar H, backpressure for 16 h

= Grayish initial mixture yields black composite powder
after infiltration, indicating absorption of Mg(BH,),




Hydrogen Storage of Composites
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Composite Characterization

T I T 1T I LI I LB I L I L I LI CI:MIKI_SI w
Mg(BH,),@CMK-8 mixed Mg(BH,),@CMK-8 25 vol% mixed
—_ S
> s _—_}/
5, ®
2 e
@ Mg(BH,),@CMK-8 melt = Mg(BH,),@CMK-8 25 vol% melt
= 2
< ’—/———/
Mg(BH,),@CMK-8 des. Mg(BH,),@CMK-8 25 vol% des.
TN RN TR e N co vt o gl s by v by v r s v v v st
10 20 30 40 50 60 70 80 1400 1300 1200 1100 1000

26 (°) Wavenumber (cm'1)




Kinetic Analysis: Kissinger Method

Use differential scanning calorimetry In B I AR\ Eq(1
(DSC) to get reaction rates 2 | E, R \T,,
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Rehydrogenation

Rehydrogenated by
heating to 320 °C,
100 bar H,, 20 h

Significant loss of H capacity

wt. % H (hy$fadibhding basis)
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High-Pressure Rehydrogenation

Rehydrogenated by
heating to 400 °C,
1000 bar H,, 72 h

Capacity even lower
after HP rehyd.

(hydride | (hydride | (hydride

(.2 2:1 1.4
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Potential Issues

* Incomplete dehydrogenation
= Formation of meta-stable intermediates

= Cycling between Mg and MgH, rather than MgB, and
Mg(BH,),

= Reaction of Mg with carbon support




Conclusions

= High H, backpressures
required for Mg(BH,),
stability

= Significant decomposition
at pressures as high as
350 bar H,

= Melting of Mg(BH,),
occurs at ~370 °C without
significant decomposition

Melt-infiltration into
nanoporous carbons
enabled

H, capacity of composites
similar to that of bulk
Mg(BH,),

Incomplete desorption
leads to poor cyclability
and reversibility

Thermodynamic and
kinetic characterization of
composites required




Future Work

= |ncrease loading (up to 100 vol%)

= NMR of composites before and after desorption and
rehydrogenation

= Determine activation energies of various steps
= Ascertain AH and AS
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