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Outline

■ Solid hydrogen storage: why is it important?

■ Magnesium borohydride as high-capacity material

■ Chemical stability and melting of Mg(BH4)2

■ Formation and characterization of nanoscale
Mg(BH4)2@C composites

■ Conclusions

■ Future work
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Shift from Fossil to Renewable Energy
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Storage as Hydrogen

• High gravimetric energy density
• 1 kg H2 equivalent to 3 kg (1 gallon) gasoline

• Very low volumetric energy density
• >3000 gallons H2 (STP) equivalent to 1 gallon gasoline

Compress

40 kg H2 m-3 at 700 bar

Liquefy Solidify

\-41, VS-01,0111,V

70 kg H2 m-3 at 21 K > 1003441t(hr)at RT
in metal hydrides
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Vehicular Hydrogen Storage Goals
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Targets

•5.5 wt% H2

•40 g H2 / L

•85° C max delivery temp.
(AH=20-30 kJ/mol H2)

•Reversible (1500 cycles)

• 1.5 kg H2 / min fill rate

Need "Goldilocks" thermochemical properties and fast kinetics!
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Magnesium Borohydride

• One of the highest
capacity light complex
metal hydrides

• Multiple low-temperature
(a,y) and one high-
temperature (p) phases

• 14.9 wt.% H gravimetric
capacity

• 113 g H2/L volumetric
density (R-phase) BH4- tetrahedral complex ions

coordinating Mg2+ ions
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Mg(I3H4)2

-2.5 wt.% H -8.1 wt.% H

Mg(B3H8)2 MgB10H10

MgB2

3.1:1wt.°/0 H

MgB12H12

Very complex boron cluster chemistry

High temperature (- 600 °C) needed for complete desorption

Reversibility only at high H2 pressures (> 500 bar)
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Nanoconfinement

Hydride/MOF
Hydride NP/
Aerogel

Graphitic
Carbon

Hydride NP/
Porous Carbon

•Constrict hydride to nanoscale
• Improve thermodynamics
•Enhance kinetics
•Reduce intermediate formation

0 , 

L1H bulk
Li3N ;4

Li2NH 
14 
LiNH2

 1

2 nm

,
0 10 20 30

Pressure P/P0

Nanoconfined Li3N has
no Li2NH intermediate,

avoids kinetic trap

Chem. Rev. 2018, 118, 10775-10839
Adv. Mater. Interfaces 2017, 4, 1600803



Thermodynamics of Mg(I3H4)2

• Calculated phase diagram: No
Mg(BH4)2 melting as claimed
by several reports

• Fast temperature ramps for
melting fail to outpace c'a
decomposition icN

io3

1/6 MgB12H12 +
5/6 Mg + 3 H2

102 Mg(BH4)2

(c.
101 NM

co e
MgB2 + 4 H2

°10 
0 200 400 600 800 1000

Temperature (°C)

Computed Mg-B-H phase diagram (LLNL)

Need stable determination of melting point!

J. Phys. Chem. C 2012, 116, 15231
Phys. Chem. Chem. Phys. 2013, 15, 19774
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Utilizing High H2 Backpressure

Custom high-pressure
hydrogen system (B976)
0-1000 bar, 25-400 °C

""v"N Load up to 4 samples in

L.. 1 vessel inside glovebox
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Pressure-Dependent Stability

Heated p-Mg(BH4)2 samples up to 400 °C

Melting (and resolidification)
observed at highest pressures

Amorphization and
decomposition below 700 bar
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Further characterization
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Melting Point Determination

Pressurized Mg(BH4)2 to 1000
bar and heated, then cooled

340 °C (powder, not shown)

111116411

Thermal gradient

357 °C, top
(compacted

monolith)

top (melt) mid (monolith) bottom (powder)
367 °C

Mg(BH4)2 melting point is -370 °C, 90 °C higher than previously reported
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Heated Sample Characterization
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Application of Melting to Nanoconfinement

Melt infiltration Wetness lmpregnation

Mix bulk metal hydride and supporting matrix Dissolve bulk metal hydride in solvent

11
1

Solution-based Synthesis \\

Mix precursors and supporting materials

Heat under Ar or H2 (for borohydride or alanate) Mix metal hydride solution and supporting matrix

O

11.11:6°4111 op' \\

Methods with solvents limit loading, introduce contaminants that are hard to remove

Melt infiltration of hydride into nanoporous host occurs by capillary action
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Porous Carbon Hosts

Ordered Mesoporous Carbons Graphene Aerogels
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Carbon N2 Adsorption Porosimetry

Carbon
BET Area
(m2/42)

Pore Volume
(cc/g)

Avg. Pore
Radius (nm)

GA1050 1112 3.25 5.5

GA2000 155 0.77 9.0

782 0.96 2.5CMK-3

CMK-8 629 0.87 2.8

Chosen carbons have large pore
volumes for holding hydride:
minimize inactive dead weight
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Melt Infiltration

• Physically mix Mg(BH4)2 and carbon
• Aim for ratios based on carbon's total pore volume or total mass

• Melt at 400 °C with 1000 bar H2 backpressure for 16 h

• Grayish initial mixture yields black composite powder
after infiltration, indicating absorption of Mg(BH4)2
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Hydrogen Storage of Composites

• Heat sample in Sieverts apparatus
• Measure change in gas pressure
• Convert P to wt.% H given known

volumes and sample mass

— 400

350

wt.% H
Ho 

Mg(EH4)2 wt% H1 
(hydride

Loading I 7)1c

2.2 7.2
250 3

(2,GA11350 1
GA2000 1:1 t 4.1 8.2 - 200 3,—

m

CMK-3 25 voI'o 1.8 7.4 o
150

CMK-8 25 vol 2.2 10.1
100

-10 50

0 20 40 60 80 100 120 140

Time (min)

(1114))011144fK83((25ivabrk I ilt;:411 Ig))

o — —1400

-1

Des. 1
T1

Des. 1
T1

0 100 200 300 400

Time (min)

500

350

300

200 E

150 
6

100

50

600



Composite Characterization
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Kinetic Analysis: Kissinger Method

Use differential scanning calorimetry
(DSC) to get reaction rates
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Rehydrogenation

Rehydrogenated by
heating to 320 °C,
100 bar H2, 20 h

Significant loss of H capacity
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1
— T 1
- Des. 2

Thigs. 1
T 1
- Des. 2

T 2

0 100 200 300 400

Time (min)

500

400

350

300

CD
250 3

-a
CD

200 E
53
o

150

100

50

600

25 d'AMAHL eo



High-Pressure Rehydrogenation

Rehydrogenated by
heating to 400 °C,
1000 bar H2, 72 h

Capacity even lower
after HP rehyd.
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Potential Issues

• Incomplete dehydrogenation

• Formation of meta-stable intermediates

• Cycling between Mg and MgH2 rather than MgB2 and
Mg(BH4)2

• Reaction of Mg with carbon support
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Conclusions

• High H2 backpressures
required for Mg(BH4)2
stability

• Significant decomposition
at pressures as high as
350 bar H2

• Melting of Mg(BH4)2
occurs at —370 °C without
significant decomposition

• Melt-infiltration into
nanoporous carbons
enabled

• H2 capacity of composites
similar to that of bulk
Mg(BH4)2

• Incomplete desorption
leads to poor cyclability
and reversibility

• Thermodynamic and
kinetic characterization of
composites required
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Future Work

• Increase loading (up to 100 vol%)

• NMR of composites before and after desorption and
rehydrogenation

• Determine activation energies of various steps

• Ascertain AH and AS
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