Unclassified Unlimited Release

D. Sunderland, N. Ellingwood, D. Ibanez, S. Bova,

J. Miles, D. Hollman, V. Dang

Christian R. Trott, - Center for Computing Research
Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

W Applications Libraries Frameworks

e — s -
. . TR
4 . L 'y

UT Uintah
Combustine

SNL LAMMPS
Molecular Dynamics

SNL NALU
Wind Turbine CFD

ORNL Raptor
Large Eddy Sim

Kokkos

ORNL Summit ‘ > e SNL Astra
IBM Power9 / NVIDIA Volta LANL/SNL Trinity ANL Aurora21 ARM Architecture
Intel Haswell / Intel KNL Intel Xeon CPUs + Intel Xe GPUs

” Goals For Performance Portability =B

= One coherent approach to low level HPC performance portability needs

= Parallel Execution

= Data Structures and Management

= Math Kernels

= Tools
= Limit cognitive overload

= QOrthogonalization of concerns

= Most of the time no explicit reference to backends (e.g. CUDA, or OpenMP)
= Off ramp via standards integration to limit scope

= |nvest into C++ standards work to make Kokkos a “sliding window” of
advanced capabilities

U Kokkos EcoSystem B

-)
Kokkos
Tools

Science and Engineering Applications ||

Trilinos

Kokkos EcoSystem

Kokkos Kernels

Kokkos Core

[Kokkos Remote Spaces

~ Kokkos Development Team N

Lkokkos
ﬁ%Alamos Argonne Vs Natoua %OAK RIDGE

NATIONAL LABORATORY NATIONAL LABORATORY Laboratories National Laboratory

EST.1943

= Dedicated team with a number of staff working most of their time on Kokkos
= Main development team at Sandia in CCR — Sandia Apps are customers

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, S. Bova, J. Miles, D. Hollman, V. Dang,
soon: H. Finkel, N. Liber, D. Lebrun-Grandie, A. Prokopenko
former: H.C. Edwards, D. Labreche, G. Mackey

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger,
Kokkos Tools: S. Hammond, C.R. Trott, D. Ibanez, S. Moore
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

= Kokkos Core Abstractions e

Parallel Execution

Execution Spaces (“Where”)

- HBM, DDR, Non-Volatile, Scratch - CPU, GPU, Executor Mechanism
Execution Patterns

- Row/Column-Maijor, Tiled, Strided - parallel_for/reduce/scan, task-spawn

Execution Policies (“How”)

- Streaming, Atomic, Restrict - Range, Team, Task-Graph

” Patterns and Policy B

= Reduce cognitive overload by reusing the same code structure

= Parallel_Pattern(ExecutionPolicy, FunctionObject [, ReductionArgs])

// Basic parallel for:

parallel_for(N, Lambda);

// Parallel for with dynamic scheduling:

parallel_for(RangePolicy<Schedule<Dynamic>>(0,N), Lambda);
// Parallel Reduce with teams:

parallel_reduce(TeamPolicy<>(N,AUTO), Lambda, Reducer);
// Parallel Scan with a nested policy

parallel_scan(ThreadvectorRange(team_handle,N), Lambda);
// Restriction pattern equivalent to #pragma omp single
single(PerTeam(team_handle), Lambda);

// Task Spawn

task_spawn(TeamTask(scheduler, dependency), Task);

= QOrthogonalize further via require mechanism to customize exec policy
auto exec_policy_low_latency = require(exec_policy,KernelProperty::HintLightweight);

~ Kokkos Core Capabilities e

Comeept ___[Bemple

Parallel Loops parallel_for(N, KOKKOS_LAMBDA (inti){...BODY...});
Parallel Reduction parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd += ...
}, Sum<>(result));
Tightly Nested parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
Loops KOKKOS_LAMBDA (inti, intj, int k) {...BODY...});

Non-Tightly Nested parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
Loops ... COMMON CODE 1 ...

parallel_for(TeamThreadRange(team, M(N)), [&] (intj) { ... INNER BODY... });

... COMMON CODE 2 ...

N

Task Dag task_spawn(TaskTeam(scheduler, priority), KOKKOS_LAMBDA (Team team){ ... BODY });
Data Allocation View<double**, Layout, MemSpace> a(“A”,N,M);
Data Transfer deep_copy(a,b);
Atomics atomic_add(&a(i],5.0); View<double*,MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;
Exec Spaces Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)
— =

” More Kokkos Capabilities

.
. S

parallel_scan w

LayoutRight StaticWorkGraph

m kokkos_malloc Rokkos a6

m ¢ LayoutStrided
ScratchSpace ScratchSpace ProfilingHooks

&8

Kokkos Kernels .

= BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction
= Scalar type agnostic, e.g. works for any types with math operators
= Layout and Memory Space aware

= Can call vendor libraries when available

= View have all their size and stride information => Interface is simpler

// BLAS // Kokkos Kernels
int M,N,K,LDA,LDB; double alpha, beta; double *A, *B, *C; double alpha, beta; View<double**> A,B,C;
dgemm('N"','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC); gemm('N','N',alpha,A,B,beta,C);

= Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

parallel_for("NestedBLAS", TeamPolicy<>(N,AUTO), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
// Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
// call BLAS using parallelism in this team (e.g. CUDA block)
gemv(team_handle, 'N',alpha,A,x,beta,y)

¥

" Kokkos-Tools Profiling & Debugging o=

= Performance tuning requires insight, but tools are different on each platform
= |nsightinto
= KokkosTools: Provide common set of basic tools + hooks for 3rd party tools
= One common issue abstraction layers obfuscate profiler output
" Kokkos hooks for passing names on o i e

Wl B Bottom-up

" Provide Kernel, Allocation and Region cousing: | same pomsin srame s runction s can stack

CPU Tir

" NO need tO recom p||e Frame D&mam'r;:::n: SERE Effective Time by Ubilization | :
. | Didle @ Poor Mok Wideal [Over |IMbala

= Uses runtime hooks TreraRForANTS a.768s I I 057

1 1.6155 l - 0.17

. . k3 LES | 0.18

- Set Vla env Varlable [-F] 1-5&'3'5.1 0.21

P[No frame domain - Qutside any frame] 0.079s| 1.34

P ParalielReduce. Dot 19525 N .53

b ParallelF or.Z4mainEUIRKIE_ z.168: [T 0.17

” Improved Fine Grained Tasking s

= Generalization of TaskScheduler abstraction to allow user to Fibonacci 30 (V100)

be generic with respect to scheduling strategy and queue .

= |mplementation of new queues and scheduling strategies:

»

= Single shared LIFO Queue (this was the old implementation)
= Multiple shared LIFO Queues with LIFO work stealing

($)]

EAN

= Chase-Lev minimal contention LIFO with tail (FIFO) stealing

= Potentially more
= Reorganization of Task, Future, TaskQueue data structures to
accommodate flexible requirements from the TaskScheduler
= Forinstance, some scheduling strategies require additional II

storage in the Task

w

|V|I||I0n Tasks per Second
N

Questions: David Hollman m Old Single Queue mNew Single Queue

= Multi Queue m Chase-Leve MQ

~ Tasking Example Code e

template< typename Scheduler >
struct FibonacciTask {
using sched_type = Scheduler;
using future_type = BasicFuture< long, Scheduler >;
future_type fib_ml, fib_m2;
const long n;

Scheduler obtained from arguments: task could be a lambda]

Spawn child tasks]

KOKKOS_INLINE_FUNCTION
TestFib(const value_type arg_n)

. b LY, FIB_M2CY, nl aran) I} Make compound dependency]

KOKKOS_INLINE_FUNCTION
void operator() (typename sched_typ
(auto& sched = member.scheduler();
if (n<2) {result =n; }
else if[('fib_m2.is_null

e e e & pesuls Respawn task with new deps]

result = fib_ml O + fib_m2.get(Q; }

else {
T1b_m2 = task_spawn(TaskSingle , TaskPriori onacciTask(C n - 2));
fib_ml = task_spawn(TasksSi sched), FibonacciTask 1));

e

BasicFuture<void, Scheduler> dep[] = { fib_ml, fi
—all(dep, 2);

BasicFuture<void, Scheduler> fib_all = sched. If dependenCIeS are not NULL this is ISPl]

if C 'fib_m2.is_nul1(Q) && !'fib_ml.i 10 && !fib_all.is_nul1Q)) {
(respawn(this, fib_all, TaskPriority::High);)
} else { Kokkos::abort("TestFib insufficient memory"); }

}
}
S ———S—li—i—éé————NnNAA—A—mAA—m——M—M—m—SM——————MiMM—lhh__—— —nn——~—~a~—a——n——nN—nNnN————

L Kokkos Remote Spaces: PGAS Support @

= PGAS Models may become more viable for HPC with both changes in network
architectures and the emergence of “super-node” architectures

* Example DGX2 VIO V100 Vi00 V100 Vieo Vioo vioo V100

= First “super-node”
= 300GB/s per GPU link

» |dea: Add new memory spaces which return data handles with shmem semantics
to Kokkos View

» View<double**[3], LayoutLeft, NVShmemSpace> a(“A”,N,M);

—_— . template<>
- Operator a(i,3,k) returns: struct NVShmemElement<double> {

NVShmemElement (int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}

int pe; double* ptr;

void operator = (double val) { shmem_double p(ptr,val,pe); }
};

L PGAS Performance Evaluation: miniFE @E.

= Test Problem: CG-Solve CGSolve Performance
= Using the miniFE problem N*3 6000
= Compare to optimized CUDA 5000
= MPI version is using overlapping .
= DGX2 4 GPU workstation 2. 4000
= Dominated by SpMV (Sparse Matrix -g, 3000
Vector Multiply) 3 S
= Make Vector distributed, and store = 2000 i %
global indicies in Matrix = 3% \
. 1000 3 \
= 3 Variants . 3 \
= Full use of SHMEM 0 o
= |nline functions by ptr mapping 10073
= Store 16 pointers in the View m VP m SHMEM
= Explicit by-rank indexing _
= Make vector 2D 8B SHMEM-Inline ® SHMEM-Index

= Encode rank in column index

~ Kokkos Based Projects N

= Production Code Running Real Analysis Today
= We got about 12 or so.

= Production Code or Library committed to using Kokkos and actively porting
= Somewhere around 30

= Packages In Large Collections (e.g. Tpetra, MuelLu in Trilinos) committed to
using Kokkos and actively porting

= Somewhere around 50

= Counting also proxy-apps and projects which are evaluating Kokkos (e.g.
projects who attended boot camps and trainings).

= Estimate 80-120 packages.

~ Kokkos Users — R

Sandia Pacific Northwest
Natinnal NATIONAL LABORATORY
» Los Alamos

A |
Los Alamos Laboratories A R L ﬁ
HJ STATE

LiNRE

FATIONAL RENEWABLE ENERGY LABORATORNY

National Laboratory NATIONAL LABORATORY

% OAK RIDGE Argonne 7' L
‘ U

ESEARCH <@ @ CSCS
THE LABORATORY e
UUN[VERSITY]
OF UTAH ” m
‘ Farschungszentrum TECHNISCHE
Max-Planck-Institut UNIVERSITAT
MOMCHEN

fir Plasmaphysik ﬁ .i‘r‘ Qﬂﬁm

BERKELEY LAB

” Uintah e

= System wide many task framework from Reverse Monte Carlo
University of Utah led by Martin Berzins Ray Tracing 643 cells

= Multiple applications for combustion/radiation 16
simulation = 14

= Structured AMR Mesh calculations
= Prior code existed for CPUs and GPUs
= Kokkos unifies implementation

6
. . 4
= Improved performance due to constraints in = 5 I
Kokkos which encourage better coding practices 0
CPU GPU KNL

m Original ®Kokkos

Time per Timeste

Questions: Dan Sunderlan

W LAM M PS Questions: Stan Moore o

Widely used Molecular Dynamics Architecture Comparison

Simulations package Example in.reaxc.tatb /
" Focused on Material Physics 196k atoms / 100 steps
= QOver 500 physics modules 200
= Kokkos covers growing subset of those -
= REAX s an important but very complex 5100
potential g
= USER-REAXC (Vanilla) more than " i . I I I
10,000 LOC \Y\%@ O@% q).\ﬂ/ v{_@ Qgc Ag@
= Kokkos version ~6,000 LOC %Jr\é@ \Q)@Q \§§ Q\Q\ @Q\V S\Q\V
= LJin comparison: 200LOC Foet W

= Used for shock simulations = verilla = Koldos

pv
.. Alexa N

= Portably performant shock Best Threaded TimesSingle-Rank

140
120

= Solving multi-material problems for s 1g8

internal Sandia users 60
: i= 40

= Uses tetrahedral mesh adaptation 20 B
0

hydrodynamics application

Time in

S Intel NVIDIA NVIDIA NVIDIA Intel Intel
Questions: Dan Ibanez KNL K40 K80 P100 Xeon KNG
E7-4870

= All operations are Kokkos-parallel

= Test case: metal foil expanding due to
resistive heating from electrical
current.

o4
b SPARC Courtesy of: Micah Howard B

N —™
" Goal: solve aerodynamics problems for S S S S L
Sandia (transonic and hypersonic) on [s s o

‘leadership’ class supercomputers
= Solves compressible Navier-Stokes equations
= Perfect and reacting gas models

logs Time per Time Step [s]

= [aminar and RANS turbulence models ->
hybrid RANS-LES

" Primary discretization is cell-centered finite

VOl u m e Number of Compute Nodes or GPUs
= Research on high-order finite difference and 4 Sierra nodes (16x V100)
discontinuous Galerkin discretizations equivalent to ~40 Trinity nodes

H Il 1 P
= Structured and unstructured grids (80x Haswell 16¢ CPU)

= Aligning Kokkos with the C++ Standard &

= Long term goal: move capabilities from Kokkos into the ISO standard
= Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

Propose for C++

Kokkos Legacy C++ Standard

Implemented legacy
capabilities in terms of Back port to compilers we got
new C++ features C++ Backport

" C++ Features in the Works T

= First success: atomic_ref<T> in C++20
= Provides atomics with all capabilities of atomics in Kokkos
= atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);
= Next thing: Kokkos::View => std::mdspan
= Provides customization points which allow all things we can do with
Kokkos::View
= Better design of internals though! => Easier to write custom layouts.
= Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks
= We hope will land early in the cycle for C++23 (i.e. early in 2020)
= Also C++23: Executors and Basic Linear Algebra (just began design work)

- Towards C++23 Executors i

= C++ standard is moving towards more asynchronicity with Executors
= Dispatch of parallel work consumes and returns new kind of future

= Aligning Kokkos with this development means:

= Introduction of Execution space instances (CUDA streams work already)

DefaultExecutionSpace spaces[2];

partition(DefaultExecutionSpace(), 2, spaces);

// f1l and f2 are executed simultaneously

parallel for(RangePolicy<>(spaces[@], @, N), f1);
parallel for(RangePolicy<>(spaces[1], @, N), f2);
// wait for all work to finish

fence();

= Patterns return futures and Execution Policies consume them

auto fut_1 = parallel for(RangePolicy<>(“Functl”, @, N), f1);

auto fut_2a = parallel for(RangePolicy<>(“Funct2a”, fut_1,0, N), f2a);
auto fut_2b = parallel for(RangePolicy<>(“Funct2b”, fut_1,0, N), f2b);
auto fut_3 = parallel for(RangePolicy<>(“Funct3”, all(fut_2a,fut2_b),0, N), f3);
fence(fut_3);

