
aa fax, 2) 17.

2

fax

(7

T(i)* f(X5Olif M(1141-13 I 14
aob:

The Kokkos C++ Performance Portability EcoSystem
Unclassified Unlimited Release
D. Sunderland, N. Ellingwood, D. Ibanez, S. Bova,

J. Miles, D. Hollman, V. Dang
am amitimmen or

Christian R. Trott, - Center for Computing Research

Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energys National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-3111 C

SAND2019-3723PE

Applications

SNL NALU
Wind Turbine CFD

ORNL Summit

.43
rt

!BCE

•

• !

SNL LAMMPS
Molecular Dynamics

IBM Power9 / NVIDIA Volta LANL/SNL Trinity
Intel Haswell / Intel KNL

Libraries Frameworks

al=

UT Uintah
Combustine

ANL Aurora21
Intel Xeon CPUs + Intel Xe GPUs

ORNL Raptor
Large Eddy Sim

1

ISMI*211
SNL Astra
ARM Architecture

: Goals For Performance Portability =
• One coherent approach to low level HPC performance portability needs

• Parallel Execution

• Data Structures and Management

• Math Kernels

• Tools

• Limit cognitive overload

• Orthogonalization of concerns

• Most of the time no explicit reference to backends (e.g. CUDA, or OpenMP)

• Off ramp via standards integration to limit scope

• Invest into C++ standards work to make Kokkos a "sliding window" of
advanced capabilities

Kokkos EcoSystem

Kokkos
Tools

Debugging

Profiling

Tuning
A

cience and En i ineering Applications

Kokkos EcoSysiem

Kokkos Kernels

Linear Algebra Kernels Graph Kernels

Kokkos Corc
Parallel

Execution r Parallcl Data
Structures

Kokkos
Support

Documentalion

Tulorials

Booicamps

App support

Kokkos Remote Spaces

PGAS 10

APU

49

ui

au + GPU

: Kokkos Development Team

: kokkos

Los Alamos
NATIONAL LABORATORY

EST.1943

Argonne IS
N %IMF/AL SEICRA. CRY

Sandia
National *OAK RIDGE
Laboratories National Laboratory

• Dedicated team with a number of staff working most of their time on Kokkos

• Main development team at Sandia in CCR — Sandia Apps are customers

Kokkos Core:

Kokkos Kernels:

Kokkos Tools:

Kokkos Support:

C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, S. Bova, J. Miles, D. Hollman, V. Dang,

soon: H. Finkel, N. Liber, D. Lebrun-Grandie, A. Prokopenko

former: H.C. Edwards, D. Labreche, G. Mackey

S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger,

S. Hammond, C.R. Trott, D. Ibanez, S. Moore

C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

7.
, Kokkos Core Abstractions

All Data Structures 41
=Pi

Memory Spaces ("Where") Ill

P

- HBM, DDR, Non-Volatile, Scratch

- Row/Column-Major, Tiled, Strided

Tlerniry .fir11ow 11
- Streaming, Atomic, Restrict

ara e xecu ion

P" Execution Spaces ("Where") 111

- CPU, GPU, Executor Mechanism
, N

xecu ion a erns

- parallel for/reduce/scan, task-spawn

xecution o icies ow

- Range, Team, Task-Graph

Patterns and Policy Sin
011, Mimi

• Reduce cognitive overload by reusing the same code structure

• Parallel Pattern(ExecutionPolicy , FunctionObject ReductionArgs])
// Basic parallel for:
parallel_for(N, Lambda);
// Parallel for with dynamic scheduling:
parallel_for(RangePolicy<Schedule<Dynamic»(0,N), Lambda);
// Parallel Reduce with teams:
parallel_reduce(TeamPolicy<>(N,AUTO), Lambda, Reducer);
// Parallel Scan with a nested policy
parallel_scan(ThreadvectorRange(team_handle,N), Lambda);
// Restriction pattern equivalent to #pragma omp single
single(PerTeam(team_handle), Lambda);
// Task Spawn
task_spawn(TeamTask(scheduler, dependency), Tack);

• Orthogonalize further via require mechanism to customize exec policy
auto exec_policy_low_latency = require(exec_policy,Kernelproperty::HintLightweight);

Kokkos Core Capabilities
ncept

Parallel Loops parallel_for(N, KOKKOS_LAMBDA (int i) { ...BODY... });

Parallel Reduction parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd +=
Sum<>(result));

Tightly Nested
Loops

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
KOKKOS_LAMBDA (int i, int j, int k) {...BODY...});

Non-Tightly Nested
Loops

Task Dag

parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
... COMMON CODE 1 ...
parallel_for(TeamThreadRange(team, M(N)), [&] (int j) { ... INNER BODY... });
... COMMON CODE 2 ...

});

task_spawn(TaskTeam(scheduler , priority), KOKKOS_LAMBDA (Team team) { ... BODY });

Data Allocation View<double", Layout, MemSpace> a("A",N,M);

Data Transfer deep_copy(a,b);

Atomics

Exec Spaces

atomic_add(&a[i],5.0); View<double*,MemoryTraits<AtomicAccess» a(); a(i)+=5.0;

Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)

More Kokkos Capabilities
emoryPool Pr.

410 parallel scary/.

ArayoutRight

LayoutLefall

DualView "11111

kticWorkGraphjr.

4Ier kokkos

AIL/ectori*,

410 ScratchSpace 4111011 ScratchSpace
ir

AILReducers

41144 ScatterView

ANIF
UnorderedMapP

4101 OffsetView

411111. RandomPool 11111

401 kokkos_free

411AlrofilingHooks

ayoutStridil

Kokkos Kernels

• BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction

• Scalar type agnostic, e.g. works for any types with math operators

• Layout and Memory Space aware

• Can call vendor libraries when available

• View have all their size and stride information => Interface is simpler

// BLAS // Kokkos Kernels
int M,N,K,LDA,LDB; double alpha, beta; JUDI *A, *B, *C; double alpha, beta; View<double**> A,B,C;
dgemm('N','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC); gemm('N','N',alpha,A,B,beta,C);

• Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)
parallel for(NestedBLAS", TeamPolicy<>(N,AUTO), KOKKOS_LAMBDA (con team handle t& team_handle) {
// Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
// Call BLAS using parallelism in this team (e.g. CUDA block)
gemv(team_handle,'N',alpha,A,x,beta,y)

1);

7.Kokkos-Tools Profiling & Debugging

• Performance tuning requires insight, but tools are different on each platform

• Insight into

• KokkosTools: Provide common set of basic tools + hooks for 3rd party tools

• One common issue abstraction layers obfuscate profiler output

• Kokkos hooks for passing names on

• Provide Kernel, Allocation and Region

• No need to recompile

• Uses runtime hooks

• Set via env variable

III Basic Hotspots Hotspots by CPU Usage viewpoint (changq)

• Atialysls 'large • Analysis Typal 0:Mattleo Surninary

Grouping! Frame Domain j Frame Function I Call Stack

Frame Domain f Frame{ Function Call
Rack

vParallelIFOLAXPe

[3.3

10.2

[No frame domaln - Outslde any frame]

• elfroduce. Dot

PParallelFor.Z4rnalnEUIRrIE_

Bottorni-up

CPU Ti r

gl I
Mraloft Tim& tr5? uualiration .

1 ItIle II Poor OM III Neal III Over imMa

4.7613s 0.57

1...61Ss ILI OA,

1-593 I=

1.5606

0.07g-s

1:052s

■
OM

0-2/

0_5!

.0.17

7. Improved Fine Grained Taskingr ik

• Generalization of TaskScheduler abstraction to allow user to

be generic with respect to scheduling strategy and queue

• Implementation of new queues and scheduling strategies:

Fibonacci 30 (V100)
7

6
• Single shared LIFO Queue (this was the old implementation) -0c

5o• Multiple shared LIFO Queues with LIFO work stealing a)
u)

• Chase-Lev minimal contention LIFO with tail (FIFO) stealing o_ '(15 4

co
• Potentially more co 3

co
• Reorganization of Task, Future, TaskQueue data structures to I—

g
accommodate flexible requirements from the TaskScheduler _._ 2

• For instance, some scheduling strategies require additional 1

storage in the Task o

Questions: David Hollman

II
• Old Single Queue • New Single Queue

• Multi Queue • Chase-Leve MQ

Tasking Example Code
template< typename Scheduler >
struct FibonacciTask {

using sched_type = Scheduler;
using future_type = BasicFuture< long, Scheduler >;
future_type fib_ml, fib_m2;
const long n;

KOKKOS_INLINE_FUNCTION

TestFib(const value_type arg_n)
: fib_ml(), fib_m2(), n(arg_n) {}

KOKKOS_INLINE_FUNCTION

void operator()(sched_typ
(auto& sched = member.scheduler();
if (n < 2) { result = n; }
else [(!fib m2.is null
else {

b ml.is

Sin
.1111) 111111111111

Scheduler obtained from arguments: task could be a lambda

Spawn child tasks

Make compound dependency

_type & mem value_type & result

result = fib_

Respawn task with new deps

1 () + fib_m2.get(); }

'tib_m2 = task_spawn(Tas Single
fib_m1 = task_spawn(TaskSi •

d, TaskPrio it bonacciTask(n - L));
sched), FibonacciTask ► 1));

BasicFuture<void, Scheduler> dep[1 = { fib_ml, f };
BasicFuture<void, Scheduler> fib_all = sched. _all(dep, 2);, lf dependencies are not NULL this is respawn

(!fib_m2.is_null() && lfib_m1.1 && lfib_all.is_null()) {
(respawn(this, fib_all, Taskpriority::High);)

} lse { Kokkos::abort("TestFib insufficient memory"); }
}

}

7 Kokkos Remote Spaces: PGAS Support a , .
• PGAS Models may become more viable for HPC with both changes in network

architectures and the emergence of "super-node" architectures

• Example DGX2 V100 V100 V100 V100
€

c

V100 V100 V100 V100

• First "super-node"

(-)

• 300GB/s per GPU link
M

U)
>

V100 V100 V100 V10 V100 V100 V100 V100
".1•

• Idea: Add new memory spaces which return data handles with shmem semantics
to Kokkos View

• View<double**[3], LayoutLeft, NVShmemspace> a(,N,M);

• Operator a (i, j, k) returns: template<>
struct NVShmemElement<double> {

NVShmemElement(int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}
int pe; double* ptr;
void operator = (double val) { shmem_double_p(ptr,val,pe); }

};

PGAS Performance Evaluation: miniFE

• Test Problem: CG-Solve CGSolve Performance
• Using the miniFE problem NA3 6000
• Compare to optimized CUDA
• MPI version is using overlapping

5000

45• DGX2 4 GPU workstation sx 4000
• Dominated by SpMV (Sparse Matrix fn

• 3000
Vector Multiply)

• Make Vector distributed, and store 2000
global indicies in Matrix

• 3 Variants
• Full use of SHMEM 0

• lnline functions by ptr mapping
• Store 16 pointers in the View

• Explicit by-rank indexing
• Make vector 2D
• Encode rank in column index

1000

10003 2001'3

• MPI oSHMEM

o SHMEM-Inline SHMEM-Index

400^3

iw Kokkos Based Projects =

• Production Code Running Real Analysis Today

• We got about 12 or so.

• Production Code or Library committed to using Kokkos and actively porting

• Somewhere around 30

• Packages In Large Collections (e.g. Tpetra, MueLu in Trilinos) committed to
using Kokkos and actively porting

• Somewhere around 50

• Counting also proxy-apps and projects which are evaluating Kokkos (e.g.
projects who attended boot camps and trainings).

• Estimate 80-120 packages.

: Kokkos Users

• Los Alamos
NATIONAL LASOR.ATORY

EP'. 1111

*OAK RIDGE
-7-National Laboratory

Pacific Northwest
NATIONAL LABORATORY

RAL
Argonne trnalNATIONAL LABORATORY

TET TH

UNIVERSITY
OF UTAH

IPP Max-Planck-Institut
far Plasmaphysik

Sandia
National
Laboratories

frit r

U.S.NAVAL
RESEARCH
_ADORATORY

JOLICH
Forsc h u ngsz ont rum

Rensselaer

N&vs. REL
NATICH•elL IIENEMASLE ENERGY Li.BORATEIRY

‘.4
x44 cscs

TECHNISCHE
UNIVERSITAT
MUNCHEN

: Uintah

• System wide many task framework from
University of Utah led by Martin Berzins

=

Reverse Monte Carlo
Ray Tracing 64"3 cells

• Multiple applications for combustion/radiation 16

simulation 7 14

0- 12
• Structured AMR Mesh calculations 1-0-1 (1) io
• Prior code existed for CPUs and GPUs E

i= 8

'ci) 6• Kokkos unifies implementation 0_
(I) 4
E• Improved performance due to constraints in i= 2

Kokkos which encourage better coding practices o

Questions: Dan Sunderlan

CPU GPU KNL

• Original • Kokkos

: LAMMPS Questions: Stan Moore

Widely used Molecular Dynamics

Simulations package

• Focused on Material Physics

• Over 500 physics modules

• Kokkos covers growing subset of those

• REAX is an important but very complex

potential

• USER-REAXC (Vanilla) more than

10,000 LOC

• Kokkos version —6,000 LOC

• LJ in comparison: 200LOC

• Used for shock simulations

Architecture Comparison
Example in.reaxc.tatb /
196k atoms / 100 steps

200

150

100

50

0

'qe,
'Or 934 to t„-i- 1),+

•Vanilla • Kokkos

himillso

Alexa
• Portably performant shock

hydrodynamics application

• Solving multi-material problems for
internal Sandia users

• Uses tetrahedral mesh adaptation

Questions: Dan Ibanez

•

Best Threaded TimesSingle-Rank

140
120

u) 100
80

g 60
40
20
0

Intel NVIDIA NVIDIA NVIDIA Intel Intel
KNL K40 K80 P100 Xeon KNC

E7-4870

• All operations are Kokkos-parallel

• Test case: metal foil expanding due to
resistive heating from electrical
current.

71.

SPARC Courtesy of: Micah Howard

• Goal: solve aerodynamics problems for
Sandia (transonic and hypersonic) on
`leadership' class supercomputers

• Solves compressible Navier-Stokes equations

• Perfect and reacting gas models

• Laminar and RANS turbulence models ->
hybrid RANS-LES

• Primary discretization is cell-centered finite
volume

• Research on high-order finite difference and
discontinuous Galerkin discretizations

• Structured and unstructured grids

Total Problem Solve

ATS-1/HSW, 1 thread -

WM ATS-1/KN L, 4 threads

— ATS-2N100 (FY19 start)

7-7 WaterrnanN100

7—• AT5-2N100

Number of Compute Nodes or GPUs

4 Sierra nodes (16x V100)
equivalent to —40 Trinity nodes
(80x Haswell 16c CPU)

: Aligning Kokkos with the C++ Standard
• Long term goal: move capabilities from Kokkos into the ISO standard

• Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

t

Kokkos Legacy
a

Implemented legacy
capabilities in terms of
new C++ features

rm. Kokkoluslill

C++ Backport Ammob-

Propose for C++

t

C++ Standard

J

=

Back port to compilers we got

C++ Features in the Works
• First success: atomic_ref<T> in C++20

• Provides atomics with all capabilities of atomics in Kokkos

• atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);

• Next thing: Kokkos::View => std::mdspan

• Provides customization points which allow all things we can do with
Kokkos::View

• Better design of internals though! => Easier to write custom layouts.

• Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks

• We hope will land early in the cycle for C++23 (i.e. early in 2020)

• Also C++23: Executors and Basic Linear Algebra (just began design work)

: Towards C++23 Executors

• C++ standard is moving towards more asynchronicity with Executors

• Dispatch of parallel work consumes and returns new kind of future

• Aligning Kokkos with this development means:
• Introduction of Execution space instances (CUDA streams work already)

DefaultExecutionSpace spaces[2];
partition(DefaultExecutionSpace(), 2, spaces);
// fl and f2 are executed simultaneously
parallel_for(RangePolicy<>(spaces[0], 0, N), f1);
parallel_for(RangePolicy<>(spaces[1], 0, N), f2);

// wait for all work to finish
fence();

• Patterns return futures and Execution Policies consume them
auto fut_1 = parallel_for(RangePolicy<>("Funct1", 0, N), f1);
auto fut_2a = parallel_for(RangePolicy<>("Funct2a", fut_1,0, N), f2a);
auto fut_2b = parallel_for(RangePolicy<>("Funct2b", fut_1,0, N), f2b);
auto fut_3 = parallel_for(RangePolicy<>("Funct3", all(fut_2a,fut2_b), N), f3);
fenc((fut_3);

=

fl

f2a l f2b

f3

