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lewgraph background: The traverse cross section of a European beech leaf from Gerber et al., Rem. Sens. Environ. 115, 404-414 (2011



Silica Powders: A Visible Example of the Microscale Impact

Transitioning from the
finer to the coarser
powders:

« Less scattering per
unit volume

* Appear less bright




Silica Powders: An Infrared Example of the Morphological Dependence
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Silica Powders: An Infrared Example of the Morphological Dependence
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Introduce phenomenological “surface scattering” vs. “volume scattering”
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Community Models: Current State-of-the-Art
o
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Discussion Topics
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Computational Approach: The Ambartsumian Invariant Embedding
Method

/ / « Start with optically thick sample
ir /‘

* Removal of thin layer does not impact
the reflectance of the sample
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Solution Provided by Michael Mishchenko (NASA GISS)
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Bidirectional reflectance of flat, optically thick particulate
layers: an efficient radiative transfer solution and applications
to snow and soil surfaces
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Abstract

We describe a simple and highly efficient and accurate radiative transfer technique for computing
bidirectional reflectance of a macroscopically flat scattering layer composed of nonabsorbing or weakly
absorbing, arbitrarily shaped. randomly oriented and randomly distributed particles. The layer is assumed to
be homogeneous and optically semi-infinite, and the bidirectional reflection function (BRF) is found by
a simple iterative solution of the Ambartsumian’s nonlinear integral equation. As an exact solution of the
radiative transfer equation, the reflection function thus obtained fully obeys the fundamental physical laws of
energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation
field. it is by far the fastest numerical approach available and can be used as an ideal input for Monte
Carlo procedures calculating BRFs of scatteri ers with macroscopically rough surfaces. Although the
effects of packing density and coherent backscattering are currently neglected. they can also be incor-
porated. The FORTRAN implementation of the technique is available on the World Wide Web at
http://www.giss.nasa.gov/ ~ crmim/brf.html and can be applied to a wide range of remote sensing, engineer-
ing, and biophysical problems. We also examine the potential effect of ice crystal shape on the bidirectional

reflectance of flat snow surfaces and the applicability of the Henyey-Greenstein phase function and the
o-Eddington approximation in calculations for soil surfaces. @© 1999 Elsevier Science Ltd. All rights
reserved.

* Corresponding author. Tel: + 212-678-5590; fax: +2

E-mail address: crmim@giss.nasa.gov (M.L. Mishchenko)
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Electromagnetic Scattering by Particles and Surfaces

FORTRAN Codes for the C
Rough Surfaces

of the Bidirectional Refl Function for Flat Particulate Layers and

By Michael |. Mishchenko and Nadia T. Zakharova
This webpage provides access to two collections of FORTRAN codes.

The first one can be used to compute the (scalar) bidirectional reflectance of a semi-
infinite homogeneous slab composed of arbitrarily shaped, randomly oriented particles
based on a rigorous numerical solution of the radiative transfer equation.

The second one can be used to compute the Stokes reflection matrix of a rough interface
two half-sp: with different refractive indices (e.g., a rough
ocean surface)

Particulate Semi-Infinite Layers

The code brf f solves the Ambartsumian’s nonlinear integral equation for the reflection
function using a simple iterative method. Since this technigue bypasses the computation
of the internal field, it is by far the fastest and most accurate numerical approach
available

The codes are ideally suitable to computing the BRF for flat snow, soil, and powder
surfaces and optically thick clouds and may find applications in geophysics, physics,
biophysics, and industrial research.

A detailed user manual to the codes has been published: M. |. Mishchenko, J. M. Dlugach, E. G. Yanovitskij, and N. T. Zakharova, Bidirectional
reflectance of flat, optically thick particulate layers: An efficient radiative transfer solution and applications to snow and soil surfaces, J. Quant
Spectrosc. Radiat. Transfer, 63, 409-432 (1999). A hardcopy reprint of this paper is available from Michael Mishchenko upon request. Please
leave a message at mmishchenko@giss nasa.gov indicating your name and mailing address

The users of the codes are encouraged to visit this page on a regular basis for information on latests developments, warnings, and/or errors
found. We would highly appreciate informing us of any problems and errors encountered with these codes. Please e-mail your questions and
comments to mmishchenko@giss.nasa.gov

FORTRAN codes
To retrieve a code, click on the code name and use the "Save As..." option from the "File” menu

« refl.f - This code computes Fourier components of the reflection function
« interp.f - This code computes the bidirectional reflection function for a given set of scattering geometries

+ spher.f - This code computes the Legendre expansion coefficients for polydisperse spherical particles using the standard Lorenz-Mie
theory

The codes must be run in the following sequence: spher.f -> refl.f -> interp f
Note that the Legendre expansion coefficients for polydisperse, randomly oriented nonspherical particles and sphere aggregates can be
computed using O T-mairix codes also available on this website. The expansion coefficients for the standard and double-peaked Henyey-
Greenstein phase functions are computed using Eqgs. (15) and (19) of the manual. Below we also provide the Legendre expansion coefficients
for two nonspherical ice particle models described in the manual.
Benchmark results
The following output files were computed by the codes in their current settings and may provide a useful test of the performance of the codes
on different computers
« spher.print
spher.write
refl print

interp write

The file refl.write is not given here because of its large size




Solution Provided by Michael Mishchenko (NASA GISS)
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Our Canonical Geometry: Spheroids

|
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This range of shapes and aspect ratios (ARs) is greatly simplified

Shape = spheroid, AR = one characteristic value VAN,

2 shape bins: one bin each per prolate, oblate




Calculating P™, @
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Applicability of regular particle
shapes in light scattering
calculations for atmospheric ice particles

CAPABILITIES AND LIMITATIONS OF A CURRENT
FORTRAN IMPLEMENTATION OF THE T-MATRIX
METHOD FOR RANDOMLY ORIENTED, ROTATIONALLY
SYMMETRIC SCATTERERS

MICHAEL L. MISHCHENK O+ and LARRY D. TRAVIS Andreas Macke and Michael |. Mishchenko

NASA Goddard Institute for Spage Studies, 2880 Broadway, New York. New York 10025, USA.

We aseertain the usefulness of simple ice particie g ies for i the intensity distribution of
light scattering by atmospheric ice paricles. To this end, similarities and differences in light
seattering by axis-equivalent, regulsr and distorted hexsgonsl cylindric, ollipscidal, and cireular

lindiric jop norticles are rerpesad AL the recnies nertein 1o nortirlas with sives mueh avoar than

Abstraet—We describe in detail s software implementation of a current version of the T-muatrix
method for computing light scattering by polydisperse. randomly onented, rotationally
symmetic paricles. The FORTRAN T-matrix codes are publicly availahle on the Warld Wide

Diffra

>
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OCCAUIe CONVRIISNL 1N MAsSIve CONTPULET CAlCOIatons 101 acie: polydispersions, and Rel. 5
presents benchmark T-matrix computations for particles with non-smooth surfaces (finite circular
cylinders). A general review of the T-matrix method can be found in Ref 7.

In this paper we provide a detailed description of modern T-matnix FORTRAN codes which
incorporate all recent developments, are publicly available on the World Wide Web. and are.
apparently, the most efficient and powerful tool for accurately computing light scattering by
randomly oriented rotationally symmetric particles. For the first time. we collect in one place all
necessary formulas, discuss numerical aspects for T-matrix computations. describe the input and
output parameters. and demonstrate the capabilities and limitations of the codes. The paper is
intended to serve as a detailed user guide to a versatile tool suitable for a wide range of practical
applications. We specifically target the users who are interested in practical applications of the
T-matrix method rather than in details of its mathematical formulation.

1. BASIC DEFINITIONS
The single scattering of light by a small-volume element dv consisting of randomly onented,
rotationally symmetric. independently scattering particles is completely described by the ensemble-
averaged extinction, C,,,. and scattering. C,,, cross sections per particle and the dimensionless

+Author to whom cor dh should be add d.
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erably larger than the wavelengths of the incoming
solar radiation, especially in the visible spectral
region. Therefore, the geometrical optics approxi-
mation offers a conceptually simple although time-
consuming way to simulate single scatlering by
almost arbitrarily shaped scatterers!'® Whereas
these papers take more and more complex particle
peometries such as bullet rosettes, dendrites, or
polyverystals into account, in this paper we examine
the possibility of representing the scattering proper-
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Received 28 August 1995; revised manuseript received 29
January 1996,

OHI3-5835 06, 21 420 1-D65 10,00, 0

o 1986 Optical Society of Ameriza

On the other hand, the three two) semiaxes of an
ellipsoid [circular cylinder| allow for a variahility of
particle shapes that may cover to some extent the
natural variability of atmozpheric ice crystal habits.

Another motivation arizes from uncertainties in
our knowledge of real ice particle shapes. The
study of ohaervationally derived two-dimensional ice
crystal shadow images® or replicas’® elearly demon-
strates that solid hexagonal columns or plates are a
strong idealization of atmospheric ice crystals.
However, statistically reliable shape information is
difficult to extract from these data, partly because of
the strong natural variability. Therefore it appears
reasonable to ascertain the use of nonhexagonal but
still simple geometries as substitutes for a polydisper-
sion of complicated ice particle shapes,

Because of the lack of sharp edges, ellipsoids do
not provide strong halos that are characteristic of
rogular b 1 particles. H -, the abzonca
of those foatures, as reported in a number of radi-
ance measurements in or above cirrus clouds 210
emphasizes the potential use of nonhexagonal par-

20 Juby 1998 / Vi, 35, No. 21 | APPLIED OPTICS 4201
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1st-Surface Reflectance and Surface Roughness

F Fresnel X RFresnel

Fractional area Fg ., l =
of refractive index n+ik f= 2+ ;r

With surface roughness

Medium of particles of characterized by 6

refractive index n+ik

R =H Fresnel X RFresnel + (1 —F Fresnel X RFresnel )X Rmedium



Full Characterization of Material Systems
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Model Assessment
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Reflectance
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Reflectance

Measured and Modeled Reflectance Spectra and PSDs of Silica Powders
T ——

0.8 B | T ————— - 4 a2 aaal da 3 aaaaal e ——— .
06 RMSE S 00110k 1?!\\ M0-20:mE o Departure from measured PSDs is
0.2 o ) \ ] evident

0_ A - E 3 .
0B4—— 1 1 1 111y e — Model-derived PSDs are skewed to

5 (b) 45-63 um [ E (|)45 63 um - -

8:2: RMSE = 0.0084 F 1-0§ /m " : smaller particle sizes
0.2 1 \ A\ - 0.5 3 E :

ol ———— 5 i ___ LN __} ° Potential cause: The reflectance of
08 = © 7590 mf 8 o1 ) 7590 i E larger particles is spectrally similar
04 h ,\RMSE‘O'OWE 5, = to the Re,eqq Of the bulk material

0 ————— E 3 o] — Optimization is likely attributing
8-2: """ () 106125 ;mE S 1 ) 106-125 pm E reflectance contribution of larger particles
i RMSE=0.0064F © 1073 5 to 1st-surface reflectance term
0.2 1 - é 0.5 3

01 ] .

08 i Sia0 o 5 (1) 150-180 im A e e e g
- = E — n Rl 5 4 " < .d
e RMSE = 0.0061 [ 5 103 : /.{:'f;; FEBIo et (‘/
0.2 1 %, F D05 /\W\ 3 e oS G $m
0 1 B E 0: =
L E i W ay £ e e S
8'2 ] (212250 ymf 2 . ] (m) 212-250 um VS
0.4 1 RMSE = 0.0067 [ 1.0 E
0.2 5\'\__/&—_5 0.5 3 :
S 0 ! ; ;
82 . (g) 300-355 um [ 5 (n) 300-355 um E
0.4 ] RMSE = 0.0067 [ 1.0 E
0.2 \'\—/L___ 0.5 :
0 1 - 3 =
||||||||||| 0 Ty Ty T
4 6 8 10 12 14 16 1 10 100 1000

Wavelength (um) Diameter (um)



Recall phenomenological “surface scattering” vs. “volume scattering”
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Now consider optically thin (vs. optically thick) deposits
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Computational Approach: The Adding-Doubling Method
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Initial Analysis of Optically Thin Deposits
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Q: What is the related impact on Bio(Nuclear Working Group)?
A: LWIR sensing of vegetation

« RT approaches are already integrated into various community models
— PROSPECT (Jacquemond and Baret, Rem. Sens. Environ. 34, 75-91, 1990)

— LIBERTY: Leaf Incorporating Biochemistry Exhibiting Reflectance and Transmittance
Yields (Dawson et al., Rem. Sens. Environ. 65, 50-60, 1998)

— DLM: Dorsiventral Leaf radiative transfer Model (Stuckens et al., Rem. Sens. Environ.,
113, 2560-2573, 2009)

— SCOPE: Soil Canopy Observation, Photochemistry and Energy fluxes (van der Tol et al.,
Biogeosceinces 6, 3109-3129 (2009).

— FluorMODleaf (Pedros et al., Rem. Sens. Environ. 114, 155-167, 2010)
— DART: Discrete Anisotropic Radiative Transfer (Gastellu-Etchegorry et al., InTech 2012)

— COSINE: ClOse-range Spectral ImagiNg of IEaves (Jay et al., Rem. Sens. Environ. 177,
220-236, 2016)

— Fluspect-B (Vilfan et al., Rem. Sens. Environ. 186, 596-615, 2016)
— FluorWPS (Zhao et al., Rem. Sens. Environ. 187, 385-399, 2016)

« LWIR data are now being exploited to identify/characterize vegetation

— “...where spectral features seem to be mainly associated with the biochemical
composition of the leaf surface” (Gerber et al., Rem. Sens. Environ. 115, 404-414, 2011).

» Therefore need robust signature models applicable to the LWIR

— Extension to LWIR will increase important of capturing morphological impact
22



Q: What is the related impact on Bio(Nuclear Working Group)?
A: LWIR sensing of biological soil crusts

8 9 10 M
Wavelength (pm)

O. Rozenstein and A. Karnieli,

12

Morth Slope

Interdune

Plé a

Sand
L7 ASTER Band 13
| ASTERBand 14
L7 DAIS Band 75
Z0F Dais Band 76

Y IR LTI T e W T WL POl TR L s
N

il

g 9 10 N

Wavelength (um)

12

‘ North Slope  MNorth Slope
Lichen fdoss
Dominated Bumlnated

Sand

L7 ASTER Band 13
.| ASTER Band 14
L3 DS Band 75
75 paisBand 76

Sou lope

Interdune

“Identification and characterization of Biological Soil

Crusts in a sand dune desert environment across Israel-Egypt border using LWIR
emittance spectroscopy,” J. Arid Environ. 112, 75-86, 2015.

23



24

Summary and Takeaways
T I ——

Material reflectance signatures are dependent upon morphology
This morphological dependence can be captured via modeling

Potential of applying such models to biological systems largely unexplored
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Extra Viewgraphs
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Optimization via “nl2sol” in DAKOTA
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The Jacobian (matrix of 1st-order partial derivatives) is numerically
determined through forward difference calculations

The Hessian (matrix of 2"d-order partial derivatives) is numerically
approximated from special properties of the sum-of-squares



Reflectance
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T-matrix vs. Ray tracing
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But is this approximation sufficient?

29



