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Motivation

@ Fundamentally the chemical master equation (CME) governs the
evolution of chemical systems at the smallest scales

@ Discrete Markov system - integer valued molecular counts
@ The Chemical Langevin Equation (CLE) is good approximation for the

CME when the number of molecules of each species in the given
control volume is large enough - continuous Markov system

@ Technically, the approximation relies on conditions on the
reaction rates and time step sizes, which are essentially

guaranteed in the context of large molecular counts
(Gillespie JChemPhys 2000)

@ The CLE is relevant when the number of molecules of each species is
small enough so that stochastic effects are non-negligible

- macroscale deterministic models are inadequate
@ Relevant applications:

@ biochemistry
@ catalysis
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Bkgd

Stochastic Chemical System Formulation - 1

@ Consider a chemical system involving

@ NspeciesSy,-+, 8y

@ Rreactions R, ..., Rp.
@ Assume: spatially uniform, fixed volume, constant temperature
@ X, (t): number of §; molecules at time ¢, and state vector:

X<t) = (Xl (t)v ) XN(t))T-

@ Under requisite conditions, the system can be modelled by the
chemical Langevin difference equation, where fori = 1,---, \:

R
X, (t+dt) = +Z vip;( (t))dt+zuﬁ,/pj((xu))7v t)Vdt

where
@ v, is the change in X, caused by one ; reaction
@ p, is the propensity function for reaction X,
@ N ,(t) are iid standard normal random variables at time ¢
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Stochastic Chemical System Formulation - 2

The above stochastic difference equation implies the equivalent chemical
Langevin differential equation

R
Z vy (X0)dt + D vy /(X (£)AW;(1), i=1, N

where W, (t) are statistically independent Brownian motions.

We can write the CLE, for convenience, as
dX, = f(X,)dt + f:gj(X dw.(t
J=1
where X, := X(¢) and
F(X) = (AX), ., fn(X))T, Z vjip; (X

gj(Xt) = (gj1<Xt>""7ng<Xt))Tv gji(Xt):Vji Pj((X(t»
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SDE Time Integration

@ The time integration of the CLE can employ a range of available time
integration schemes for stochastic differential equations (SDEs)

@ Consider the Ito SDE
dXt = f(Xt)dt =+ Q(Xt)th
@ Time integration

t T
Xt = Xto + / f(Xs)dS + / g(Xs)dWs
to t

0

o Euler-Maruyama (EM) - explicit, order 1 weak convergence
¥, +1 = Yn + fnhn + gn\/EnN’rw h’n = tn+1 - tn’ YO = Xto

n

@ EM s the simplest explicit SDE time integration

Najm CLE-CSP 7/39



SDE Stiffness

@ An SDE is stiff when it exhibits a large range of time scales
@ A chemical system with very slow/fast reactions results in a stiff CLE
@ Stiffness results in challenges for explicit SDE time integrators

@ Stability requires time steps smaller than the fastest time scale

@ However, for accurate time integration, ideally, the optimal time
step choice is dictated by the active time scale, i.e. the time
scale at which the state vector is changing

@ One remedy is to use implicit time integration, but can we do better
with explicit constructions?

@ This has been done for ODEs using Computational Singular

Perturbation (CSP
( ) Valorani & Goussis, JCP, 2001

@ We would like to extend this to SDEs, specifically to the CLE
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ODE Stiffness

@ A macroscale chemical system with very slow & fast reactions results
in a stiff ODE system - challenging for explicit ODE time integrators
@ Astiff ODE system du/dt = g(u), with large negative eigenvalues of
the Jacobian J = dg/0u, behaves essentially like a Differential
Algebraic Equation (DAE)
@ The system dynamics exhibit attractive slow invariant algebraic
manifolds G(u) = 0
- We leave aside for now unstable manifolds, oscillatory
and chaotic dynamics
@ From any initial condition, the system state evolves quickly, with
the fast time scales, towards the manifold
@ At the manifold, the relevant fast process is “exhausted’,
inducing the constraint G(u) = 0
@ The system evolves slowly, with the slow time scales, along the
slow manifold
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Bkgd

Davis-Skodije stiff ODE system - example

(Davis & Skodije, J. Chem. Phys., 1999)
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Bkgd

Computational Singular Perturbation (CSP) Basics

Harvey Lam, Dimitris Goussis, 1980s -

@ Stiff ODEs are singularly perturbed differential equations
@ A decoupled fast-slow stiff system

i = g,(z,9)
1
i= colmy  e<1
where z is the slow variable, and y is the fast variable
@ Associated DAE system, in the limit e — 0,
= gs(z,9)
0 = g.(z,9)

@ This simple distinction of slow/fast variables is not feasible in
practical systems

@ CSPis useful in decoupling fast and slow processes
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CSP Basics - 2

@ Consider a general autonomous stiff ODE system

z=g(x), xRN
@ Introduce:
@ CSP basis vectors a4, ..., ay;, with A = [a,,a,,...,ay]
@ CSProw vectors b!, ..., bY, with B : row, := b’
o whereb’a; = J,;, thus BA=AB=1

@ Expand the RHS in the CSP basis

where
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CSP Basics - 3

Whence : 1
af N el
where . .
(b +b1J) (di+b1J) Gy
A = |: :| E[RNXN
(de bNJ ) (de bNJ )

and J, = dg/dx is the Jacobian of g

@ The ideal basis decouples fast and slow processes, i.e. diagonalizes A

@ The eigenvectors of .J, provide a good, O(e), approximation of
the ideal CSP basis

- This is exact for a linear system, where db’ /dt = 0, Vi

@ Arefinement procedure is available to maximize the degree of
decoupling starting from any initial guess
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CSP Illustration with the Davis-Skodje ODE system

oyt B
WETHz ~ T+ 02
—X

With z := {ﬂ and vy :=1/e z=g(z) =

: =y 0 _ vy z—1
Jacobian J_[O _1], 9_(1+x)2+(1—|—x)3

Eigenvalues A=,

Basis vectors g, = F] Qg = [ 8 J , bl = [ ,7*—91} ,b% = {07 ﬁ]
.l — -

Modes
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Bkgd

CSP Illustration with the Davis-Skodje ODE system

t=0-10 t=0-10
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SNL Najm CLE-CSP 15/39



Bkgd

CSP Illustration with the Davis-Skodje ODE system
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Bkgd

CSP Illustration with the Davis-Skodje ODE system
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Bkgd

CSP Illustration with the Davis-Skodje ODE system
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Bkgd

CSP Illustration with the Davis-Skodje ODE system
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125F T T T T T T T T i LLLL A AL B AL B AL IR AL IR
1+ =
0.75+ —
05 |
025+ .
00 II J2 é th § 400.0001 0.001 0.01_ 0.1 il 100'06
x time
Time evolution of the state Time evolution of CSP (signed)
vector in the configuration space mode amplitudes f*,i = 1,2

SNL Najm CLE-CSP 15/39



Bkgd

CSP Illustration with the Davis-Skodje ODE system
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Bkgd

CSP Illustration with the Davis-Skodje ODE system
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Bkgd

CSP Decomposition - Fast (Exhausted) Subspace

dx
Y = g(x), z(t =0) =z,

Evaluate the eigensolution for the Jacobian matrix J, = dg/9dx, and sort
the eigenmodes with negative real eigenvalue components in order of
decreasing amplitude,

AL Agy ey An with [A;[ > [A;44]

with time scales 7, = 1/|\;|and 7; < 74

N
g = Zaifi:alfl+"'+aﬂ,ij[ + a’]\[+1fj\'[+1+"'+aNfN
i=1

Gfast™ 0 Gslow

N M
Gslow = Z a,f* = (I - arbr) g="Pg

s=M+1 r=1
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CSP ODE Integrator

@ Explicit integration in time, with At = ¢, ., —t, = O(T3,.,)
N

A . o +Z/ (@(®)dt+ > a,(x")fi(z")At

i=M+1

@ Amplitudes of fast exhausted modes decay exponentially

P ~ fiam) exp(—(t—t,)/m@™), =1 ..M

and, ignoring time variation of the basis vectors within At, we have
tn+1 tni1
[ e ~ a@fe) [T etmmend
t, ty
= a;(@")f (z")7(x")(1 — e 2/mE)

thus:
N .
pntl — pn +Zan % ’I'L Q*At/ﬁn) Je Z a?fflAt
i=M+1
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Intro

What is the dynamical character of a stiff SDE?

@ The drift term induces fast motion in the mean towards a stochastic
manifold

@ The diffusion term induces random motions, with zero mean, and no
preferrential direction

— ‘ e B e I

1.25

0.75

1 PR T N R RIS
5 02?.85 4.875 49 4925 495 4975 5
x
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CSP Applied to the CLE -1

o CLE: .
Xy =X, + F(X)dt + > g,(X,)dW; (1),

j=1
@ Introduce the CSP basis {;, 8'},i = 1,..., N,with 8" - a; = §,;, Vi
@ The (signed) mode amplitudes for the drift term are

¢(X) = B1(X) - f(X)

with
de’(t) = dp(t) - fF(X,) + B(t) - df(t)

SNL Najm CLE-CSP 19/39



CSP Applied to the CLE - 2

Using the stochastic chain rule, with some algebra, we have

R
df(t) = p(X;)dt + Z o ;(X,)dW;(t)

where
pi(X,) = klemi_l ujkymipj(xt)(f”’g—)gt) + % iyﬂ%)
oy (X0) ﬁi mz s 2220
The change of ' can be written as
dei(t) = (@ kzNj o + ﬂi<t>u<xt>> dt-+ 6 (1) fj o) (X,)dW, (1
= =
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CSP Applied to the CLE - 3 7

which reduces to:

& ¢!
d ( : ) =A(X,) ( : ) dt + (X,)dt + I'(X,)dW (t),
&y 3

W(t) = (W,(t),..., Wr(t))T € R®*!is an R-dimensional Brownian motion,

and
= 1
8P e (B P
A = IRNXN
13“ N dgnN N
L (% +,3 Js)oy (W+5 Jp)ex
- 92%p
B! Zkl 127 m=1 YVikVilVm138x,0x, Pi
p = : s : € RN¥x1
- k=1 2<j m=1 YVikVjl mNaxkox,pJ
B ﬂl 0'11 e “ee o’lR
rr = : . : : c RVxR
L ﬂN O'Nl “en “ee O’NR
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CSP Applied to the CLE - 4

@ Diagonalization of A is not sufficient to decouple fast and slow
processes, due to p and I' dW (¢)

o A refinement procedure to separate the fast and slow dynamics is
necessary

@ We use the above SDE, linearized, to motivate the use of the
eigenvectors of .J; as CSP basis vectors, as done for the ODE case

@ A linearized analysis gives

'3 ¢!
d( : ):A( s )dt+F(X(t))dW(t)
3 &y

in which the time evolution of the mean modes for eigenvalues with
different real parts are all separated

@ NB. for the nonlinear CLE, as opposed to a general SDE, it is
expected that the magnitudes of components of ¢ are small relative
to those of A, thus the use of the linearized approximation is viable
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CSP Applied to the CLE - 5

Proposed strategy:

@ Stiffness in the drift term can be dealt with similar to the ODE RHS

@ Evaluate eigendecomposition of the Jacobian of the drift term
at each time step

@ |dentify fast/slow subspaces, determine 1/ <= main challenge

@ Integrate fast processes in time by modeling their exponential
decay to the manifold

@ Integrate slow processes using EM

@ Integrate diffusion using EM
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CLE-CSP Time Integration

@ Path-wise CLE Difference equations, with X := X (¢, n*)

Xw

t+dt

— X%+ f(X¥)dt + g((X¥, n*)Vdt.

Byl

where g(X¥ ) = Zgj(X(t,nw))nf(t)
=1

N (t) = (nf (1), .. ,nz(t)"
and (¢, w) := ¢ (t) is the continuous sample path for V;, w € ©2

Thus the CSP time integration is as follows,

M
X =X7 + ) €(XP)ay(XY)rf () (1 — e 2™ 0)

=1
N
+ 3 oAt +g((Xy,n) VAL
=M1
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CSP-CLE

CLE-CSP - Determination of M

@ The determination of M in an ODE setting is as follows:
M =maxm st Tm+1‘ Zaif"" < ex+e,l
=1

@ Stochastic noise renders this test ineffectual for the CLE

@ The mode amplitudes ¢¢ for any sample-path do not decay to zero
@ Choosing an arbitrary threshold is unreliable

@ A reliable approach involves utilization of sample-path statistics

Najm CLE-CSP
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CSP-CLE

CLE-CSP - Determination of M - example

Consider the "VGCN" system involving the three species X', ¥ and 2:
(Valorani, 2005)

k] kS Kf
X —2Y, X+yY—2, Yy+2 =X
Kt kb kS

With the state vector U, := (X, Y,, Z,)7, the path-wise CLEs:
dUy = f(UP)At + g(Uy, n”)V A,

where, employing the reaction propensities (7%, 73,75, 73,7%),

X+ rty(Yy )7r2XY+r”Z+r£YZ7r3X
f= fole(Y—1)7r2XY+r’2’Z—r3YZ+7§X
riXY —r3Z —riYZ +r}X
- - — ; — 1 ( HE®
—/m X ri’Y(Yfl) —\/T3 XY ’I‘gZ 7'{YZ - 'r'gX ng (t)
@ (t
g = X o rtY(y—1) —\JriXy iz —y\/rfyz \[r}X Z%Et;
0 0 Jrixy —\/rsz —\[riyZz b X 75 (t)
g (t)

Najm CLE-CSP
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CSP-CLE

System Dynamics

5000( : ; 5000 . . 1e+08
45000 4500 5 ler06f]
3
40000} B— 4000 < 10000~
/ ¢
g " &
35000 23500 5
{E 3
30000 3000
ESR—
001f E
25000{- 1 2500k
- S——
l ‘ l 0.0001F E
200 ) . L . . | .
80010001 "m‘i"{‘\‘w 0.1 120806010001 0,01 0.1 1 00001 0.001 0.01 0.1 1
‘ time (sec) time (sec)
=10"19 —20 1 21
vol=10""7 It vol=10720 [t vol=10"18 — 102! It

@ System exhibits 3 drift-term negative real eigenvalues with
associated time scales

@ Mean time scales exhibit essentially no dependence on system size
@ Decay toa 2D : 1D : OD manifolds in succession
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CSP-CLE

VGCN System Dynamics - Mode Contributions

100 samples
156408 T T T T — ] - 2e+08 T T T
S
8 2 156408
P les08 4
u o le+08
o
& Se+07 7
N L
o T 5e407
Iy 5
% 0 6.<
5: wp O
" ke
-5e+07|- 1 B ses07
L | L | L | L L n | l | 1 L L =
0 0001 0002 0003 0004 0.005 0 0001 0002 0003 0004 0.005
time (sec) time (sec)
1
£ oy fla; +&ay

@ Noise leads to challenging detection problem for when a set of
modes is exhausted

@ Need a robust means of selecting thresholds
@ Ensure that the absolute value of the sums is small
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CSP-CLE

VGCN System Dynamics - Mode Contributions

100 samples
le+07 le+07 ——
S
=
g <
S Se+06 L Ser06
i ~
R -
" o
2 ~
g 0 L 0
i )
2 & 3
x| T
_3_ -5e+06 + -Se+06[-
W «
3,
“1e+07 L ‘ ) 7
0 0002 0004 0006 0008 001 -le+ —— Y
time (sec) 8'600] R 1ime(();(t):l)
) s
§ oy ¢la; + Ea
1 2

@ Noise leads to challenging detection problem for when a set of
modes is exhausted

@ Need a robust means of selecting thresholds
@ Ensure that the absolute value of the sums is small
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CSP-CLE

A Reliable M-Detection Strategy

@ Run K samples concurrently

@ Examine statistics of the absolute value of the sum of mode
contributions to the drift term

6jm,€=‘25;;aijk’, j=1,...,N; k=1,.. K.
=1

Define the N-long sample mean and standard deviation vectors p,,, 5
and o,,x, where,forj =1,... N

1K
Himxk = 37 Gjmk
K k=1
1 K 1/2
OimK = [j (6jmk_:ujmK)2
k=1
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CSP-CLE

A Reliable M-Detection Strategy

@ Declare a set of modes exhausted when their above sample-mean is
small relative to the associated sample standard deviation

@ Also ensure:

@ This set does not include a mode with a positive real eigenvalue
component

@ The drift time scale of the fastest slow mode (“active” mode) is
faster than the fastest diffusion time scale

Thus:
M = maxm € [1, N]

s.t.
Mme <p ome, vj€[L,N]
mkgx Tﬁﬂ’k <7 nlin Tfk
Re(\F) <0, Vre[l,m]; Vke[l,K]
Weuse = 5,7 = 0.5.
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CSP-CLE

M-Detection in the VGCN system

le+08 -~
le+07E

letoEeesamTe

o
¢
S
]

le+05F

i a}/kl‘ samples, means, thresholds

(xml. samples, means, thresholds
G
+
=)
r
N

le+04

W
_B, le+00 +
wr 5 F
_0? | L | | N 1 Tap PERTEPITTT] BRI | Wi LI
Ie 0"0 0.002 0.004 0.006 0.008 0.01 le+()).%5()()1 0.001 0.01
time (sec) time (sec)

@ Dashed lines are means, solid lines are y-scaled standard deviations
@ Mode 1is exhausted at ~1.6 msec ' = 0.6 msec
@ Mode 2 is exhausted at ~0.15 sec ' = 0.06 sec
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Choice of time step

@ Integrate all K samples synchronously in time, same At for all

0.1 min 7, for M =0
At = koL

(1—0)mI?XTAZ7k+0rT}gian}+Lk for M >0

where 0 < 0 < 1, is a chosen constant. We use 6 = 0.05.

@ Further, for minimizing the impact of large sudden increases in the
time-step size, we enforce

At, = min(At*,2At, )

SNL Najm CLE-CSP 32/39



Demo

VGCN CLE time integration with CSP
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@ Qualitatively similar evolution
of the state variables

@ M selection goesupto M =1

@ Limited by the fastest
diffusion timescale

@ Time step increase by nearly
two orders of magnitude

Najm
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Demo

VGCN CLE time integration with CSP - Error convergence

le-02 ————7 ,
[ le+00 -

=
2
k]

=] >

g 3 F

g T [

2 le-02f ~

£ le.03) g el

g E 2

B | E

= g
g [
o le-04

led 1e-05 le-04 1e-05 le-04
time step (sec) time step (sec)

@ First order weak-convergence of EM is retained, for both the mean
and standard deviation

@ Convergence is with respect to small-At computations with EM
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Demo

Michaelis-Menten system CLE
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@ M goes up to a maximum of 1

@ Limited by diffusion time scales
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Demo

Protein system CLE

4000

» 3000

Number of Molecules
]
(=]
S
=
Time scale (sec)

1S)
3
3

0.0001

| L i ] ¥ T S R N
0 0.0002 0.0004 0.0006 0.0008 0.001 le 050 0.0002 0.0004 0.0006 0.0008 0.001

time (sec) time (sec)

@ Here M = 0 given the fast diffusional time scales
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Demo

Acyclic system CLE
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Computational Performance

@ The computational savings of large explicit time steps have to be
balanced against the costs of Jacobian eigensolves.
@ Currently, the EM implementation is 1.5x faster than the CSP
integration
@ Potential remedies to improve computational performance include
@ Resolving the diffusion-induced upper limit on At, thus
allowing larger time step computations
@ Reusing the computed eigendecomposition of the Jacobian
over some number of time steps
@ Exploring eigensolvers that can
- make efficient use of a good initial guess
- compute only the fastest M + 1 eigenmodes
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Close
Closure

@ We demonstrated the utility of CSP for enabling large time step
explicit integration of stiff CLEs

@ Numerous directions for future work are feasible

@ Develop adequate modeling of fast diffusional processes
@ Reduce eigendecomposition costs

- reuse, good initial guess, partial eigensolve

@ Pursue theoretical convergence proofs
@ Development of treatment for multiple manifolds and
switching between basins of attraction
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