

SAND2019-3529PE

Explicit Time Integration of Stiff Chemical Langevin Equations using Computational Singular Perturbation

Habib N. Najm,¹ Xiaoying Han,² Mauro Valorani³

¹ Sandia National Laboratories, Livermore, CA

² Auburn University, Auburn, AL

³ Sapienza University, Rome, Italy

MIT Seminar
Cambridge, MA
Mar 20-22, 2019

Acknowledgement

This work was supported by:

- DOE Office of Basic Energy Sciences, Div. of Chem. Sci., Geosci., & Biosci.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Outline

- 1 Motivation – the chemical Langevin equation (CLE)
- 2 Background
- 3 Introduction
- 4 Computational singular perturbation (CSP) for the CLE
- 5 Demonstrations of CSP Time Integration of the CLE
- 6 Computational Performance
- 7 Closure

Motivation

- Fundamentally the chemical master equation (CME) governs the evolution of chemical systems at the smallest scales
 - Discrete Markov system - integer valued molecular counts
- The Chemical Langevin Equation (CLE) is good approximation for the CME when the number of molecules of each species in the given control volume is large enough - continuous Markov system
 - Technically, the approximation relies on conditions on the reaction rates and time step sizes, which are essentially guaranteed in the context of large molecular counts
(Gillespie JChemPhys 2000)
- The CLE is relevant when the number of molecules of each species is small enough so that stochastic effects are non-negligible
 - macroscale deterministic models are inadequate
- Relevant applications:
 - biochemistry
 - catalysis

Stochastic Chemical System Formulation – 1

- Consider a chemical system involving
 - N species $\mathcal{S}_1, \dots, \mathcal{S}_N$
 - R reactions $\mathcal{R}_1, \dots, \mathcal{R}_R$.
- Assume: spatially uniform, fixed volume, constant temperature
- $X_i(t)$: number of \mathcal{S}_i molecules at time t , and state vector:

$$\mathbf{X}(t) := (X_1(t), \dots, X_N(t))^T.$$

- Under requisite conditions, the system can be modelled by the chemical Langevin difference equation, where for $i = 1, \dots, N$:

$$X_i(t+\Delta t) = X_i(t) + \sum_{j=1}^R \nu_{ji} \rho_j(\mathbf{X}(t)) \Delta t + \sum_{j=1}^R \nu_{ji} \sqrt{\rho_j(\mathbf{X}(t))} \mathcal{N}_j(t) \sqrt{\Delta t}$$

where

- ν_{ji} is the change in X_i caused by one \mathcal{R}_j reaction
- ρ_j is the propensity function for reaction \mathcal{R}_j
- $\mathcal{N}_j(t)$ are *iid* standard normal random variables at time t

Stochastic Chemical System Formulation – 2

The above stochastic difference equation implies the equivalent chemical Langevin differential equation

$$dX_i(t) = \sum_{j=1}^R \nu_{ji} \rho_j(\mathbf{X}(t)) dt + \sum_{j=1}^R \nu_{ji} \sqrt{\rho_j(\mathbf{X}(t))} dW_j(t), \quad i = 1, \dots, N$$

where $W_j(t)$ are statistically independent Brownian motions.

We can write the CLE, for convenience, as

$$d\mathbf{X}_t = f(\mathbf{X}_t) dt + \sum_{j=1}^R g_j(\mathbf{X}_t) dW_j(t)$$

where $\mathbf{X}_t := \mathbf{X}(t)$ and

$$f(\mathbf{X}_t) = (f_1(\mathbf{X}_t), \dots, f_N(\mathbf{X}_t))^T, \quad f_i(\mathbf{X}_t) = \sum_{j=1}^R \nu_{ji} \rho_j(\mathbf{X}(t))$$

$$g_j(\mathbf{X}_t) = (g_{j1}(\mathbf{X}_t), \dots, g_{jN}(\mathbf{X}_t))^T, \quad g_{ji}(\mathbf{X}_t) = \nu_{ji} \sqrt{\rho_j(\mathbf{X}(t))}$$

SDE Time Integration

- The time integration of the CLE can employ a range of available time integration schemes for stochastic differential equations (SDEs)
- Consider the Itô SDE

$$dX_t = f(X_t)dt + g(X_t)dW_t$$

- Time integration

$$X_t = X_{t_0} + \int_{t_0}^t f(X_s)ds + \int_{t_0}^t g(X_s)dW_s$$

- Euler-Maruyama (EM) - explicit, order 1 weak convergence

$$Y_{n+1} = Y_n + f_n h_n + g_n \sqrt{h_n} \mathcal{N}_n, \quad h_n = t_{n+1} - t_n, \quad Y_0 = X_{t_0}$$

- EM is the simplest explicit SDE time integration

SDE Stiffness

- An SDE is stiff when it exhibits a large range of time scales
- A chemical system with very slow/fast reactions results in a stiff CLE
- Stiffness results in challenges for **explicit** SDE time integrators
 - Stability requires time steps smaller than the fastest time scale
 - However, for accurate time integration, ideally, the optimal time step choice is dictated by the *active* time scale, *i.e.* the time scale at which the state vector is changing
- One remedy is to use implicit time integration, but can we do better with explicit constructions?
 - This has been done for ODEs using Computational Singular Perturbation (CSP)
 - We would like to extend this to SDEs, specifically to the CLE

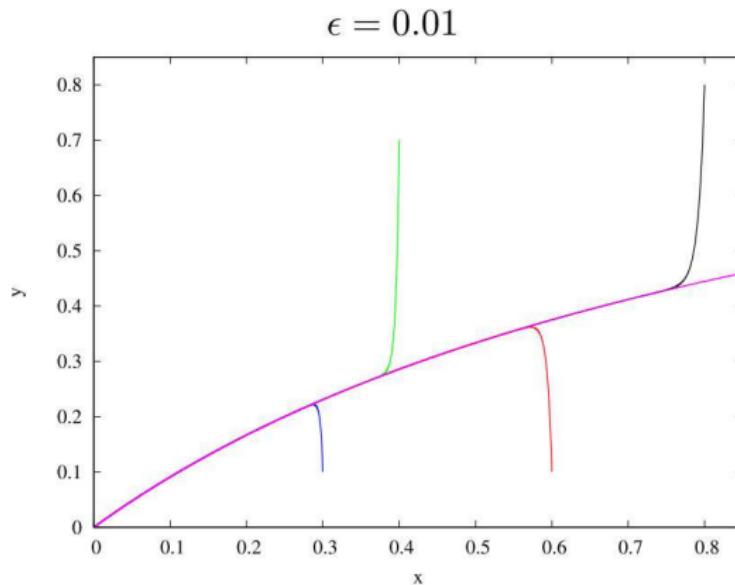
Valorani & Goussis, JCP, 2001

ODE Stiffness

- A macroscale chemical system with very slow & fast reactions results in a stiff ODE system – challenging for **explicit** ODE time integrators
- A stiff ODE system $d\mathbf{u}/dt = g(\mathbf{u})$, with large negative eigenvalues of the Jacobian $J = \partial g / \partial \mathbf{u}$, behaves essentially like a Differential Algebraic Equation (DAE)
 - The system dynamics exhibit attractive slow invariant algebraic manifolds $G(\mathbf{u}) = 0$
 - We leave aside for now unstable manifolds, oscillatory and chaotic dynamics
 - From any initial condition, the system state evolves quickly, with the fast time scales, towards the manifold
 - At the manifold, the relevant fast process is “exhausted”, inducing the constraint $G(\mathbf{u}) = 0$
 - The system evolves slowly, with the slow time scales, along the slow manifold

Davis-Skodje stiff ODE system - example

(Davis & Skodje, J. Chem. Phys., 1999)



Manifold:

$$y = \frac{x}{1 + x}$$

$$\begin{aligned}\frac{dx}{dt} &= -x \\ \frac{dy}{dt} &= -\frac{1}{\epsilon}y + \frac{1}{\epsilon} \frac{x}{1 + x} - \frac{x}{(1 + x^2)}\end{aligned}$$

Computational Singular Perturbation (CSP) Basics

Harvey Lam, Dimitris Goussis, 1980s -

- Stiff ODEs are singularly perturbed differential equations
- A decoupled fast-slow stiff system

$$\begin{aligned}\dot{x} &= g_s(x, y) \\ \dot{y} &= \frac{1}{\epsilon} g_r(x, y) \quad \epsilon \ll 1\end{aligned}$$

where x is the slow variable, and y is the fast variable

- Associated DAE system, in the limit $\epsilon \rightarrow 0$,

$$\begin{aligned}\dot{x} &= g_s(x, y) \\ 0 &= g_r(x, y)\end{aligned}$$

- This simple distinction of slow/fast variables is not feasible in practical systems
- CSP is useful in decoupling fast and slow processes

CSP Basics – 2

- Consider a general autonomous stiff ODE system

$$\dot{\mathbf{x}} = \mathbf{g}(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^N$$

- Introduce:

- CSP basis vectors $\mathbf{a}_1, \dots, \mathbf{a}_N$,
- CSP row vectors $\mathbf{b}^1, \dots, \mathbf{b}^N$,
- where $\mathbf{b}^i \mathbf{a}_j = \delta_{ij}$,

with $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_N]$
 with $\mathbf{B} : \text{row}_i := \mathbf{b}^i$
 thus $\mathbf{B}\mathbf{A} = \mathbf{A}\mathbf{B} = \mathbf{I}$

- Expand the RHS in the CSP basis

$$\mathbf{g}(\mathbf{x}) = \sum_{i=1}^N \mathbf{a}_i f^i$$

where

$$f^i(\mathbf{x}(t)) = \mathbf{b}^i(\mathbf{x}(t)) \cdot \mathbf{g}(\mathbf{x}(t))$$

CSP Basics – 3

Whence

$$\frac{d}{dt} \begin{pmatrix} f^1 \\ \vdots \\ f^N \end{pmatrix} = \Lambda(\mathbf{x}(t)) \begin{pmatrix} f^1 \\ \vdots \\ f^N \end{pmatrix}$$

where

$$\Lambda = \begin{bmatrix} \left(\frac{db^1}{dt} + \mathbf{b}^1 J_g\right) \mathbf{a}_1 & \dots & \left(\frac{db^1}{dt} + \mathbf{b}^1 J_g\right) \mathbf{a}_N \\ \vdots & \dots & \vdots \\ \left(\frac{db^N}{dt} + \mathbf{b}^N J_g\right) \mathbf{a}_1 & \dots & \left(\frac{db^N}{dt} + \mathbf{b}^N J_g\right) \mathbf{a}_N \end{bmatrix} \in \mathbb{R}^{N \times N}$$

and $J_g = \partial g / \partial \mathbf{x}$ is the Jacobian of g

- The ideal basis decouples fast and slow processes, i.e. diagonalizes Λ
 - The eigenvectors of J_g provide a good, $\mathcal{O}(\epsilon)$, approximation of the ideal CSP basis
 - This is exact for a linear system, where $db^i/dt \equiv 0, \forall i$
 - A refinement procedure is available to maximize the degree of decoupling starting from any initial guess

CSP Illustration with the Davis-Skodje ODE system

With $z := \begin{bmatrix} y \\ x \end{bmatrix}$ and $\gamma := 1/\epsilon$: $\dot{z} = \mathbf{g}(z) = \begin{bmatrix} -\gamma y + \frac{\gamma x}{1+x} - \frac{x}{(1+x)^2} \\ -x \end{bmatrix}$

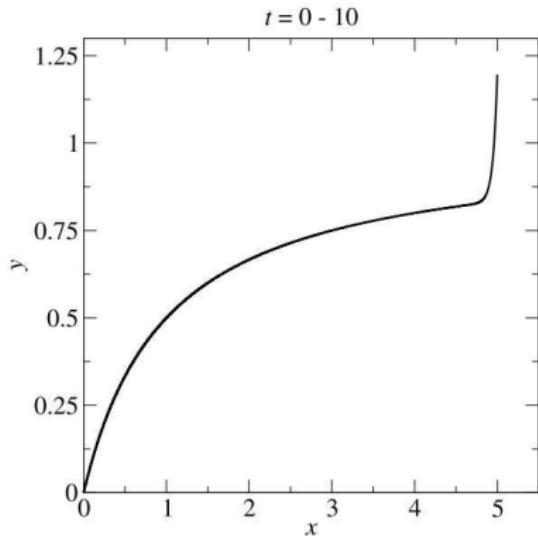
Jacobian $\mathbf{J} = \begin{bmatrix} -\gamma & \theta \\ 0 & -1 \end{bmatrix}, \quad \theta = \frac{\gamma}{(1+x)^2} + \frac{x-1}{(1+x)^3}$

Eigenvalues $\lambda_1 = -\gamma, \quad \lambda_2 = -1$

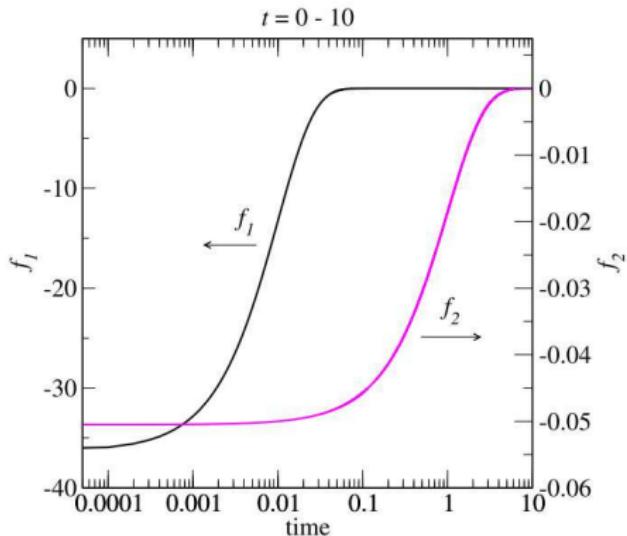
Basis vectors $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} \theta \\ \gamma-1 \end{bmatrix}, \mathbf{b}^1 = \begin{bmatrix} 1, \frac{-\theta}{\gamma-1} \end{bmatrix}, \mathbf{b}^2 = \begin{bmatrix} 0, \frac{1}{\gamma-1} \end{bmatrix}$

Modes $f^1 = \mathbf{b}^1 \cdot \mathbf{g} = -\gamma y + \frac{\gamma x}{1+x} - \frac{x}{(1+x)^2} + \frac{x\theta}{\gamma-1}$
 $f^2 = \mathbf{b}^2 \cdot \mathbf{g} = \frac{-x}{\gamma-1}$

CSP Illustration with the Davis-Skodje ODE system

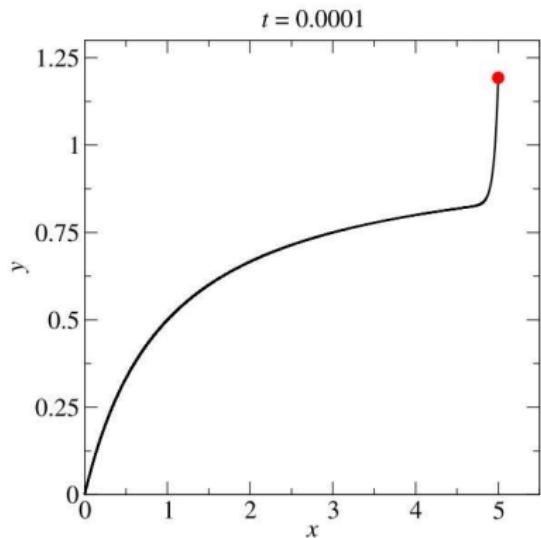


Time evolution of the state vector in the configuration space

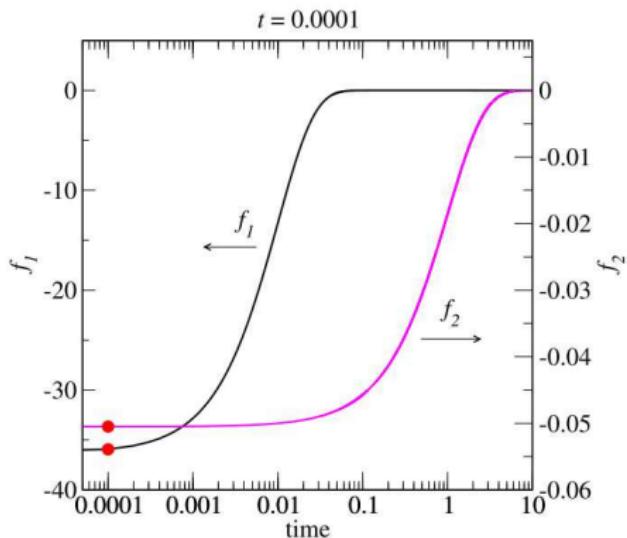


Time evolution of CSP (signed) mode amplitudes $f^i, i = 1, 2$

CSP Illustration with the Davis-Skodje ODE system

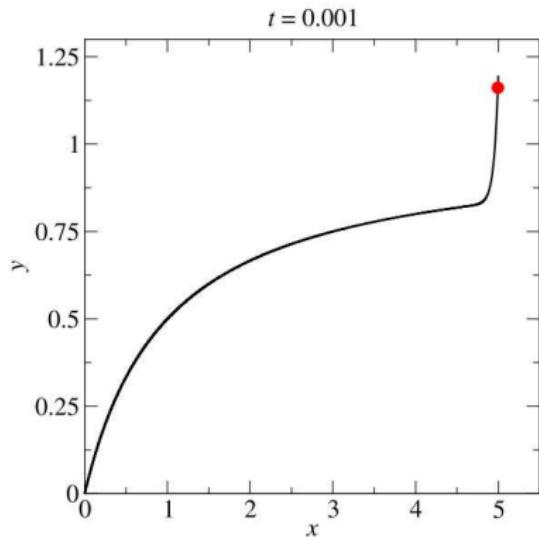


Time evolution of the state vector in the configuration space

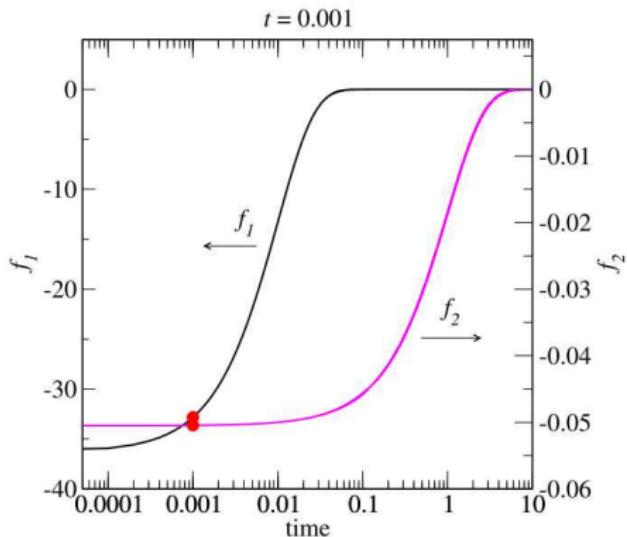


Time evolution of CSP (signed) mode amplitudes $f^i, i = 1, 2$

CSP Illustration with the Davis-Skodje ODE system

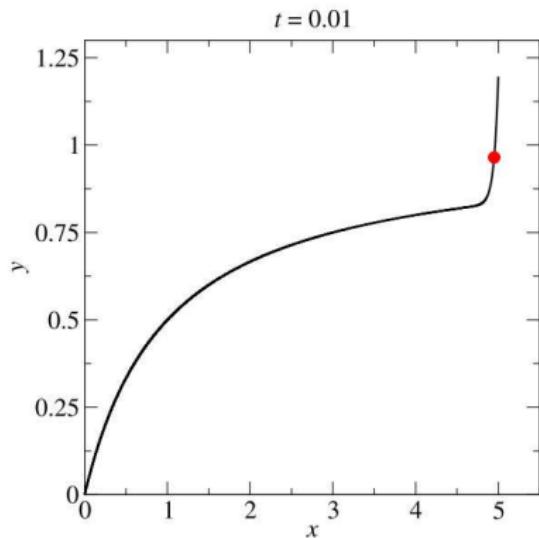


Time evolution of the state vector in the configuration space

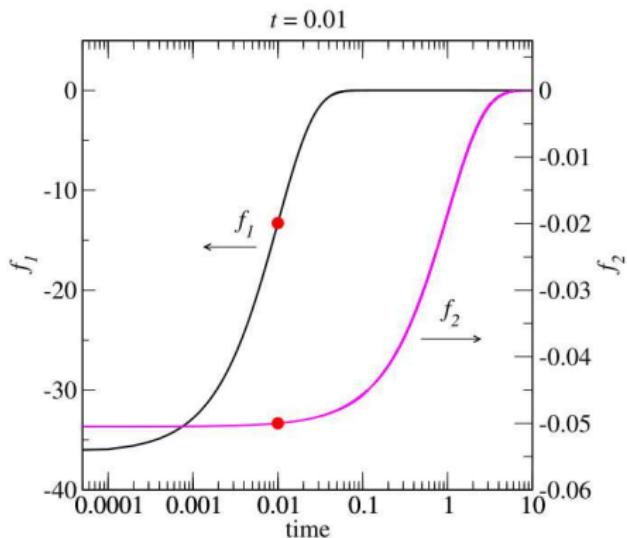


Time evolution of CSP (signed) mode amplitudes $f^i, i = 1, 2$

CSP Illustration with the Davis-Skodje ODE system

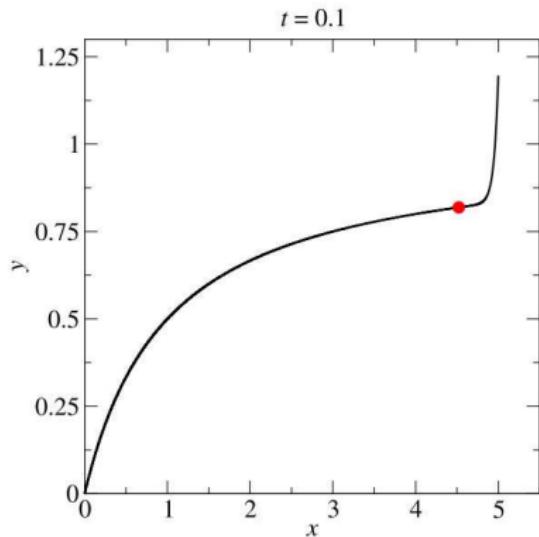


Time evolution of the state vector in the configuration space

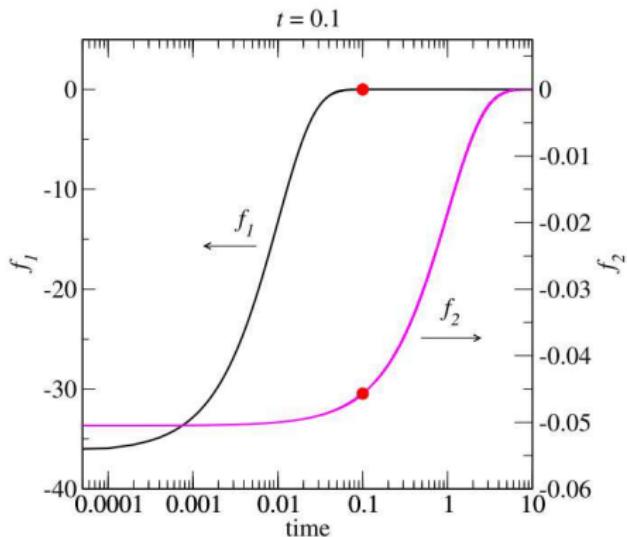


Time evolution of CSP (signed) mode amplitudes f^i , $i = 1, 2$

CSP Illustration with the Davis-Skodje ODE system

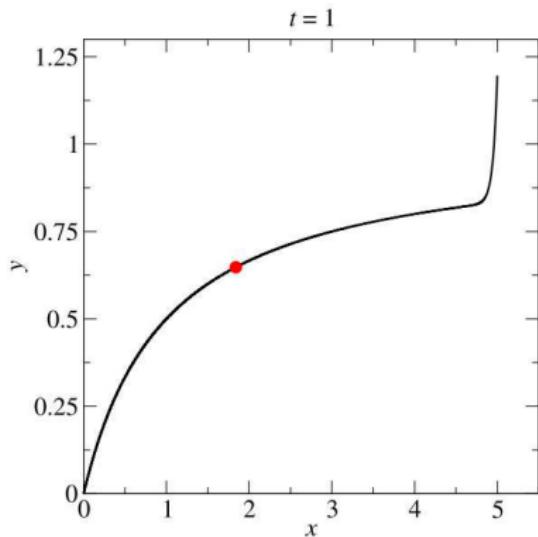


Time evolution of the state vector in the configuration space

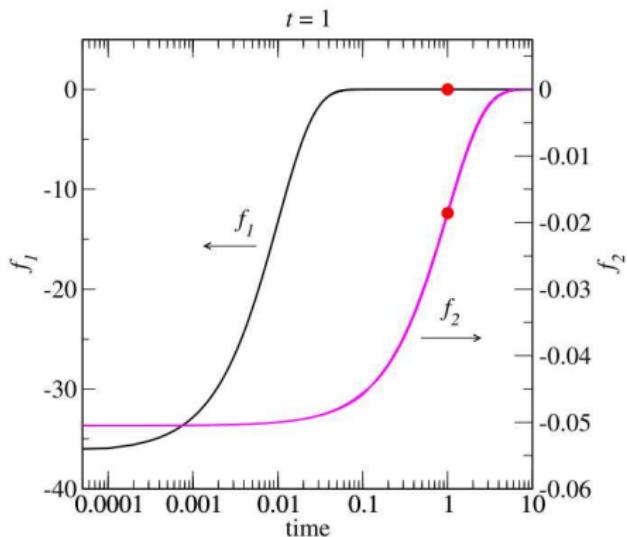


Time evolution of CSP (signed) mode amplitudes f^i , $i = 1, 2$

CSP Illustration with the Davis-Skodje ODE system

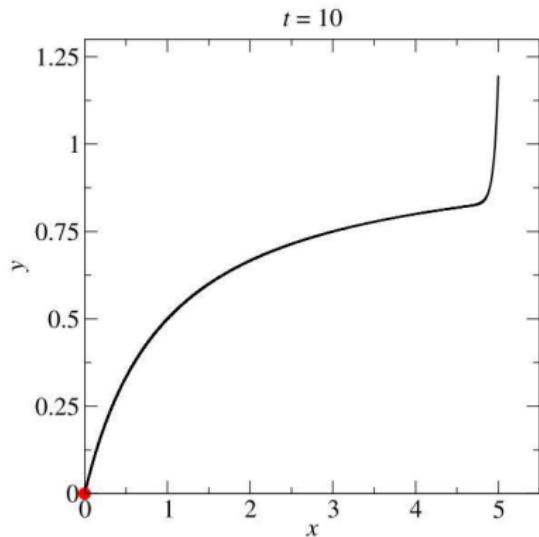


Time evolution of the state vector in the configuration space

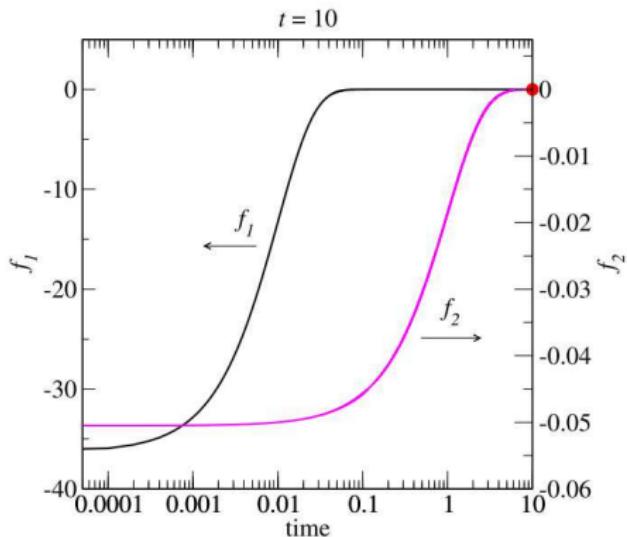


Time evolution of CSP (signed) mode amplitudes $f^i, i = 1, 2$

CSP Illustration with the Davis-Skodje ODE system



Time evolution of the state vector in the configuration space



Time evolution of CSP (signed) mode amplitudes $f^i, i = 1, 2$

CSP Decomposition – Fast (Exhausted) Subspace

$$\frac{dx}{dt} = g(x), \quad x(t=0) = x_0$$

Evaluate the eigensolution for the Jacobian matrix $J_g = \partial g / \partial x$, and sort the eigenmodes with negative real eigenvalue components in order of decreasing amplitude,

$$\lambda_1, \lambda_2, \dots, \lambda_N \quad \text{with } |\lambda_i| \geq |\lambda_{i+1}|$$

with time scales $\tau_i = 1/|\lambda_i|$ and $\tau_i \leq \tau_{i+1}$

$$g = \sum_{i=1}^N a_i f^i = \underbrace{a_1 f^1 + \dots + a_M f^M}_{g_{\text{fast}} \approx 0} + \underbrace{a_{M+1} f^{M+1} + \dots + a_N f^N}_{g_{\text{slow}}}$$

$$g_{\text{slow}} = \sum_{s=M+1}^N a_s f^s = \left(I - \sum_{r=1}^M a_r b^r \right) g = Pg$$

CSP ODE Integrator

- Explicit integration in time, with $\Delta t = t_{n+1} - t_n = \mathcal{O}(\tau_{M+1})$

$$\mathbf{x}^{n+1} = \mathbf{x}^n + \sum_{i=1}^M \int_{t_n}^{t_{n+1}} \mathbf{a}_i(\mathbf{x}(t)) f^i(\mathbf{x}(t)) dt + \sum_{i=M+1}^N \mathbf{a}_i(\mathbf{x}^n) f^i(\mathbf{x}^n) \Delta t$$

- Amplitudes of fast exhausted modes decay exponentially

$$f^i(t) \approx f^i(\mathbf{x}^n) \exp(-(t - t_n)/\tau_i(\mathbf{x}^n)), \quad i = 1, \dots, M$$

and, ignoring time variation of the basis vectors within Δt , we have

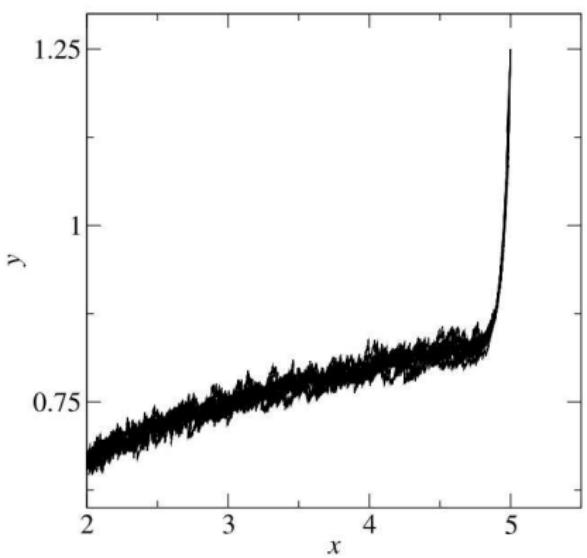
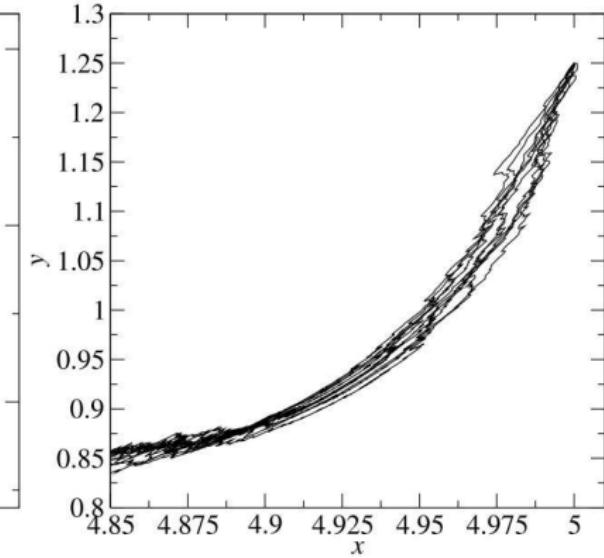
$$\begin{aligned} \int_{t_n}^{t_{n+1}} \mathbf{a}_i(\mathbf{x}(t)) f^i(\mathbf{x}(t)) dt &\approx \mathbf{a}_i(\mathbf{x}^n) f^i(\mathbf{x}^n) \int_{t_n}^{t_{n+1}} e^{-(t-t_n)/\tau_i(\mathbf{x}^n)} dt \\ &= \mathbf{a}_i(\mathbf{x}^n) f^i(\mathbf{x}^n) \tau_i(\mathbf{x}^n) (1 - e^{-\Delta t / \tau_i(\mathbf{x}^n)}) \end{aligned}$$

thus:

$$\mathbf{x}^{n+1} = \mathbf{x}^n + \sum_{i=1}^M \mathbf{a}_i^n f_i^n \tau_i^n (1 - e^{-\Delta t / \tau_i^n}) + \sum_{i=M+1}^N \mathbf{a}_i^n f_i^n \Delta t$$

What is the dynamical character of a stiff SDE?

- The drift term induces fast motion *in the mean* towards a stochastic manifold
- The diffusion term induces random motions, with zero mean, and no preferential direction



CSP Applied to the CLE - 1

- CLE:

$$\mathbf{X}_{t+\mathrm{d}t} = \mathbf{X}_t + \mathbf{f}(\mathbf{X}_t) \mathrm{d}t + \sum_{j=1}^R \mathbf{g}_j(\mathbf{X}_t) \mathrm{d}W_j(t),$$

- Introduce the CSP basis $\{\boldsymbol{\alpha}_i, \boldsymbol{\beta}^i\}$, $i = 1, \dots, N$, with $\boldsymbol{\beta}^i \cdot \boldsymbol{\alpha}_i = \delta_{ij}$, $\forall i$
- The (signed) mode amplitudes for the drift term are

$$\xi^i(\mathbf{X}) = \boldsymbol{\beta}^i(\mathbf{X}) \cdot \mathbf{f}(\mathbf{X})$$

with

$$\mathrm{d}\xi^i(t) = \mathrm{d}\boldsymbol{\beta}^i(t) \cdot \mathbf{f}(\mathbf{X}_t) + \boldsymbol{\beta}^i(t) \cdot \mathrm{d}\mathbf{f}(t)$$

CSP Applied to the CLE - 2

Using the stochastic chain rule, with some algebra, we have

$$df(t) = \mu(\mathbf{X}_t)dt + \sum_{j=1}^R \sigma_j(\mathbf{X}_t)dW_j(t),$$

where

$$\mu_i(\mathbf{X}_t) = \sum_{k=1}^N \sum_{j,m=1}^R \nu_{jk} \nu_{mi} \rho_j(\mathbf{X}_t) \left(\frac{\partial \rho_m(\mathbf{X}_t)}{\partial X_k} + \frac{1}{2} \sum_{l=1}^N \nu_{jl} \frac{\partial^2 \rho_m(\mathbf{X}_t)}{\partial X_k \partial X_l} \right)$$

$$\sigma_{ij}(\mathbf{X}_t) = \sqrt{\rho_j(\mathbf{X}_t)} \sum_{k=1}^N \nu_{jk} \sum_{m=1}^R \nu_{mi} \frac{\partial \rho_m(\mathbf{X}_t)}{\partial X_k}$$

The change of ξ^i can be written as

$$d\xi^i(t) = \left(\frac{d\beta^i(t)}{dt} \sum_{k=1}^N \xi^k \alpha_k + \beta^i(t) \mu(\mathbf{X}_t) \right) dt + \beta^i(t) \sum_{j=1}^R \sigma_j(\mathbf{X}_t) dW_j(t)$$

CSP Applied to the CLE – 3

which reduces to:

$$d \begin{pmatrix} \xi^1 \\ \vdots \\ \xi^N \end{pmatrix} = \Lambda(\mathbf{X}_t) \begin{pmatrix} \xi^1 \\ \vdots \\ \xi^N \end{pmatrix} dt + \varphi(\mathbf{X}_t) dt + \Gamma(\mathbf{X}_t) d\mathbf{W}(t),$$

$\mathbf{W}(t) = (W_1(t), \dots, W_R(t))^T \in \mathbb{R}^{R \times 1}$ is an R -dimensional Brownian motion, and

$$\Lambda = \begin{bmatrix} \left(\frac{d\beta^1}{dt} + \beta^1 J_f \right) \alpha_1 & \dots & \dots & \left(\frac{d\beta^1}{dt} + \beta^1 J_f \right) \alpha_N \\ \vdots & \dots & \dots & \vdots \\ \left(\frac{d\beta^N}{dt} + \beta^N J_f \right) \alpha_1 & \dots & \dots & \left(\frac{d\beta^N}{dt} + \beta^N J_f \right) \alpha_N \end{bmatrix} \in \mathbb{R}^{N \times N}$$

$$\varphi = \begin{bmatrix} \beta^1 \\ \vdots \\ \beta^N \end{bmatrix} \cdot \begin{bmatrix} \sum_{k,l=1}^N \sum_{j,m=1}^R \nu_{jk} \nu_{jl} \nu_{m1} \frac{\partial^2 \rho_m}{\partial X_k \partial X_l} \rho_j \\ \vdots \\ \sum_{k,l=1}^N \sum_{j,m=1}^R \nu_{jk} \nu_{jl} \nu_{mN} \frac{\partial^2 \rho_m}{\partial X_k \partial X_l} \rho_j \end{bmatrix} \in \mathbb{R}^{N \times 1}$$

$$\Gamma = \begin{bmatrix} \beta^1 \\ \vdots \\ \beta^N \end{bmatrix} \cdot \begin{bmatrix} \sigma_{11} & \dots & \dots & \sigma_{1R} \\ \vdots & \dots & \dots & \vdots \\ \sigma_{N1} & \dots & \dots & \sigma_{NR} \end{bmatrix} \in \mathbb{R}^{N \times R}$$

CSP Applied to the CLE – 4

- Diagonalization of Λ is not sufficient to decouple fast and slow processes, due to φ and $\Gamma dW(t)$
- A refinement procedure to separate the fast and slow dynamics is necessary
- We use the above SDE, linearized, to motivate the use of the eigenvectors of J_f as CSP basis vectors, as done for the ODE case
- A linearized analysis gives

$$d \begin{pmatrix} \xi^1 \\ \vdots \\ \xi^N \end{pmatrix} = \Lambda \begin{pmatrix} \xi^1 \\ \vdots \\ \xi^N \end{pmatrix} dt + \Gamma(\mathbf{X}(t)) dW(t)$$

in which the time evolution of the mean modes for eigenvalues with different real parts are all separated

- NB. for the nonlinear CLE, as opposed to a general SDE, it is expected that the magnitudes of components of φ are small relative to those of Λ , thus the use of the linearized approximation is viable

CSP Applied to the CLE – 5

Proposed strategy:

- Stiffness in the drift term can be dealt with similar to the ODE RHS
 - Evaluate eigendecomposition of the Jacobian of the drift term at each time step
 - Identify fast/slow subspaces, **determine $M \Leftarrow$ main challenge**
 - Integrate fast processes in time by modeling their exponential decay to the manifold
 - Integrate slow processes using EM
- Integrate diffusion using EM

CLE-CSP Time Integration

- Path-wise CLE Difference equations, with $\mathbf{X}_t^\omega := \mathbf{X}(t, \boldsymbol{\eta}^\omega)$

$$\mathbf{X}_{t+\Delta t}^\omega = \mathbf{X}_t^\omega + \mathbf{f}(\mathbf{X}_t^\omega) \Delta t + \mathbf{g}((\mathbf{X}_t^\omega, \boldsymbol{\eta}^\omega)) \sqrt{\Delta t}.$$

where

$$\mathbf{g}(\mathbf{X}_t^\omega, \boldsymbol{\eta}^\omega) := \sum_{j=1}^R \mathbf{g}_j(\mathbf{X}(t, \boldsymbol{\eta}^\omega)) \eta_j^\omega(t)$$

$$\boldsymbol{\eta}^\omega(t) := (\eta_1^\omega(t), \dots, \eta_R^\omega(t))^T$$

and $\mathcal{N}_j(t, \omega) := \eta_j^\omega(t)$ is the continuous sample path for \mathcal{N}_j , $\omega \in \Omega$

Thus the CSP time integration is as follows,

$$\begin{aligned} \mathbf{X}_{t+\Delta t}^\omega = & \mathbf{X}_t^\omega + \sum_{i=1}^M \xi^i(\mathbf{X}_t^\omega) \boldsymbol{\alpha}_i(\mathbf{X}_t^\omega) \tau_i^F(t) (1 - e^{-\Delta t / \tau_i^F(t)}) \\ & + \sum_{i=M+1}^N \xi^i \boldsymbol{\alpha}_i \Delta t + \mathbf{g}((\mathbf{X}_t^\omega, \boldsymbol{\eta}^\omega)) \sqrt{\Delta t} \end{aligned}$$

CLE-CSP – Determination of M

- The determination of M in an ODE setting is as follows:

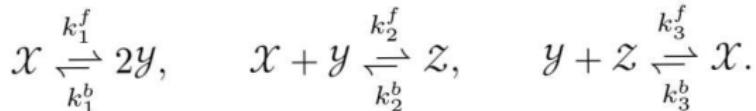
$$M = \max m \quad \text{s.t.} \quad \tau_{m+1} \left| \sum_{i=1}^m a_i f^i \right| < \epsilon_r x + \epsilon_a \mathbf{1}$$

- Stochastic noise renders this test ineffectual for the CLE
- The mode amplitudes ξ^i for any sample-path do not decay to zero
- Choosing an arbitrary threshold is unreliable
- A reliable approach involves utilization of sample-path statistics

CLE-CSP – Determination of M – example

Consider the "VGCN" system involving the three species \mathcal{X} , \mathcal{Y} and \mathcal{Z} :

(Valorani, 2005)



With the state vector $\mathbf{U}_t := (X_t, Y_t, Z_t)^T$, the path-wise CLEs:

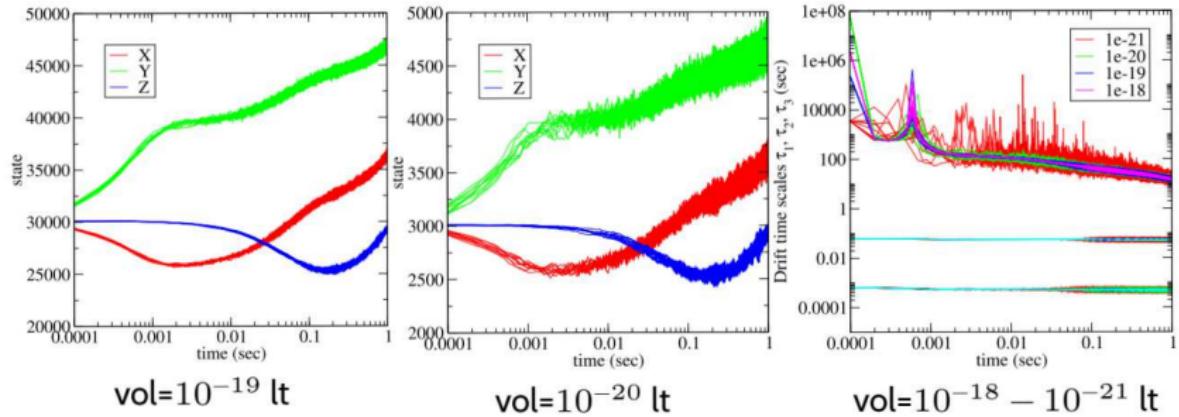
$$d\mathbf{U}_t^\omega = \mathbf{f}(\mathbf{U}_t^\omega)\Delta t + \mathbf{g}(\mathbf{U}_t^\omega, \boldsymbol{\eta}^\omega)\sqrt{\Delta t},$$

where, employing the reaction propensities $(r_1^f, r_1^b, r_2^f, r_2^b, r_3^f, r_3^b)$,

$$\mathbf{f} = \begin{pmatrix} -r_1^f X + r_1^b Y(Y-1) - r_2^f X Y + r_2^b Z + r_3^f Y Z - r_3^b X \\ r_1^f X - r_1^b Y(Y-1) - r_2^f X Y + r_2^b Z - r_3^f Y Z + r_3^b X \\ r_2^f X Y - r_2^b Z - r_3^f Y Z + r_3^b X \end{pmatrix}$$

$$\mathbf{g} = \begin{bmatrix} -\sqrt{r_1^f X} & \sqrt{r_1^b Y(Y-1)} & -\sqrt{r_2^f X Y} & \sqrt{r_2^b Z} & \sqrt{r_3^f Y Z} & -\sqrt{r_3^b X} \\ \sqrt{r_1^f X} & -\sqrt{r_1^b Y(Y-1)} & -\sqrt{r_2^f X Y} & \sqrt{r_2^b Z} & -\sqrt{r_3^f Y Z} & \sqrt{r_3^b X} \\ 0 & 0 & \sqrt{r_2^f X Y} & -\sqrt{r_2^b Z} & -\sqrt{r_3^f Y Z} & \sqrt{r_3^b X} \end{bmatrix} \begin{pmatrix} \eta_1^\omega(t) \\ \eta_2^\omega(t) \\ \eta_3^\omega(t) \\ \eta_4^\omega(t) \\ \eta_5^\omega(t) \\ \eta_6^\omega(t) \end{pmatrix}$$

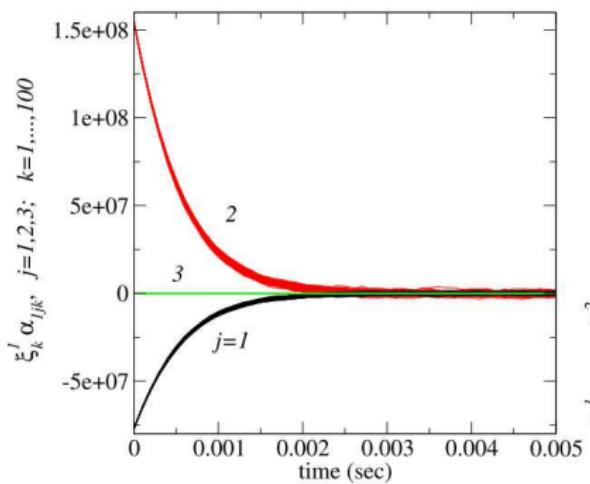
VGCN System Dynamics



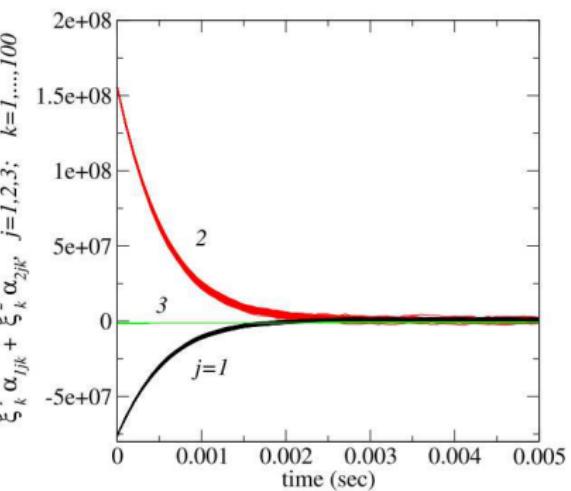
- System exhibits 3 drift-term negative real eigenvalues with associated time scales
- Mean time scales exhibit essentially no dependence on system size
- Decay to a 2D : 1D : 0D manifolds in succession

VGCN System Dynamics – Mode Contributions

100 samples



$$\xi^1 \alpha_1$$

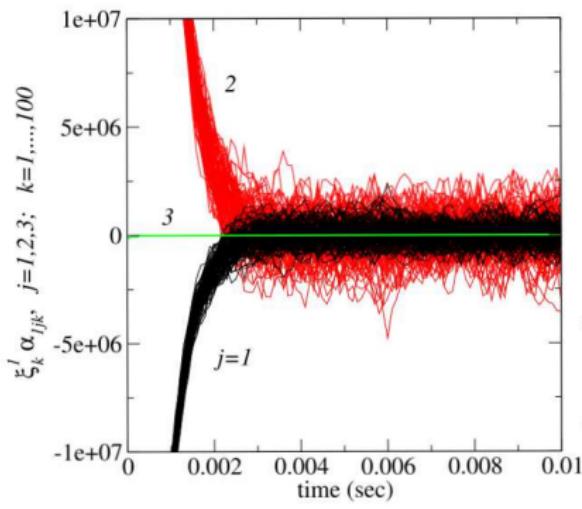


$$\xi^1 \alpha_1 + \xi^2 \alpha_2$$

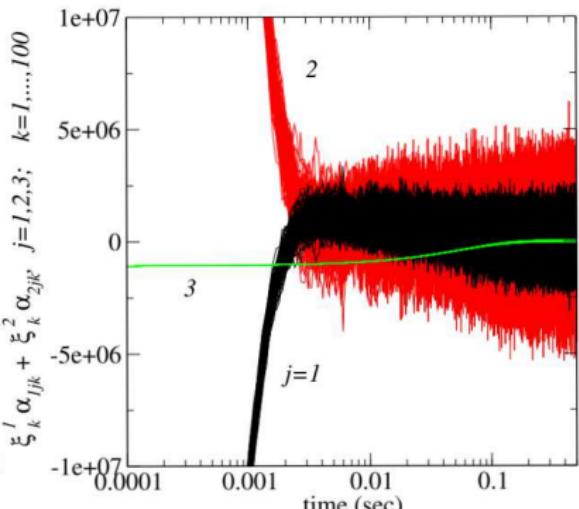
- Noise leads to challenging detection problem for when a set of modes is exhausted
- Need a robust means of selecting thresholds
- Ensure that the absolute value of the sums is small

VGNC System Dynamics – Mode Contributions

100 samples



$$\xi^1 \alpha_1$$



$$\xi^1 \alpha_1 + \xi^2 \alpha_2$$

- Noise leads to challenging detection problem for when a set of modes is exhausted
- Need a robust means of selecting thresholds
- Ensure that the absolute value of the sums is small

A Reliable M -Detection Strategy

- Run K samples concurrently
- Examine statistics of the absolute value of the sum of mode contributions to the drift term

$$\mathfrak{S}_{jmk} = \left| \sum_{i=1}^m \xi_k^i \alpha_{ijk} \right|, \quad j = 1, \dots, N; \quad k = 1, \dots, K.$$

Define the N -long sample mean and standard deviation vectors μ_{mK} and σ_{mK} , where, for $j = 1, \dots, N$

$$\begin{aligned} \mu_{jmK} &= \frac{1}{K} \sum_{k=1}^K \mathfrak{S}_{jmk} \\ \sigma_{jmK} &= \left[\frac{1}{K-1} \sum_{k=1}^K (\mathfrak{S}_{jmk} - \mu_{jmK})^2 \right]^{1/2} \end{aligned}$$

A Reliable M -Detection Strategy

- Declare a set of modes exhausted when their above sample-mean is small relative to the associated sample standard deviation
- Also ensure:
 - This set does not include a mode with a positive real eigenvalue component
 - The drift time scale of the fastest slow mode (“active” mode) is faster than the fastest diffusion time scale

Thus:

$$M = \max m \in [1, N]$$

s.t.

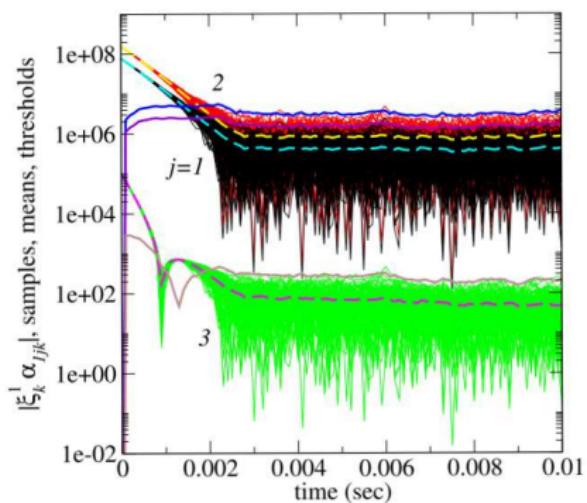
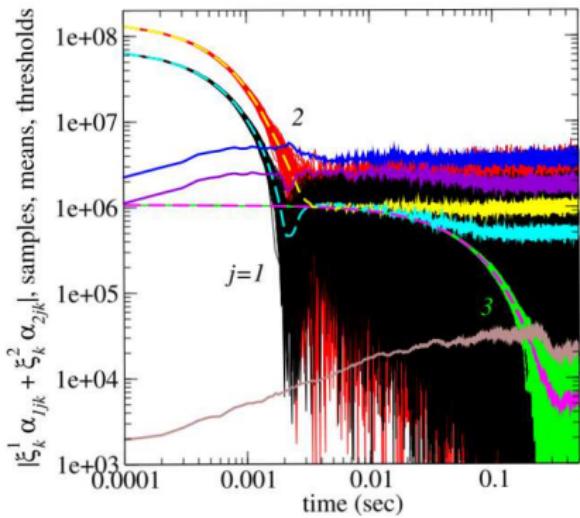
$$\mu_{jmK}^F < \beta \sigma_{jmK}^F, \quad \forall j \in [1, N]$$

$$\max_k \tau_{M+1,k}^F < \gamma \min_k \tau_{1,k}^G$$

$$\operatorname{Re}(\lambda_{rk}^F) < 0, \quad \forall r \in [1, m]; \quad \forall k \in [1, K]$$

We use $\beta = 5, \gamma = 0.5$.

M-Detection in the VGCN system



- Dashed lines are means, solid lines are γ -scaled standard deviations
- Mode 1 is exhausted at ~ 1.6 msec
- Mode 2 is exhausted at ~ 0.15 sec

$$\tau_1^F = 0.6 \text{ msec}$$

$$\tau_2^F = 0.06 \text{ sec}$$

Choice of time step

- Integrate all K samples synchronously in time, same Δt for all

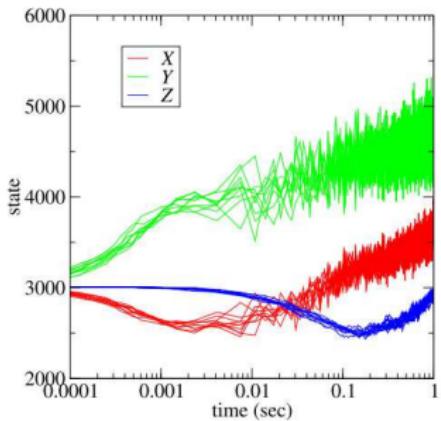
$$\Delta t^* = \begin{cases} 0.1 \min_k \tau_{1,k}^F & \text{for } M = 0 \\ (1 - \theta) \max_k \tau_{M,k}^F + \theta \min_k \tau_{M+1,k}^F & \text{for } M > 0 \end{cases}$$

where $0 < \theta < 1$, is a chosen constant. We use $\theta = 0.05$.

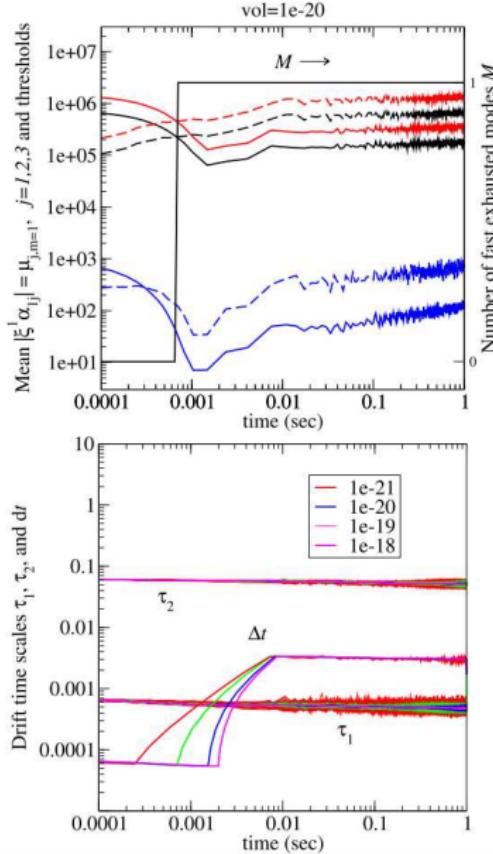
- Further, for minimizing the impact of large sudden increases in the time-step size, we enforce

$$\Delta t_n = \min(\Delta t^*, 2\Delta t_{n-1})$$

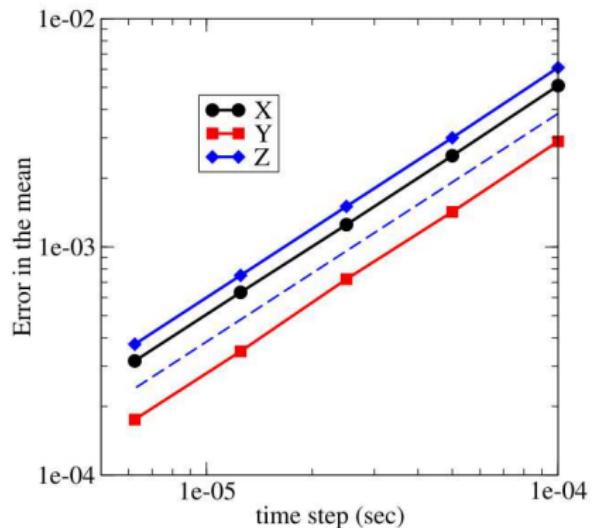
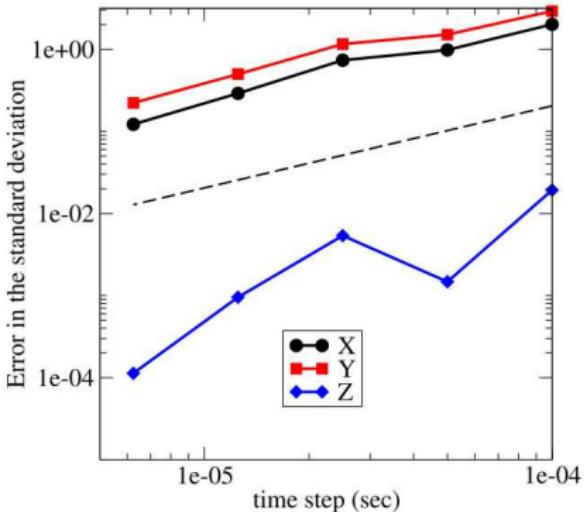
VGCN CLE time integration with CSP



- Qualitatively similar evolution of the state variables
- M selection goes up to $M = 1$
 - Limited by the fastest diffusion timescale
- Time step increase by nearly two orders of magnitude

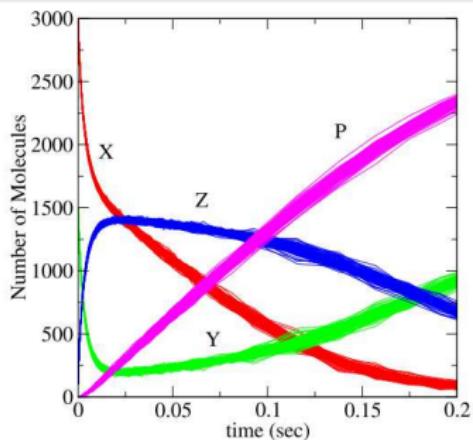


VGCN CLE time integration with CSP - Error convergence

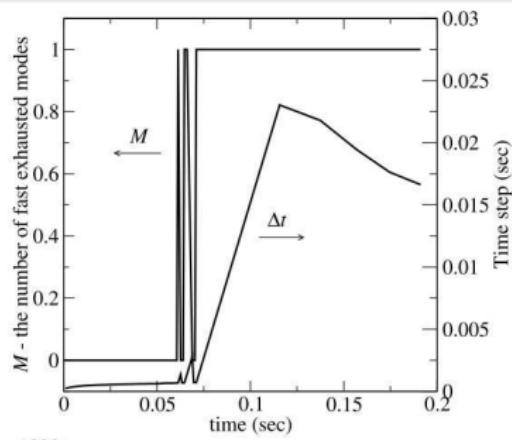
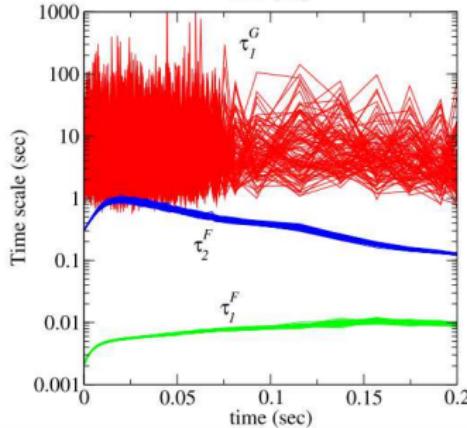


- First order weak-convergence of EM is retained, for both the mean and standard deviation
- Convergence is with respect to small- Δt computations with EM

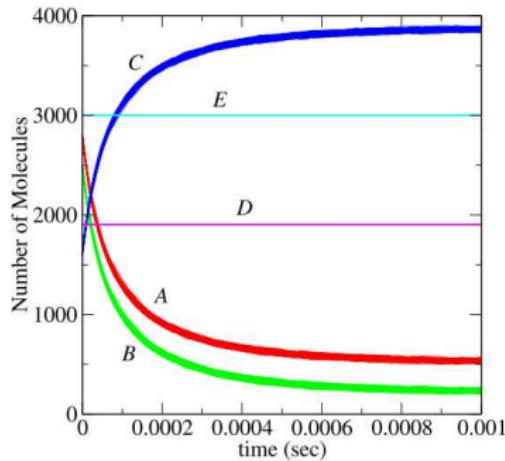
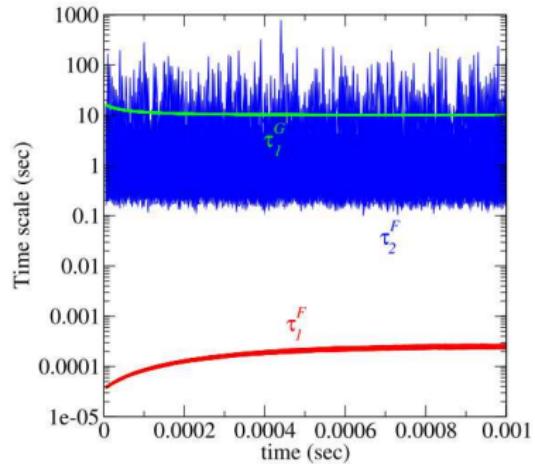
Michaelis-Menten system CLE



- M goes up to a maximum of 1
- Limited by diffusion time scales

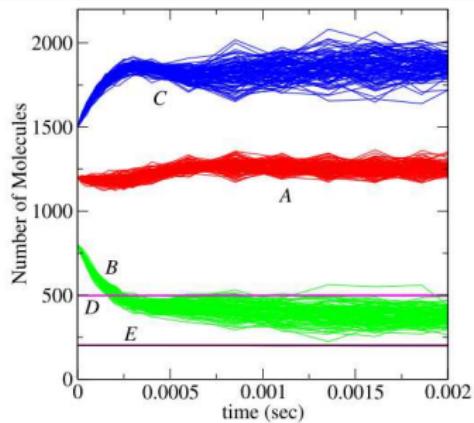
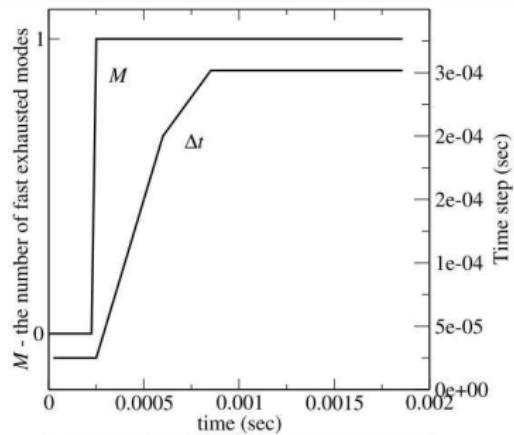


Protein system CLE



- Here $M = 0$ given the fast diffusional time scales

Acyclic system CLE



- M goes up to a maximum of 1
- Limited by diffusion time scales

Computational Performance

- The computational savings of large explicit time steps have to be balanced against the costs of Jacobian eigensolves.
 - Currently, the EM implementation is $1.5 \times$ faster than the CSP integration
- Potential remedies to improve computational performance include
 - Resolving the diffusion-induced upper limit on Δt , thus allowing larger time step computations
 - Reusing the computed eigendecomposition of the Jacobian over some number of time steps
 - Exploring eigensolvers that can
 - make efficient use of a good initial guess
 - compute only the fastest $M + 1$ eigenmodes

Closure

- We demonstrated the utility of CSP for enabling large time step explicit integration of stiff CLEs
- Numerous directions for future work are feasible
 - Develop adequate modeling of fast diffusional processes
 - Reduce eigendecomposition costs
 - reuse, good initial guess, partial eigensolve
 - Pursue theoretical convergence proofs
 - Development of treatment for multiple manifolds and switching between basins of attraction