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Out ine

• Motivation - the chemical Langevin equation (CLE)

• Background

• Introduction

• Computational singular perturbation (CSP) for the CLE

• Demonstrations of CSP Time Integration of the CLE

• Computational Performance

• Closure
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otivation

o Fundamentally the chemical master equation (CME) governs the
evolution of chemical systems at the smallest scales

o Discrete Markov system - integer valued molecular counts

• The Chemical Langevin Equation (CLE) is good approximation for the
CME when the number of molecules of each species in the given
control volume is large enough - continuous Markov system

o Technically, the approximation relies on conditions on the
reaction rates and time step sizes, which are essentially
guaranteed in the context of large molecular counts

(Gillespie JChemPhys 2000)

o The CLE is relevant when the number of molecules of each species is
small enough so that stochastic effects are non-negligible

- macroscale deterministic models are inadequate

o Relevant applications:

o biochemistry
o catalysis
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Stochastic Chemical System Formulati n - 1

co Consider a chemical system involving
• Nspecies 81, ••• , SN
• R reactions Rl, ..., .9? R.

o Assume: spatially uniform, fixed volume, constant temperature

• Xi (t): number of 8, molecules at time t, and state vector:

X(t) := (X1 (t), , XN(t))T.

• Under requisite conditions, the system can be modelled by the
chemical Langevin difference equation, where for i = 1, ••• , N:

Xi(t+dt) = Xi(t)+ ,p (X(t))dt+ p ((X(t))N (t)It
.j=1

where
• vji is the change in X. caused by one reaction
• pi is the propensity function for reaction Ai
• NJ (t) are iid standard normal random variables at time t
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Stochastic Chemical System Formulati •n - 2

The above stochastic difference equation implies the equivalent chemical
Langevin differential equation

dXj(t) = E vjtpj(X(t))dt + pj((X(t))dWj(t), i = 1, ••• , N
i=i j=i

where Wi(t) are statistically independent Brownian motions.

We can write the CLE, for convenience, as

dXt = f (Xt)dt + E g j (X t)dWi (t)
j=i

where Xt := X(t) and

f (Xt) = (fl(Xt), f N(Xt))T, fi(Xt) = E vjipj(X(t))
j=1

g (Xt) = (g31(Xt), g jN(X t))T g it(Xt) — pj((X(t))
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SDE Time Integra

• The time integration of the CLE can employ a range of available time
integration schemes for stochastic differential equations (SDEs)

o Consider the Itei SDE

dXt = f (Xt)dt + g(Xt)c1147,

o Time integration

Xt = Xto + f f (X 8)ds f g(X8)dW,
to

o Euler-Maruyama (EM)

Yn-ri = -17n, fThlin giArti

explicit, order 1 weak convergence

hn = tn+1 — tn, Yo = Xto

• EM is the simplest explicit SDE time integration
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SDE Sti fn

o An SDE is stiff when it exhibits a large range of time scales

o A chemical system with very slow/fast reactions results in a stiff CLE

o Stiffness results in challenges for explicit SDE time integrators

o Stability requires time steps smaller than the fastest time scale
o However, for accurate time integration, ideally, the optimal time

step choice is dictated by the active time scale, i.e. the time
scale at which the state vector is changing

✓ One remedy is to use implicit time integration, but can we do better
with explicit constructions?

o This has been done for ODEs using Computational Singular
Perturbation (CSP)

Valorani & Goussis, JCP, 2001

o We would like to extend this to SDEs, specifically to the CLE
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ODE Strffnes

• A macroscale chemical system with very slow & fast reactions results
in a stiff ODE system - challenging for explicit ODE time integrators

fa A stiff ODE system du 1 dt = g(u), with large negative eigenvalues of
the Jacobian J = Og 10u, behaves essentially like a Differential
Algebraic Equation (DAE)

• The system dynamics exhibit attractive slow invariant algebraic
manifolds G(u) = 0

- We leave aside for now unstable manifolds, oscillatory
and chaotic dynamics

o From any initial condition, the system state evolves quickly, with
the fast time scales, towards the manifold

• At the manifold, the relevant fast process is "exhausted",
inducing the constraint G(u) = 0

• The system evolves slowly, with the slow time scales, along the
slow manifold
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Davis-Sk
(Davis & Skodje, J.

dje stiff ODE syste
Chem. Phys , 1999)
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Computational Singular Perturbation (C
Harvey Lam, Dimitris Goussis, 1980s -

o Stiff ODEs are singularly perturbed differential equations

o A decoupled fast-slow stiff system

= gs(x,y)

= —
1 
gr(x,y) c << 1

where is the slow variable, and y is the fast variable

o Associated DAE system, in the limit € 0,

= gs(x, g)

= 9,44

o This simple distinction of slow/fast variables is not feasible in
practical systems

o CSP is useful in decoupling fast and slow processes
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CSP Basics - 2

o Consider a general autonomous stiff ODE system

x=g(x), EIRn

o Introduce:

o CSP basis vectors al, , aN,
o CSP row vectors bl, , bN,
o where b'a3 =

o Expand the RHS in the CSP basis

where

g(x) = E aifi
i=i

with A = [al, a2, aisr]
with B : row; := bi

thus BA = AB = I

fi(x(t)) = bi(x(t)) • g(x(t))

SNL CLE-CSP
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CSP Basics

Whence

where

A

dtd

fl fi

= A(x(t))

)

fN fN

( J9)ai

( dbN
dt bNJg)cti

jg)aN

( dr + bNjg)aN
c ENxN

and Jg = OglOx is the Jacobian of g

The ideal basis decouples fast and slow processes, i.e. diagonalizes A

• The eigenvectors of J9 provide a good, O(E), approximation of
the ideal CSP basis

- This is exact for a linear system, where dbv/dt 0, Vi

o A refinement procedure is available to maximize the degree of
decoupling starting from any initial guess
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CSP Illustration w th the Davis-Skodje DE system

yx

With z := [1 and -y := €: = g(z) = 

[ - 
1- 1 + x (1 + x)2]

Jacobian

Eigenvalues

Basis vectors

Modes

—x

[—ry 01 x — 1
J = 

0 —1 ' 
= 
(1+ x)2 

+ 

(1 +x)3I_ ] 

= --y , A2 = —1

e
ai = [o] a2 = ry _ 1] , bl = [1, ,y-2 , b2 = [0, 71 1]

x0 
fl = bl • g = + 

1 + x (1 + x)2 
+ 

— 1

j2 
b2 g  

1
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CSP Illustration with the Davis-Skodje DE system
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CSP Itlust ation with the Davis-Skodje DE system
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CSP Illustration w th the Davis-Skodje DE system
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CSP Itlust ation with the Davis-Skodje DE system
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CSP Illustration with the Davis-Skodje DE system
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CSP Itlust ation with the Davis-Skodje DE system
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CSP Illustration w th the Davis-Skodje DE system
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MIT ecscr77)sition - Fast (Exhausted) Subspace

dx
dt 

g(x), x(t = 0) = xo

Evaluate the eigensolution for the Jacobian matrix Jg = Og/ax, and sort
the eigenmodes with negative real eigenvalue components in order of
decreasing amplitude,

Al, A2, AN with NI lAi+11

with time scales Ti = Rtil and Ti < Ti+1

g = Eaif2 = al f1 + + am-flu
i=1 gf.r=)

P
+ a M+1 f M-F1+ + aN fN

9slow

gslow = I asfs = E — arbr g = PgE 
r=1
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CSP ODE Integra or

o Explicit integration in time, with At = tn+1 — tn = 0(TM+1)
M tr,r+1

Xn+1 = +E f ai(vc(t))P(x(t))dt + E ai(xn) (xn)At
i=l t„ i= +1

• Amplitudes of fast exhausted modes decay exponentially

P(t) fi(æn) exp(—(t — tn)/1-,i(xn)), i = 1, ... 11/

and, ignoring time variation of the basis vectors within At, we have
ft„,1

it„ 
ai(x(o)p(x(t))dt ai(ven)P (xn) 

f t,„+1
.4„ 

e-(t-tr,) Ti(') dt

a i(xn) P (xn)Ti(e1)(1 — e-At/ri(e.))

thus:

xn+1 = xn E cqfni (1 _ e-AoT) E cqfni At
i=l i=m+l

SNL Najrn CLE-CSP 17/ 39
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What is the dyna ical character of a stiff SDE?

o The drift term induces fast motion in the mean towards a stochastic
manifold

o The diffusion term induces random motions, with zero mean, and no
preferrential direction
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CSP Applied to th

o CLE:

Xt+dt = xt f(Xt)dt + E g (X t)di/V (t) ,
j=i

o Introduce the CSP basis i = 1, , N, with Oi • ai = (Sip Vi

o The (signed) mode amplitudes for the drift term are

with

e (X) = 131 (X) • f (X)

(t) = cli32(t) • f(Xt) + 01(t) • df(t)

SNL Najr, CLE-CSP 19 / 39
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CSP Applied to th

Using the stochastic chain rule, with some algebra, we have

df(t) = µ(Xt)dt + E 0-i(xt)dwj(t),
J=1

where

N R
apm(Xt) + 1 1\T—N j

k=1 j m=1 

.92 pm(Xt))
it (X t) = E E mip j( axk 2 h, 3' ax,ax,

, 

(Xt)

Crij(Xt) — pj(Xt)E ljjk Ev  m
k=1 rrr =1 

m axk

The change of e can be written as

dem = (di3i(t) oak +,& (t)µ(Xt)) dt+,32(t) E (xt)dwi (t)
dt 

k=1 j=1

SNL Najrn CLE-CSP 20 / 39



!Hotly Bkgd intro CSP-CLE Demo Comp Close

which reduces to:

d A(X,) i dt + cp(Xt)dt + r(xt)div(t),

W (t) = (W (t) . . . W R(t)Yr E ORRx1 is an R-dimensional Brownian motion,
and

(df31
dt fr"

\
f/ 1 (c1Z + 131 J f)a N

A =
1 cl l'i j_ aN[ T \ ,...,

'-'1)'-'1.
(CleN T 1,,,,

1
E ERNxisr

l dt 1 l' +k dt  P'N`V)"'N

co =

r =

01 E kN i=i E3.7m_l
VjkVjIliml ax-62,Pamx-I Pi

oN J \ -...N v,Il 02,,,,,

L-'k,1=1 j,m=1 11.1k VjliimN ax-ka,clPj

[ G oRNxR 

QNR
oN

a N1

E RNx1
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CSP Applied to th

o Diagonalization of A is not sufficient to decouple fast and slow
processes, due to 4p and F dW(t)

o A refinement procedure to separate the fast and slow dynamics is
necessary

o We use the above SDE, linearized, to motivate the use of the
eigenvectors of ,Lf as CSP basis vectors, as done for the ODE case

o A linearized analysis gives

d )=A( dt + F(X(t))dW(t)
N N

in which the time evolution of the mean modes for eigenvalues with
different real parts are all separated

o NB. for the nonlinear CLE, as opposed to a general SDE, it is
expected that the magnitudes of components of cp are small relative
to those of A, thus the use of the linearized approximation is viable
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Proposed strategy:

o Stiffness in the drift term can be dealt with similar to the ODE RHS

o Evaluate eigendecomposition of the Jacobian of the drift term
at each time step

o Identify fast/slow subspaces, determine M main challenge
• Integrate fast processes in time by modeling their exponential

decay to the manifold
• Integrate slow processes using EM

o Integrate diffusion using EM

SNL Najm CLE-CSP 23 / 39
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CLE-CSP Time Integration

o Path-wise CLE Difference equations, with Xt := X (t, rr)

= + f + g((X`' , A t .

g(X`' , ir) := Egi(X(t,70)70t)
j=i

where

nw(t) := (#1(t), , 7ti?(t))T
and Arj(t, w) := 76(t) is the continuous sample path for Ari, w E SZ

Thus the CSP time integration is as follows,

M

.7q,±,t=x-o+Ee (Xnai (Xnrf(t)(1 - e-Atirnt))
i=1

+ E eaiAt + g((Xt'' , 7r)VYt
i=m+1

SNL Najrn CLE-CSP 24 / 39
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- Deter ination of M

o The determination of M in an ODE setting is as follows:

M = max m s.t. Trn+1

rra

t=1

ai P < c,x

o Stochastic noise renders this test ineffectual for the CLE

o The mode amplitudes for any sample-path do not decay to zero

o Choosing an arbitrary threshold is unreliable

o A reliable approach involves utilization of sample-path statistics

SNL Najm CLE-CSP 25/39
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CLE-CSP - Determination of M- example

Consider the "VGCN" system involving the three species x, y and Z:
(Valorani, 2005)

Icif 14 14
i ,=` 2Y , X + Y .=` 2, Y -F Z ,=` X.

ki q kR

With the state vector Ut := (Xt,Y,, Zt)T, the path-wise CLEs:

dUt-:' = f(t/nAt + g(LI`',7-r)frAt,

where, employing the reaction propensities (rf, rl., li,ri,?i,rD,
( -rfx + riY(Y - 1) -1-.)CY + 7-Z + riYZ - rPC )

f = rfx - rty(Y. -1) - 4XY + 7Z - 7-0 7 Z + ?IX4XY - 7•1Z - 71Y Z + raX
[ - \I rif.X \✓MY(Y - 1) -V4XY VrIZ \14Y Z -,\MX

9 = rli-TX -VrtY(Y - 1) -V4XY 7.\/Ti - \MYZ VrV

0 0 MXY - 7..PZ -\74YZ 75. -
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• System exhibits 3 drift-term negative real eigenvalues with
associated time scales

• Mean time scales exhibit essentially no dependence on system size

• Decay to a 2D : 1D : OD manifolds in succession
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VGCN S s em D namics - Mode Contributions
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o Noise leads to challenging detection problem for when a set of
modes is exhausted

o Need a robust means of selecting thresholds

o Ensure that the absolute value of the sums is small
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CSP-CLE

VGCN System Dynamics — Mode Contributions
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co Noise leads to challenging detection problem for when a set of
modes is exhausted

e Need a robust means of selecting thresholds
• Ensure that the absolute value of the sums is small
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CSP-CLE

A Reliable M-Det ction Strategy

o Run K samples concurrently

o Examine statistics of the absolute value of the sum of mode
contributions to the drift term

6 • ,„ =37-rtm 

i=1
c kk tj j= 1, , , k = 1, , K .

Define the N-long sample mean and standard deviation vectors limK
and amK, where, for j = 1, , N

1 \—.1 c

K 11

)2 ] 1/2
admK 

[

K — jmk I-1 3771K

NjrrcK k

=1
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CSP-CLE

A Reliable M-Det ction Strategy

• Declare a set of modes exhausted when their above sample-mean is
small relative to the associated sample standard deviation

o Also ensure:

o This set does not include a mode with a positive real eigenvalue
component

• The drift time scale of the fastest slow mode ("active" mode) is
faster than the fastest diffusion time scale

Thus:
M = max m c [1, N]

s.t.

ti3mK < /3 a 3mA, Vj e [l N]

max TL+1,k < 7 min 7T/k

Re(ArFk) < 0, br e m]; bk e [1,K]

We use i3 = 5, -)/ = 0.5.
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M-Detection in the VGCN system

40-
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o Mode 1 is exhausted at —1.6 msec

9 Mode 2 is exhausted at —0.15 sec

T
F 
= 0.6 msec

T2 — 0.06 sec
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o Integrate all K samples synchronously in time, same At for all

0.1 min Trk for M = 0
At* = k

(1 — 0) max TL k + B rnin TL+l,k for M > 0

where 0 < B< 1, is a chosen constant. We use B= 0.05.

o Further, for minimizing the impact of large sudden increases in the
time-step size, we enforce

Atr, = min(At*, 20t„ 1)
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VGCN CLE time integration with CSP
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o Qualitatively similar evolution
of the state variables
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VGCN CLE ime integration with CSP rror convergence
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o First order weak-convergence of EM is retained, for both the mean
and standard deviation

• Convergence is with respect to small-At computations with EM
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Micha- - en en system CLE
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Protei ys e Mak.
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• Here M = 0 given the fast diffusional time scales
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Acycli s em
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Computati nal Performance

o The computational savings of large explicit time steps have to be
balanced against the costs of Jacobian eigensolves.

la Currently, the EM implementation is 1.5x faster than the CSP
integration

o Potential remedies to improve computational performance include

o Resolving the diffusion-induced upper limit on At, thus
allowing larger time step computations

fa Reusing the computed eigendecomposition of the Jacobian
over some number of time steps

• Exploring eigensolvers that can

- make efficient use of a good initial guess
- compute only the fastest M + 1 eigenmodes
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osu

o We demonstrated the utility of CSP for enabling large time step
explicit integration of stiff CLEs

o Numerous directions for future work are feasible

co Develop adequate modeling of fast diffusional processes
o Reduce eigendecomposition costs

- reuse, good initial guess, partial eigensolve

o Pursue theoretical convergence proofs
o Development of treatment for multiple manifolds and

switching between basins of attraction
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