
STK NGP Test: a platform
portable unit testing
framework

rt

PRESENTED BY

r

Matthew N-osby, SIERRA/SolidMechanics
E N MS111

Sandia Nkonal Laboratories is a multirnission
laboratory nunaged and operated by National

Technology & EngineerhIg Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Eneres National
Nuclear Security Adminianation under contract DE-

NACO03.525.

SAND2019-3471PE

SIERRA Multi-Physics Simulation on Sierra!

80-200

itowergun.emi. • isimmar

IBM POWER CPU NVIDIA NVLink
Most Powerful Serial Processor Fastest CPU-GPU Interconnect

NVIDIA Volta GPU
Most Powerful Parallel Processor

SIERRA/SolidMechanics

—500k lines of C++
—15 current developers
—15+ year dev history

National Nuclear Security AtIrnimstration

SIERRA/SolidMechanics Path Towards GPU Capability

VL Ul V2

U2 V 1 U2 V2

Um VI Um V2 Vn

Unit Tests from TDD on all hardwar

IBM POWER CPU

80-200

NVIDIA NVLink NVIDIA Volta GPU
Most Powerful Sertal Processor Fastest CPU-GPU interconnect Most Powerful Parallel Processor

• Implement and maintain CPU/GPU

execution of core algorithms
• Support library of vector/tensor and other
math functions (-25k lines of C++)

• Support library of geometry/search
algorithms (-30k lines of C++)

• Both of these libraries have legacy unit test
suites that maintain —95% coverage

• 863 existing unit tests

• New development of Element/Material

libraries
• Strict adherence to the practice of Test
Driven Development (TDD)

• Implement using Kokkos with GPU/CPU
execution as part of the TDD process

Outline 0

Overview of Test Driven Development (TDD)

My experience developing GPU code using Kokkos

Unit testing on the GPU

The legacy unit test suite problem

STK N GP Test — Unified unit testing on CPU and GPU

Migrating existing tests

How it works

Conclusions and next steps

Test Driven Development —"Red-Green-Refactor"

■ Write a failing test — failure to
compile is a failing test

■ Write as little code as possible to
make the test pass

■ When the test captures the smallest
increment of behavior and passes:
git commit

■ Refactor to remove duplication of
intent, then:
git commit —amend

■ Write the next failing test & repeat

o

3. Eliminate
redundancy

RED

TDD

1. Write a test
that fails

REFACTOR GREEN
2. Make the
code work

The mantra of Test-Driven Development (TDD) is "red. green. refactoe

You are always a ' git reset ' away from all tests passing!!!

My Experience Using Kokkos for GPU Development

• Things work... unless they don't

• Lots of build warnings that
sometimes are runtime errors

• Limited success using debuggers

• May be related to our build system

• May be developer inexperience with
cuda debuggers

• Most robust method is good ol' printf

FIVIDIA

terminate called after throwing an instance of istd::runtime_error'

what(): cudaDeviceSynchronize() error(cudaErrorLaunchFailure):

unspecified launch failure .../Kokkos_Cuda_Impl.cpp:119

Traceback functionality not available

Aborted (core dumped)

Unit tests can isolate issues to tiny regions of

code, making identifying and fixing errors easier

Unit Testing on the GPU

■ Some restrictions for execution on
the GPU

■ Cannot call kokkos : : parallel for
from private/protected functions

■ All functions called within kernels must
be marked device

■ Use GoogleTest as our unit testin
framework

■ Test body is a private function
• Test EXPECT/ASSERT * macros are n
marked for GPU execution

■ Best practice is to check conditions
after kernel execution rather than
within kernel

using namespace kokkos;

using View = dual_view<_>;

#define FUNC KOKKOS FUNCTION

struct functor {

functor() { ... }

FUNC void operator()() { ...

View get_result() { ... }

•••

} ;

}

void execute(functor& f) {

parallel for(KOKKOS LAMBDA(int i)

{ f(); }
}

void verify_results(View out) {

// EXPECT/ASSERT * ...

}

TEST(GPU, do_something) {

functor f;

execute(f);

verify results(f.get results());

}

"What about my old unit tests that weren't written for the GPU?"

The Legacy Unit Test Suite Problem

■ Legacy unit tests often mix the

execution and test/assert portions of
the code

■ Most legacy unit tests have the main
execution directly in the body of the
test

■ Even well-structured unit tests
written for the CPU may have
structural impediments to migrating
to the GPU

o

TEST(CPU, typicalexample) {

auto obj = do_some_setup();

// some operation with obj

// some verification with obj

// EXPECT/ASSERT *

auto obj2 = do more setup(obj);

// some operation with obj2

// some verification with obj2

// EXPECT/ASSERT *

•••

}

Migrating existing unit tests to execute on the

GPU can be a large effort

STK NGP Test Enables Simplified Migration of Existing Tests

• Include STK NGP Test

• Extract existing test body to free or
public function and mark
KOKKOS FUNCTION

• Ensure all functions called within
this new function are marked
KOKKOS FUNCTION

• Prepend GoogleTest macros with
NGP

• Execute the new test function in a
execute function wrapping a
kokkos::parallel_for

Now have a suite of tests

executing on the GPU and ca

confidently refactor

#include <stk_ngp_test/ngp_test.hpp>

#define FUNC KOKKOS FUNCTION

FUNC void old test body() {

auto obj = do_some_setup();

// some operation with obj

•••

// some verification with obj

// NGP EXPECT/ASSERT *

•••

auto obj2 = do more setup(obj);

// some operation with obj2

•••

// some verification with obj2

// NGP EXPECT/ASSERT *

}

void execute old test body() f _ }

NGP TEST(CPU, migrated_example) {

execute old test body();

STK NGP Test — How it Works

■ Based on GoogleTest framework

■ Reporting managed by instances of
kokkos::experimental::ErrorReproter

■ Collects error information from
NGP EXPECT/ASSERT * macros on the
GPU for reporting outside of the kernel

■ Implement : : ngp_test ing: :Test that
manages clearing/reporting the instances
of ErrorReporter during setup and
tear down

■ Instances of this class are created by the
NGP TEST macros

■ Implement NGP_EXPECT/ASSERT_*
macros that behave similarly to the
GoogleTest macros

The code is open-source and in

Trilinos, feel free to poke around!

Supported STK NGP Test Macros

NGP EXPECT/ASSERT TRUE(bool)

NGP EXPECT/ASSERT FALSE(bool)

NGP EXPECT/ASSERT EQ(a, b)

NGP EXPECT/ASSERT NE(a, b)

NGP EXPECT/ASSERT LT(less, more)

NGP EXPECT/ASSERT LE(less, more)

NGP EXPECT/ASSERT GT(more, less)

NGP EXPECT/ASSERT GE(more, less)

NGP EXPECT/ASSERT NEAR(a, b, tol)

NGP TEST(TestSuite, TestName)

NGP TEST_F(TestFixture, TestName)

1

Conclusions and Next Steps

■ Robust suites of unit tests are critical
to effectively maintaining GPU code

■ TDD is a proven method for
developing code on the GPU and
automatically results in robust unit
test suites

■ GPU unit tests are structurally
different from those targeting CPUs

■ STK NGP Test (part of Trilinos)
facilitates migration of CPU unit
tests to GPU executable unit tests

■ Improve error reporting
■ GoogleTest prints values as well as

literals passed to EXPECT/ASSERT_*
macros

■ Allow customization of reporters
■ Collect reports across MPI ranks before
writing out

■ Specify output stream

■ Verify and/or implement advanced
usage available in GoogleTest

■ Parameterization of tests
■ Other uses

Image Credits

https://medium.com/mobility/why-developers-scared-to-refactor-code-47efdlb854e7

Accelerated Computing
5x Higher Energy Efficiency

IBM POWER CPU NVIDIA JVCink

https://wccftech.com/nvidia-volta-gpus-ibm-power9-cpus-deliver-300-
petaflops-performance-2017-summit-sierra-supercomputers/

Vut
hIVIDIA Volta Glall

u 0-5) v = A =[
U1 V1 U1 V2 •

U2 V1 U2 V2 •

um
V1 um. V2

1.1) ? https://en.wikipedia.org/wiki/Outer_product

