Sandia
National
Laboratories

STK NGP Test: a platform
portable unit testing
framework

.—']‘.

N B £
WkTe B |
¢ 7

—

-

Matthew Mosby, SIERRA/SolidMechanics

SIERRA Multi-Physics Simulation on Sierra! |

SIERRA /SolidMechanics
~500k lines of C++

~15 current developers

~15+ year dev history

=% 150
o Wi o B
EnERoY EnERGY ot

ENERGY ENERGY

3
LTy

IBM POWER CPU NVIDIA NVLink NVIDIA Volta GPU

Most Powerful Serial Processor Fastest CPU-GPU Interconnect Most Powerful Parallel Processor |
} J J /. N '.‘Dg")
y f NI A’ & =1

’ ! National Nuclear Security Administration

SIERRA/SolidMechanics Path Towards GPU Capability I

ujvr U2
wpvy upve ... | " Implement and maintain CPU/GPU
: oo execution of core algorithms

uRv=A=

= Support library of vector/tensor and other
math functions (~25k lines of C++)

" Support library of geometry/search
algorithms (~30k lines of C++)

" Both of these libraries have legacy unit test
suites that maintain ~95% coverage

= 863 existing unit tests

s * New development of Element/Material
libraries
= Strict adherence to the practice of Test
Driven Development (TDD)
" Implement using Kokkos with GPU/CPU

[’ e] execution as part of the TDD process

AAAAA

IBM POWER CPU NVIDIA NVLink NVIDIA Volta GPU

Outline I

Overview of Test Driven Development (IDD)
My experience developing GPU code using Kokkos |
Unit testing on the GPU

The legacy unit test suite problem

STK NGP Test — Unified unit testing on CPU and GPU
Migrating existing tests

How it works

Conclusions and next steps

Test Driven Development — “Red-Green-Refactor” ® I

= Write a failing test — failure to
compile 1s a failing test

= Write as little code as possible to
make the test pass

* When the test captures the smallest

increment of behavior and passes:
git commit

= Refactor to remove duplication of

intent, then:
git commit —amend

= Write the next failing test & repeat

1. Write a test
that fails

3. Eliminate
redundancy

REFACTOR CGREEN]

2. Make the
code work

The mantra of Test-Driven Development (TDD) is “red, green, refactor”

You are always a ‘git reset’ away from all tests passing!!!l

My Experience Using Kokkos for GPU Development

" Things work... unless they don’t

" Lots of build warnings that
sometimes are runtime errors

" Limited success using debuggers
" May be related to our build system

= May be developer inexperience with

cuda debuggers
" Most robust method is good ol’ printf

terminate called after throwing an instance of 'std::runtime error’
what(): cudaDeviceSynchronize() error(cudaErrorLaunchFailure):
unspecified launch failure ../Kokkos Cuda Impl.cpp:119
Traceback functionality not available

Aborted (core dumped)

\,

.

Unit tests can isolate issues to tiny regions of

code, making identifying and fixing errors easier ‘

Unit Testing on the GPU

® Some restrictions for execution on

the GPU

= Cannot call kokkos: :parallel for
from private/protected functions

= All functions called within kernels must
be marked device

" Use GoogleTest as our unit testing

framework

= Test body 1s a private function

® Test EXPECT/ASSERT * macros are not
marked for GPU execution

" Best practice is to check conditions
after kernel execution rather than
within kernel

using namespace kokkos;
using View = dual view<..>;
#define FUNC KOKKOS FUNCTION

struct functor {

}o

functor() { .. }
FUNC void operator()() { .. }
View get result() { .. }

14

void execute(functor& f) {

}

v

}

parallel for (KOKKOS LAMBDA(int 1i)
{ £0)7 1}

oid verify results(View out) {
// EXPECT/ASSERT * ..

TEST (GPU, do something) {

}

functor f£;
execute(f);
verify results(f.get results());

“What about my old unit tests that weren’t written for the GPU?”

The Legacy Unit Test Suite Problem

TEST(CPU, typical example) {

" [egacy unit tests often mix the o obi - g Fapi)
auto obj = do some setup();

execution and test/assert portions of
the code // some operation with obj

// some verification with obj

" Most legacy unit tests have the main // EXPECT/ASSERT_*

execution directly in the body of the
test auto obj2 = do more setup(obj);

// some operation with obj2

® Fven well-structured unit tests

: // some verification with obj2
written for the CPU may have // EXPECT/ASSERT_ *

structural impediments to migrating
to the GPU

Migrating existing unit tests to execute on the
GPU can be a large effort

STK NGP Test Enables Simplified Migration of Existing Tests

" [nclude STK NGP Test

= Extract existing test body to free or

public function and mark
KOKKOS_FUNCTION

®» Fnsure all functions called within

this new function are marked
KOKKOS_FUNCTION

" Prepend GoogleTest macros with
NGP

®» Fxecute the new test function in a

‘execute’ function wrapping a
kokkos: :parallel for

Now have a suite of tests
executing on the GPU and can
confidently refactor

® |

#include <stk ngp test/ngp test.hpp> I
#define FUNC KOKKOS FUNCTION

FUNC void old_test body() {
auto obj = do_some setup();

// some operation with obj

// some verification with obj
// NGP_EXPECT/ASSERT *

auto obj2 = do more setup(obj);
// some operation with obj2

// some verification with obj2
// NGP_EXPECT/ASSERT *

}

void execute old test body() { .. } .

NGP_TEST(CPU, migrated example) ({
execute old test body();

| |

STK NGP Test — How it Works

" Based on GoogleTest framework

" Reporting managed by instances of
kokkos: :experimental: :ErrorReproter
= Collects error information from

NGP_EXPECT/ASSERT * macros on the
GPU for reporting outside of the kernel

" Implement : :ngp_testing::Test that
manages clearing/reporting the instances
of ErrorReporter during setup and

tear down
" Instances of this class are created by the
NGP_TEST macros

" [mplement NGP_EXPECT/ASSERT_*
macros that behave similarly to the
GoogleTest macros

The code is open-source and in
Trilinos, feel free to poke around!

Supported STK NGP Test Macros
NGP_EXPECT/ASSERT TRUE (bool)
NGP_EXPECT/ASSERT FALSE (bool)
NGP_EXPECT/ASSERT EQ(a, b)
NGP_EXPECT/ASSERT NE(a, b)
NGP_EXPECT/ASSERT LT(less, more)
NGP_EXPECT/ASSERT LE(less, more)

NGP_ EXPECT/ASSERT GT(more, less)

NGP_EXPECT/ASSERT GE(more, less)

NGP_EXPECT/ASSERT NEAR(a, b, tol)
NGP_TEST(TestSuite, TestName)

NGP_TEST F(TestFixture, TestName)

Conclusions and Next Steps

= Robust suites of unit tests are critical
to effectively maintaining GPU code

" TDD i1s a proven method for
developing code on the GPU and
automatically results in robust unit
test suites

* GPU unit tests are structurally
different from those targeting CPUs

" STK NGP Test (part of Trilinos)

facilitates migration of CPU unit
tests to GPU executable unit tests

" Improve error reporting

" GoogleTest prints values as well as
literals passed to EXPECT/ASSERT *
macros

" Allow customization of reporters
" Collect reports across MPI ranks before
writing out
= Specity output stream

" Verify and/or implement advanced

usage available in GoogleTest
® Parameterization of tests
® Other uses

Image Credits

https://medium.com/mobility/why-developers-scared-to-refactor-code-47efd1b854¢7

Accelerated Computing
5x Higher Energy Efficiency

| https:/ /wecftech.com/nvidia-volta-gpus-ibm-powet9-cpus-deliver-300-

petaflops-performance-2017-summit-sierra-supercomputers/

L

IBM POWER CPU NVIDIA NVLink NVIDIA Volta GPU

https:/ /en.wikipedia.org/wiki/Outer_product

Uy V2

