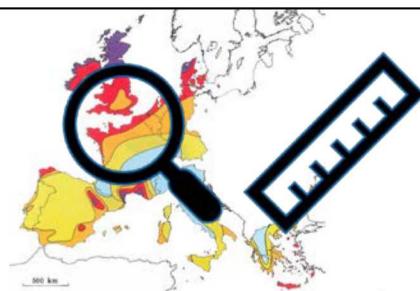


International Standards Development for Marine and Hydrokinetic Renewable Energy

Marine Energy Classification Systems

Sandia
National
Laboratories

Vincent Neary¹, Kevin Haas², and Jonathan Colby³
¹Water Power Technologies, Sandia National Laboratories
²School of Civil & Environmental Engineering, Georgia Tech
³Verdant Power, TC114 Chair


Presentation to IEC TC114 Members
TC114 Plenary Meeting
Delft, The Netherlands
April 11-12, 2019

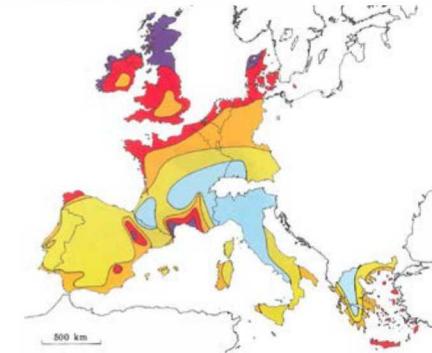
Motivation/Goal



Build MRE classification systems, resource and conditions, that, like wind, codify and support resource assessment and design for wave and tidal energy devices

Resource classification
systems – support project
siting, feasibility, and scoping
studies, regional energy
planning

Conditions classification
systems – codify and
streamline device design and
manufacturing


Wind Classification Systems: Reference Guides

- Wind resource classification systems
 - Support siting and resource assessment for project development
 - Main parameter, power density (W/m^2)
- Wind conditions classification systems, IEC 61400-1
 - Codify and streamline design process
 - Establish standard wind turbine design classes to streamline product line for developers
 - Main parameter, reference wind speed, V_{ref} (m/s), Class I, II, III
 - Subclass parameter turbulence intensity, I_{ref} , Subclass A, B, C

European wind energy resource classification system [Troen & Petersen 1989]

Wind resources ¹ at 50 metres above ground level for five different topographic conditions						
	Sheltered terrain ² m s^{-1} W m^{-2}	Open plain ³ m s^{-1} W m^{-2}	At a sea coast ⁴ m s^{-1} W m^{-2}	Open sea ⁵ m s^{-1} W m^{-2}	Hills and ridges ⁶ m s^{-1} W m^{-2}	
> 6.0	> 250	> 7.5	> 500	> 8.5	> 700	> 9.0
5.0-6.0	150-250	6.5-7.5	300-500	7.0-8.5	400-700	8.0-9.0
4.5-5.0	100-150	5.5-6.5	200-300	6.0-7.0	250-400	7.0-8.0
3.5-4.5	50-100	4.5-5.5	100-200	5.0-6.0	150-250	5.5-7.0
< 3.5	< 50	< 4.5	< 100	< 5.0	< 150	< 5.5
				< 150	< 200	< 7.0
					< 200	< 400

INTERNATIONAL
STANDARD

IEC
61400-1
CLASSIFICATION
OF WIND
ENERGY
SITES

Wind turbine (conditions) classification system [IEC TS 61400-1:2019-02]

COPYRIGHT © IEC. NOT FOR COMMERCIAL USE OR REPRODUCTION

Wind turbine class	I	II	III	S	Values specified by designer
V_{ref} (m/s)	50	42.5	37.5		
V_{avg} (m/s)	10	8.5	7.5		
A I_{ref} (-)	0.16 @ 15m/s				
B I_{ref} (-)	0.14 @ 15m/s				
C I_{ref} (-)	0.12 @ 15m/s				

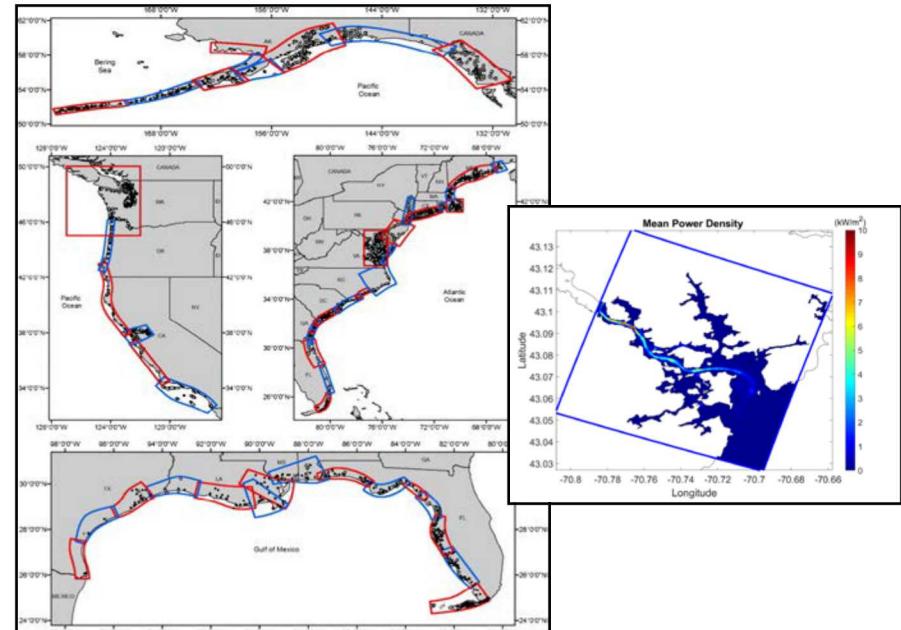
Wave energy resource classification: Beta-version (Ahn et al. 2019)

- Main parameter, wave power, J (kW/m); Class I, II, III, IV
- Subclass parameter, T_p , peak period bandwidth, delineates three energy transfer mechanisms
 - 1, local wind seas, $0 < T_p < 7$
 - 2, short-period swell, $7 < T_p < 10$
 - 3, long-period swell, $10 < T_p$
- Related standards
 - Wave resource assessment and characterization, IEC TS 62600-101:2015-06
 - WEC power performance assessment, IEC TS 62600-100:2012-08

POWER CLASS	I $22.8 < J$	II $5.7 < J < 22.8$	III $1.1 < J < 5.7$	IV $J < 1.1$
1	$0 < T_p < 7$	I(1)	II(1)	III(1)
2	$7 < T_p < 10$	I(2)	II(2)	III(2)
3	$10 < T_p$	I(3)	II(3)	III(3)

S. Ahn, K. A. Haas, V. S. Neary, Wave energy resource classification system for US coastal waters, *Ren & Sust Energy Rev*, 104, 54-68, 2019. <https://doi.org/10.1016/j.rser.2019.01.017>

Tidal energy resource classification: Concept (strawman)

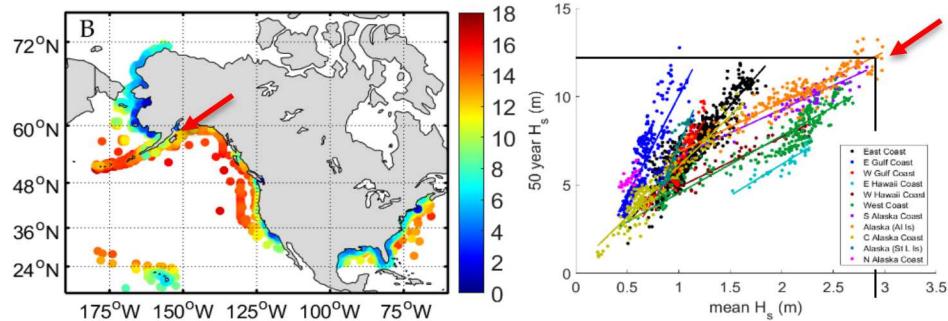


- Main parameter, tidal power density, P (W/m²); Class I, II, III

$$P = \frac{1}{2} \frac{1}{N} \rho \sum_{j=1}^N U_j^3$$

- Subclass parameter TBD, A , a constraint on the theoretical resource
 - Multiple levels TBD
- Related standards
 - Tidal resource assessment and characterization, IEC TS 62600-201:2015-04
 - TEC power performance assessment, IEC TS 62600-200:2013-05

POWER CLASS		I $2 < P$	II $1 \leq P \leq 2$	III $0.5 < P < 1$
1	TBD	I(1)	II(1)	III(1)
2	TBD	I(2)	II(2)	III(2)
3	TBD	I(3)	II(3)	III(3)


Z. Defne et al., "National geodatabase of tidal stream power resource in USA," *Renew Energy*, 16(5), pp. 3326-3338, 2012.

Wave conditions classification: Concept (strawman)

- Main parameter, $H_{s(\text{ref})} = H_{s(50)}$ (m), 50-year return H_s , Class I, II, III
- Note $H_{s(\text{mean})} = CH_{s(50)}$ for distinct wave climates
- Subclass parameter, T_p , peak period bandwidth, delineates three energy transfer mechanisms (normal operations)
 - 1, local wind seas, $0 < T_p < 7$
 - 2, short-period swell, $7 < T_p < 10$
 - 3, long-period swell, $10 < T_p$
- Related technical specs, standards
 - Design requirements for marine energy systems, IEC TS 62600-2:2016-08
 - Environmental conditions & environmental Loads, DNV-RP-C205:2014

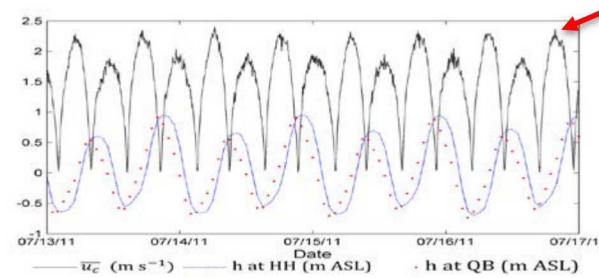
WEC class	I	II	III	S
$H_{s(\text{ref})}$ (m)	15	10	5	Values specified by designer
1 T_p (s)		$0 < T_p < 7$		
2 T_p (s)		$7 < T_p < 10$		
3 T_p (s)		$10 < T_p$		

Regional correlations extreme and mean wave heights [Neary et al. 2017];
Alaska site, $H_{s(\text{mean})} \sim 2.8$ m
 T_p band is Class 3

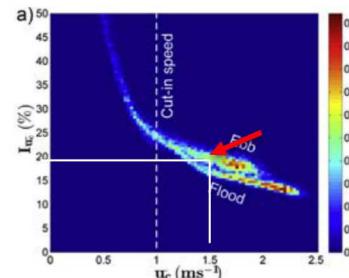
$H_{s(\text{ref})}$ (site) ~ 12 m
 T_p (site) \sim Class 3

SITE
CLASS I(3)

Extreme DLC based on $H_{s(\text{ref})} = 15$ m


Normal DLC based on $H_{s(\text{mean})} = 2.8$ m, $10 < T_p$

Tidal conditions classification: Concept (strawman)


- Main parameter, V_{ref} (m/s), max,3-min avg current for extreme design load case (DLC); Class I, II, III
- Subclass parameter, I_{ref} , turbulence intensity @ 1.5 m/s
 - A, high, $0.15 < I_{ref} \leq 0.20$
 - B, moderate, $0.10 < I_{ref} \leq 0.15$
 - C, low, $I_{ref} \leq 0.10$
- Related technical specs, standards
 - Design requirements for marine energy systems, IEC TS 62600-2:2016-08
 - Environmental conditions & environmental Loads, DNV-RP-C205:2014

TEC class	I	II	III	S
V_{ref} (m/s)	3.5	2.5	1.5	Values specified by designer
A I_{ref} (-)	0.20 @ 1.5 m/s			
B I_{ref} (-)	0.15 @ 1.5 m/s			
C I_{ref} (-)	0.10 @ 1.5 m/s			

RITE site, East River:
Variation of hub height mean current speed - black
(Gunawan, Neary and Colby 2014)

$V_{ref}(\text{site}) \sim 2.4 \text{ m/s}$

RITE site, East River: Variation of hub height turbulence intensity with mean current speed (Gunawan, Neary and Colby 2014)

$I_{ref}(\text{site}) \sim 0.18$

$V_{ref}(\text{site}) \sim 2.4 \text{ m/s}$
 $I_{ref}(\text{site}) \sim 0.18$

RITE SITE
CLASS IIA

Design for $V_{ref} = 2.5 \text{ m/s}$,
 $I_{ref} = 0.20$

Conclusions

- Wave and tidal classification systems modeled after wind
- Two types of classification, *resource* and *conditions*
- Technology agnostic classification matrices based on 1-2 parameters
- Classification systems must conform to and harmonize with IEC TC 114 standards on resource assessment, design and power performance assessment – most maintenance teams scheduling 2020 for completion
- Value of classification systems only fully realized by codification within IEC TC 114 standards

Next steps

- Document for Comment (DC) to National Committees for consideration ~2 months after the 2019 Plenary Meeting by correspondence, 30 June 2019
- Socialize classification and identify similar efforts in other TC 114 countries – Conference paper and presentation EWTEC, Naples, 1-6 September 2019.
- Based on National Committee comments, consider next steps, e.g.,
 - Work with the US TAG to develop a formal proposal following completion of technical work (by US TAG face-to-face in November, 2019, date TBD)
 - Work with respective Working Groups and the Strategic Business Plan Task Force, assuming it is reformed in 2020.

ACKNOWLEDGEMENTS

Special thanks to USTAG committee members and
Bill Staby, Chair of USTAG committee,

THANK YOU

vsneary@sandia.gov