
 LLNL-JRNL-750580

TTHRESH: Tensor Compression
for Multidimensional Visual Data

R. Ballester-Ripoll, P. Lindstrom, R. Pajarola

May 1, 2018

IEEE Transactions on Visualization and Computer Graphics

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

TTHRESH: Tensor Compression for Multidimensional Visual Data

Rafael Ballester-Ripoll, Member, IEEE, Peter Lindstrom, Senior Member, IEEE,
and Renato Pajarola, Senior Member, IEEE

(a) Original (512MB) (b) 10:1 compression (51.2MB) (c) 300:1 compression (1.71MB)

Fig. 1. (a) a 5123 isotropic turbulence volume [1]; (b) visually identical compression result; (c) result after extreme compression.

Abstract—Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in
visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression
algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a
generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the
HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other
state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes.
Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very
small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the
data set.

Index Terms—Transform-based compression, scientific visualization, higher-order singular value decomposition, Tucker model, tensor
decompositions

1 INTRODUCTION

Most scientific and visual computing applications face heavy compu-
tational and data management challenges when handling large and/or
complex data sets over Cartesian grids. Limitations in memory re-
sources or available transmission throughput make it crucial to reduce
and compress such data sets in an efficient manner. Lossy compression
is often the prescribed strategy, since many applications admit a certain
error (especially for higher bit depths and floating-point precision). If
the compressed data set is to be used for subsequent computational
analysis and/or to be fed as the initial state of a simulation routine, only
small errors are typically tolerated. Conversely, if visualization and
user exploration are to follow decompression, then higher error rates
are acceptable; the method developed in this paper is mainly geared
towards this case. Depending on the specific application, certain addi-
tional properties are sometimes desired. These may include fast support
for random-access decompression, fine compression rate granularity,
asymmetry (faster decompression than compression), bounded error,

• R. Ballester-Ripoll and R. Pajarola are with the Department of Informatics,
University of Zürich, Switzerland. E-mails: rballester@ifi.uzh.ch and
pajarola@ifi.uzh.ch.

• Peter Lindstrom is with the Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory, USA. E-mail: pl@llnl.gov.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

support for arbitrary dimensionality, ease of parallelization, topological
robustness, etc. These aspects make multidimensional compression a
broad and challenging problem for which, unsurprisingly, no catch-all
solution exists.

In this context, tensor decompositions and in particular the Tucker
model are promising mathematical tools for higher-order compression
and dimensionality reduction in the fields of graphics and visualization.
3D scalar field compression at the Tucker transform coefficients level
was recently investigated [2], and it was concluded that coefficient
thresholding outperforms earlier rank truncation-based approaches in
terms of quality vs. compression ratio. This has motivated us to develop
and introduce TTHRESH, a novel lossy compressor based on the Tucker
decomposition. It is the first of its kind that supports arbitrary target
accuracy via bit-plane coding. Previous related approaches fixed a
number of quantization bits per transform coefficient, and sometimes
even the transform basis size (the tensor ranks). Instead, our method
drastically improves the compression ratio-accuracy trade-off curve by
greedily compressing bit planes of progressively less importance. We
also extend our encoding scheme to compress the factor matrices. The
importance of this is unique to the HOSVD transform, which needs
to store its learned bases as opposed to fixed-basis methods, yet never
optimized by earlier works.

We also benchmark TTHRESH against other state-of-the-art compres-
sors that are not based on the HOSVD. While the ratios we achieve
at low error tolerances are comparable to those, we significantly out-
perform them on the higher error ranges on which visualization tasks
usually rely.

We have released an open-source C++ implementation of our algo-

rithm1. It is primarily intended as a standalone command-line utility,
although its main functions are also usable in a header-only library
fashion.

2 RELATED WORK

2.1 3D Compression Algorithms
A number of lossy compression algorithms for scientific volume data
sets have been proposed in the recent literature. For instance, IS-
ABELA [3] focuses on spatio-temporal data with ample high-frequency
components; it proceeds by sorting elements into a monotonic curve
which is then fitted using B-splines. A more recent example of lin-
earization strategy is SZ [4], which either predicts each coefficient using
low-degree polynomials on preceding coefficients, or truncates it in its
IEEE 754 binary representation. Some methods prioritize preserving
specific properties of the data set, for example bounded error using
topological features [5] or over connected and coherent regions (e.g.
SQ [6]). Vector quantization [7, 8] requires heuristics or greedy algo-
rithms during compression, but is fast to decompress and thus suitable
for compression-domain direct volume rendering; see also the sur-
vey [9]. In particular, [7] was defined within an octree multiresolution
hierarchy for fast ray-casting in an interactive volume visualization
application.

A popular and long-standing family of compression methods are
the ones that exploit linear transforms, including well-known decom-
positions such as the Fourier and discrete cosine transforms [10] and,
since the 1990s, wavelets [11–15]. They capitalize on carefully de-
signed transform bases that aim to sparsify real-world signals as much
as possible. VAPOR [16], for example, uses a flexible wavelet-based
compression layer integrated into an interactive volume and flow explo-
ration tool. ZFP [17] is a floating-point compressor that uses custom
transform matrices and emphasizes fast random access and low error
for, among other applications, storing snapshots and intermediate steps
in a computational analysis/processing pipeline. ZFP offers a transpar-
ent interface for compressed C/C++ arrays and operates via fixed-rate
encoding, although a variable-rate variant is also supported.

2.2 Compressors Based on Tensor Decomposition
Several transform-based compression algorithms have been recently
proposed that use data-dependent bases (the so-called factor matrices)
instead of predefined ones. This is precisely the idea behind princi-
pal component analysis (PCA) as well as the Tucker decomposition.
The Tucker model seeks to improve transform-domain sparsity at the
expense of having to store its learned bases, which tends to be com-
paratively small for a three or more dimensions. Some of the earliest
Tucker-based compression approaches for visual data include [18], [19]
and [20]. Progressive tensor rank reduction (the so-called truncation;
see later sections) has been shown to reveal features and structural
details at different scales in volume data [21]. Further recent efforts in
the context of tensor compression include [2, 9, 22–24] for interactive
volume rendering and visualization, [25] for 3D displays, [26] for in-
tegral histograms of images and volumes, and [27–30] for reflectance
fields, among others. The large-scale renderer TAMRESH [23] resem-
bles block-transform coding in that the input volume is partitioned
in small multiresolution cubic bricks; each brick is then compressed
as a separate HOSVD core. Recently, Tucker core hard thresholding
combined with factor matrix quantization was shown [2] to yield better
compression rate than slice-wise truncating the core. These points have
motivated the compressor proposed here.

3 TUCKER/HOSVD DECOMPOSITION

Throughout this paper, tensors refer to multiarrays of dimensionN ≥ 1.
We write vectors (tensors of dimension 1) in bold lowercase as in
x = (x1, . . . , xN), matrices (tensors of dimension 2) in bold capitals
such as U, and general tensors as well as sets in calligraphic letters
such as T . We generally use the notation and definitions from [31]; in
particular, rows and columns in matrices generalize to tensors as fibers.
The n-th mode unfolding of a tensor T arranges all n-mode fibers next

1Available (LGPL-3.0) at https://github.com/rballester/tthresh.

to each other as columns of a wide matrix and is denoted as T(n). The
tensor-times-matrix product (TTM) contracts a tensor’s n-mode fibers
along a matrix’s rows and is denoted as T ×n U. We access tensors
using bracket notation, so for instance U[1, 1] is the top left element of
a matrix U. We refer the reader to Kolda and Bader’s survey [32] for
more extensive details on basic tensor manipulation.

3.1 The Tucker Model
The full Tucker decomposition [31,33] writes any entry T [x1, . . . , xN]
of a 3D tensor T exactly as:

I1,...,IN∑
r1,...,rN=1

B[r1, . . . , rN] ·U(1)[x1, r1] · · ·U(N)[xN , rN] (1)

or, in the more compact TTM notation,

T = B ×1 U(1) ×2 · · · ×N U(N) (2)

where each U(n) is a non-singular matrix of size In × In and B is a
core tensor of coefficients with the same size as T . See Fig. 2(b) for
an illustration of the full Tucker decomposition. The matrices U(n)

are called Tucker factors (or factor matrices) and define a two-way
transformation between T and its core B, whereby Eq. 2 is inverted as

B = T ×1 U(1)−1
×2 · · · ×N U(N)−1

. (3)

The higher-order singular value decomposition (HOSVD) [31, 32]
is an efficient procedure to construct orthogonal Tucker factors (i.e.,
whose columns are orthogonal unit vectors) by setting each U(n) as
the left singular vectors of the n-th mode unfolding matrix T(n). In
other words, the HOSVD sets each n-th factor as the uncentered PCA
transformation matrix of the set of all fibers from T , taken along the
n-th mode. The Tucker model is flexible and readily applicable to
any shape and dimensionality, and the HOSVD decomposition always
exists.

Since for three and more dimensions the core holds far more coef-
ficients than the factors, it is also the decomposition part where most
data reduction can be achieved and, consequently, the main source of
error. Fortunately, we can determine and bound the l2 error (i.e. sum
of squared errors, or SSE for short) that is due to the core by just look-
ing at its coefficients. Factor orthogonality implies that ‖T ‖ = ‖B‖.
Furthermore, any perturbation in the core propagates directly to the
reconstruction: ‖B̃ − B‖ = ‖T̃ − T ‖; see e.g. [31, 32]. This property
will be crucial for our compression strategy.

3.2 Sparsifying Properties
Tucker-based compression algorithms exploit the fact that the HOSVD
transform coefficients generated in B tend to be quasi-sparse for typical
real-world or simulated multidimensional signals. In addition, many
transformations do not significantly affect the HOSVD. For example,
if one permutes some slices of T along one or more dimensions, its
HOSVD will produce the same core B and factors (with their corre-
sponding rows permuted). Other possible transformations that can be
encoded on a HOSVD-compressed data set without essentially affect-
ing B include spatially moving or stretching the data, padding it with
zeros, upsampling it with multilinear interpolation, scaling by a con-
stant (this will scale B), etc. Many usual data reduction approaches are
guaranteed to actually improve HOSVD core sparsity, including down-
sampling, box-filtered decimation, convolving with any band-limited
kernel, etc. For instance, a volume whose k last wavelet levels are zero
can be represented using a Tucker core with 8k times fewer non-zero
coefficients than otherwise needed.

The HOSVD decomposition decorrelates the data at all spatial scales,
but does so without explicit space partitioning, i.e. avoiding tree-
like structures or predefined multiresolution filter banks. The task
of capturing correlation at multiple scales is thus undertaken by the
different factor matrix columns. Nonetheless, the question of how to
organize the coefficients in B for effective compression is unclear a
priori.

I3

I1

I2

T

I1

U(3)

U(2)

I3
B

I2

U(1)

⇡
R1

R2

R3

(a) Core truncation

I1

U(3)

U(2)

I3

I1

I2

T
I3

I1

I2

B

I2

I3

U(1)

=

(b) Full core, used in this paper for subsequent pro-
cessing and quantization

Fig. 2. Left: the Tucker rank truncation approach for 3D compression used in e.g. [20], [22], [23] and [24]. Right: the full core approach first considered
in [2] and here extended into a full-fledged compressor with adaptive thresholding and bit-plane coding.

3.3 Core Truncation and Its Limitations
Conveniently, the HOSVD produces core (hyper-)slices that are non-
increasing in norm. Let us consider the norm of each k-th slice of the
Tucker core along the n-th dimension:

σ
(n)
k := ‖T [

n−1︷ ︸︸ ︷
:, . . . , :, k,

N−n︷ ︸︸ ︷
:, . . . , :]‖. (4)

These norms have been proposed as generalized singular values,
and they satisfy [31]:

σ
(n)
1 ≥ σ(n)

2 ≥ ... ≥ σ(n)
In
≥ 0. (5)

Furthermore, from the factor matrix orthogonality it follows that the
mean squared error (MSE) induced by zeroing-out a core coefficient
is proportional to its squared magnitude. These properties have been
exploited in the past as the basis of several truncation-based HOSVD
compression schemes [20], [22], [23], [24], whereby the least important
trailing factor columns in each U(n) and the corresponding core slices
in B along each dimension are discarded to produce a compressed
approximation. By doing so, only 1 ≤ Rn < In factor columns and
core slices remain for each mode n (see Fig. 2(a)). The quantities
R1, . . . , RN are known as truncated Tucker ranks and were used in
those works for variable-detail compression and progressive reconstruc-
tion.

There are, however, two notable aspects that have not been pur-
sued satisfactorily by these previous approaches. First, although the
slice truncation idea is sound as motivated by Eq. 5, its granularity is
very coarse. Elimination strategies on a coefficient-by-coefficient basis
(rather than slice-by-slice) have the potential to significantly improve
compression quality. Second, and regardless of the coefficient elimina-
tion method chosen, how to encode the surviving coefficients remains
an open issue as well. Based on the roughly exponential growth of
those coefficients, Suter et al. [22] proposed a fixed-bit logarithmic
quantization scheme: 1 bit for the coefficient sign and 8 or 16 for
the logarithm of its absolute value. The authors realized the extreme
importance of the first element B[1, 1, 1] (the so-called hot corner, as
shown in Fig. 3); it often captures most of the signal’s energy and
‖B[1, 1, 1]‖ ≈ ‖T ‖. Hence this value was saved separately at 64-bit
floating-point precision. This strategy was later replicated in other
works [2, 23]. Nevertheless, a truly adaptive compression approach
for the full-length HOSVD core has not been explored as of yet. The
strategy we propose builds on the thresholding-oriented analysis of [2]
in that we compress coefficients, one bit plane p at a time, up to a
certain plane 63 ≥ P ≥ 0. In particular, elements whose absolute
value is below 2P are thresholded away. We give the full details in the
following section; see also Fig. 2(b).

4 PROPOSED ALGORITHM

Let T be an input tensor and T̃ the result after compression and de-
compression. Our pipeline accepts one main compression parameter,
namely the error target, which can be specified in one of three ways:

Fig. 3. HOSVD core B of size 2563, obtained from the Foot data set. For
visualization we scale all values x 7→ ln(1 + x), then apply the colormap
shown on the right. Note the hot corner phenomenon.

• Relative error (-e flag; sometimes known as normalized root
mean square error):

ε(T , T̃) := ‖T − T̃ ‖/‖T ‖,

where ‖ · ‖ denotes the Frobenius norm (i.e. the Euclidean norm
of the flattened tensor).

• Root-mean-square error (-r flag):

RMSE(T , T̃) := ‖T − T̃ ‖/
√
I1 · · · IN .

• Peak signal-to-noise ratio (-p flag):

PSNR(T , T̃) := 20 · log10

(
max{T } −min{T }

2 · RMSE(T , T̃)

)
.

The target specified is then converted to sum of squared errors (SSE)
for the algorithm’s internal use via the following equivalences:

SSE = ε2 · ‖T ‖2 = RMSE2 · C =

(
max{T } −min{T }

2 · 10PSNR/20

)2

· C

(6)
where C is the total number of grid points I1 · · · IN .

The algorithm consists of three main stages. First, the full non-
truncated HOSVD is run on the input data set to yield N orthogonal
square factor matrices and an N -dimensional core of the same size
as the original. The HOSVD core is flattened as a 1D vector of C
coefficients, which are then scaled and cast as 64-bit integers. We use
C-ordering, i.e. dimensions in the core are traversed from right to left.
Conceptually, we handle that sequence of integers as a C × 64 binary
matrix M. Second, a number of that matrix’s leftmost columns (the
bit planes) are compressed without loss, namely the least number such
that the overall l2 error falls under a given target. This compression is
achieved via run-length encoding (RLE) followed by arithmetic coding
(AC). Last, the factor matrices are compressed using a cost-efficient
budget criterion. See Algs. 1 and 2 for a pseudocode of our compression
pipeline; its individual building blocks are detailed next.

Algorithm 1 Compress an N -dimensional tensor T of size I1 × · · · ×
IN at a prescribed sum of squared errors s using TTHRESH.

1: B := T
2: // HOSVD transform
3: for n = 1, . . . , N do
4: B(n) := unfold(B, n) // Size In × (I1 · · · În · · · IN)

5: B̂(n) := B(n) ·BT
(n) // Symmetric matrix of size In × In

6: Λ(n),U(n) = eig(B̂(n)) // Full decomposition; eigenvalues
Λ(n) in non-increasing order

7: B(n) := U(n)T ·B(n) // Right part Σ ·VT of the SVD
8: B := fold(B(n)) // Back to original size
9: end for

10: // B is now the HOSVD core, and U(1), . . . ,U(N) its factors
11: αb := ENCODE(B, s) // See Alg. 2
12: for n = 1, . . . , N do
13: ENCODE(U(n), αb)
14: end for

Algorithm 2 Encode the decomposition parts obtained in Alg. 1. The
input x can be either the core B or a factor U(n).

1: function ENCODE(x, αb, s)
2: M := ∅ // Mask to record coefficients that have already be-

come significant. It starts out empty
3: M := binary matrix of size C × 64 containing all elements

from x, in 64-bit unsigned integer format

4: s̃ := ‖x‖2 // We start with the largest SSE
5: // Bit planes from more to less significant
6: for p = 63, . . . , 0 do
7: for c = 1, . . . , C do
8: if c ∈M then // The c-th coefficient is already signifi-

cant
9: encodeBitVerbatim(M[c, p+ 1])

10: else
11: encodeBitRLE(M[c, p+ 1])
12: if M[c, p+ 1] == 1 then // It becomes significant

now
13: M :=M∪ {c}
14: end if
15: end if
16: Update current SSE s̃
17: Estimate current ratio α̃: the reduction in SSE achieved

by the last c bits, divided by the number of bits needed to compress
them

18: if isCore(x) and s̃ ≤ s then
19: Exit the two nested loops
20: end if
21: if isFactor(x) and α̃ ≤ αb then
22: Exit the two nested loops
23: end if
24: end for
25: end for
26: if isCore(x) then
27: return α̃
28: end if
29: end function

4.1 HOSVD Transform

We use the HOSVD as presented in Sec. 3 to compute orthogonal
Tucker factors as the left singular vectors of unfolding matrices. We use
64-bit floating point precision. In general one may directly compute
these singular vectors from each unfolding B(n) = U(n) ·Σ(n) ·V(n)T

in one run of any standard SVD algorithm. In volume compression,
however, we usually have B(n) ∈ RI×J with I � J . Since we do
not need the J right singular vectors, in such cases it is much more

efficient to compute first the matrix B̂(n) = B(n) ·BT
(n) and then obtain

all left singular vectors U(n) from the full eigenvalue decomposition
B̂(n) = U(n)Λ(n)U(n)T . Since B̂(n) is a real symmetric matrix,
its eigenvalue diagonalization always exists and we can use a more
efficient specialized solver. The remaining rightmost part of the SVD
follows from

Σ(n)V(n)T = (U(n))−1B(n) = U(n)TB(n) (7)

as the factor matrix U(n) is orthogonal. This process is undertaken N
times. In the last iteration we reshape (fold) Σ(N) ·V(N)T back into
an N -dimensional tensor, namely the core B.

4.2 Bit-plane Coding
Once the Tucker core B is available we can turn to our coefficient
coding scheme. Note that, since no truncation was performed, we have
not yet incurred any loss of accuracy other than floating-point round-off
errors. Our goal now is to produce an approximate core B̃ such that its
SSE satisfies

SSE(B, B̃) = ‖B − B̃‖2 ≤ s, (8)

where s is a user-defined bound (recall that, due to factor orthogonality
as we saw in Sec. 3.1, compression error is directly related to the error
in the core coefficients). We address this via bit-plane coding in the
spirit of EZW [34], SPIHT [35], or EBCOT [36]. We start off by scaling
each coefficient’s absolute value into a 64-bit unsigned integer

c 7→
⌊
|c| · 263−blog2(m)c

⌋
, (9)

where m := maxc∈B{|c|} is the core’s largest element (in absolute
value). The signs are dealt with separately; see later in this section.
Each integer as given by Eq. 9 has a decomposition in powers of 2:
263 · c63 + ... + 20 · c0 and defines a row of our binary matrix M.
Since in IEEE 754 every 64-bit floating-point number uses at most 53
significant bits, each row of M will have at least 11 zero bits. The
basic principle that motivates bit-plane coding is the fact that for any
bit plane p, all bits in the column M[:, p] are equally important. We
propose a greedy encoding strategy: we transmit first all bits in the
most-significant bit plane p = 63. We then move on to the next plane,
i.e. p := p−1, and repeat. We encode each column from top to bottom
and terminate as soon as we fall below the given SSE error tolerance
s, which usually means that we encode only the top portion of the last
column. Note that, instead of error, an alternative stopping criterion
based on limiting the compressed file size could be similarly devised
and the compression process stopped accordingly.

Since the binary matrix is usually sparse, we initialize it to 0. The
error is largest in the beginning and decreases every time a 1 bit is
transmitted. This approach gives the same importance to all bits that
lie within the same bit plane, and it ensures that the error it introduces
is no larger than the prescribed target SSE. We have chosen a lossless
compression strategy to process all selected bits (that is, up to the
threshold breakpoint at plane P). Statistically, we can expect this to
yield high compression ratios thanks to the massive imbalance between
the number of 0 and 1 bits in most leading bit planes (see examples in
Figs. 4 and 5). Furthermore, long strings of consecutive zero bits (runs)
happen frequently, and their lengths have a low-entropy distribution.
See Fig. 6 for an example; we encode each sequence of k 0-bits that is
followed by a 1 (or ends the column) as the integer k. For example, the
binary string 01110001 becomes [1, 0, 0, 3].

Fig. 7 shows theoretical coding performance when storing each bit
plane’s sequence of zero-run lengths. We plot the bit rate (number
of bits after compression, divided by bits before compression) that an
ideal entropy coder would need for the given set of integer symbols in
the RLE, without accounting for storing a table of frequencies. The
bit rate is computed as

∑
i fi · log2(n/fi), where fi counts how many

times the i-th symbol occurs and n =
∑
i fi is the total number of

symbols to transmit. Modern entropy coders (Huffman and, especially,

0102030405060

Bit plane p

101

103

105

107

N
um

be
ro

f1
bi

ts

Fig. 4. Number of 1 bits for each bit plane in the HOSVD transform of
the Density data set (see Sec. 6). The orange line is set at half the
total number of core coefficients C/2. The threshold plane P needed
for 1000:1, 300:1, 100:1, and 50:1 compression is shown for each case
from left to right in red.

Fig. 5. Density plot showing all 1 bits (gray dots) for all bit planes in the
flattened HOSVD transform of the Density volume. The center of mass
of each set of points is shown as a blue dot. The orange line is set at the
center C/2.

arithmetic coding) are usually very close to this information-theoretical
optimum.

Our statistical analyses on the columns of M motivate us to handle
each coefficient’s leading bits (i.e. its leftmost 1 bit and all 0 bits on its
left) differently from its trailing bits (i.e. 0 or 1 bits that appear to the
right of the leftmost 1):

• Leading bits tend to form long runs of zeros with very low entropy
along the columns of M. We compress them without loss via
RLE followed by AC.

• Trailing bits are close to being uniformly random; RLE+AC
cannot compress them well. We thus store them verbatim, which
is naturally faster.

Since most planes use a combination of both coding methods, we
need an efficient data structure to keep track of leading vs. trailing bits,
i.e. a significance map. As we work our way from the leftmost b = 63
towards less significant planes we update a binary maskM that records
all coefficients that have already become significant (their leftmost 1
bit has been encountered). The mask starts empty and gains members
progressively. See Fig. 8 for a toy illustration.

Remarks Recall that this algorithm concerns absolute values only.
Like trailing bits, the signs of significant coefficients are close to uni-
formly random, and we transmit them verbatim as well.

The final compression ratio may vary if one chooses FORTRAN-
ordering (left-to-right) instead of C-ordering when flattening the core,
since all bit planes will contain different orderings of 0 and 1 bits. We
found this to influence very little the overall compressed file size in
practice.

4.3 Factor Compression

The square factors {U(n)}n usually account for a small proportion
of the overall number of elements in a full HOSVD decomposition,

100 101 102 103 104 105 106 107

Run length

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Fr
ac

tio
n

of
to

ta
lr

un
s

p = 20

p = 30

p = 40

p = 50

Fig. 6. Distribution of run lengths for four different bit planes (Density
volume). Note how unbalanced the frequencies are and how they tend
to concentrate around a few specific regions along the x-axis.

0102030405060

Bit plane p

0.0

0.2

0.4

0.6

0.8

1.0

B
it

ra
te

Fig. 7. Bit rate that would be achieved by a perfect entropy coder com-
pressing all zero run lengths within each bit plane p = 63, . . . , 0 (Density
volume). No compression is possible for p ≤ 12.

e.g. (3 · 2562)/2563 ≈ 1% for a 2563-sized volume. However, this
can become a significant overhead if the factors are not compressed as
carefully as the core (Sec. 4.2). Although factor matrix compression is
an important part of a Tucker-driven compression pipeline, previous
related approaches [2, 22, 23] did not place a particular emphasis on it.

To encode the factors we essentially reuse the same compression
algorithm that we proposed for the core. Nonetheless, two important
details deserve special consideration. First, factor matrix columns have
vastly different importances: each factor column interacts with one
core slice only, and such slices have varying norms (recall Eq. 5). In
practice, those norms are orders of magnitude apart (see Fig. 9), and a
proper weighting of our factor columns is in order. Recall (Sec. 4.1) that
the factors contain the left singular vectors of an SVD decomposition:
B(n) = U(n) ·Σ(n) ·V(n)T , where B(n) is our tensor reconstructed
along dimension n only. The matrix Σ(n) is diagonal and holds the
core slice norms σ(n)

1 , . . . , σ
(n)
In

. Since V(n) is orthogonal, any SSE
error on U(n) · Σ(n) will produce the same SSE on B(n). In other
words, in order to control the error that is introduced due to the n-th
factor we need to compress U(n) ·Σ(n). Simply put, we multiply each
j-th column of U(n) by its corresponding core slice norm σ

(n)
j prior to

compression. Since those norms account for a small set of floating point
values, we afford to store them explicitly as part as our compression so
that the procedure is efficiently reversible for the decompression.

The second question is how many bits we should allocate for each of
the factor matrices. Stopping during the same bit plane threshold P that
we determined for the core would be a clearly suboptimal choice: even
though every factor is just as important as the core for the overall error,
they have far fewer elements. Thus, it is reasonable to spend more bits
per factor coefficient than we did per core coefficient. We choose a
cost-effective criterion that takes into account both compression ratio
and quality. Consider the rate-distortion curve obtained by plotting the
compression SSE error sb vs. compressed file size Sb after encoding
each core bit b = 1, . . . , 64C. In the beginning we spend zero bits
for compression and the error is maximal. The first bits are very
cheap to encode (they are mostly zeros), yet decrease the error greatly
since they belong to the most significant bit planes. In other words,
the ratio αb := ∆sb/∆Sb = (sb − sb−1)/(Sb − Sb−1) is large for
b� 64C. However, that ratio decreases as more bits are transmitted:

2
666666664

1 1 1 1 1
0 0 0 1 0
0 1 1 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1

3
777777775

p = 3p = 4 p = 2 p = 1 p = 0

[0, 6]

[]

[1, 4] [1, 3] L

[1] [1, 1] [1, 0, 1]

RLE:
Verbatim:

Transmission end

First matrix row:
largest element

(hot corner)

Fig. 8. Simplified example coding of 7 coefficients at P = 5 bits each.
Encoded bits are highlighted in dark and light blue; the order is shown by
the red arrows, left to right. The transmission was stopped based on a
threshold in bit-plane P = 1. For each coefficient, its leftmost 1 and all
leading 0’s are compressed using RLE+AC (dark blue), whereas trailing
bits are stored verbatim (light blue). The significance mask went from
zero members at p = 4 to three at p = 1.

0

2

4

U(1)

0 100 200

Rank j

0

100

200S
p

at
ia

l
co

or
d

.
x

0

2

4

U(2)

0 100 200

Rank j

0

100

200S
p

at
ia

l
co

or
d

.
y

0

2

4

U(3)

0 100 200

Rank j

0

100

200S
p

at
ia

l
co

or
d

.
z

Fig. 9. The three factor matrices obtained by decomposing the Engine
data set. On top we show, in log10 scale, the corresponding core slice
norm σ

(n)
j of every j-th column of each n-th factor. Note that, as a

consequence of large empty background regions in the volume, many
core slices along the third mode are zero.

average entropy increases, whereas the bit planes lose significance as p
decreases. We estimate the ratio αb achieved at the core transmission
breakpoint b, and use it as stopping criterion: we halt the encoding
of each n-th factor at the first bit b(n) such that αb(n) ≤ αb. By
harmonizing all stopping criteria on a single αb, our strategy ensures
that a reasonable price is paid in all cases. As we expected, it does
result in more bit planes being used than those selected for the core.
We also observed that, the smaller the factor matrix, the more bit planes
we can generally afford before surpassing αb.

5 DECOMPRESSION AND POST-PROCESSING

Decompression follows straightforwardly by inverting the steps de-
scribed above. HOSVD core bit planes are decompressed in the same
order as they were transmitted, the factors are then decompressed, and
finally the HOSVD transform is reversed via N TTM products as in
Eq. 2. We speed the TTMs up by detecting and discarding core slices
that have become zero during compression. In order to reverse the
mixed RLE+AC/verbatim we again use an incrementally-updated mask
of significant coefficients similarly to Sec. 4.2. Decompression is sig-
nificantly faster than compression (see Sec. 6) since no covariance and
eigenvalue decomposition are needed. After decompression, we apply
proper rounding to the core and factors’ coefficients. We assume that
the residual (i.e. error between the original coefficient and the approxi-
mate one) follows an approximately uniform distribution [0, 2P − 1].
Instead of simply assuming that the least significant bits p < P of a
coefficient are zero, we take the expected value 2P−1.

Compression-domain Resampling
Thanks to multilinearity, filtering operations on compressed tensors can
be efficiently performed via convolution on their factor matrices; see
e.g. [37, 38]. Separable filters F = u(1) ⊗ · · · ⊗ u(N) are particularly
straightforward to apply:

T ∗ F = B ×1 (U(1) ∗ u(1))×2 · · · ×N (U(N) ∗ u(N)) (10)

where U(n) ∗ u(n) denotes column-wise convolution between a ma-
trix and a column vector. In other words, each row of the n-th factor
becomes a linear combination of its neighboring rows, weighted by
the vector u(n). This operation has a negligible cost compared to
the decompression, which has to be performed anyway for visualiza-
tion. Following this principle, we have implemented three options for
compressed-domain decimation:

• Downsampling: we simply select an evenly spaced subset of the
factor rows and discard the rest.

• Box filtering: we average consecutive rows together.

• Separable Lanczos-2: we convolve column-wise the factors with
a 1D Lanczos kernel prior to subselection. We use the 3-lobed
kernel, i.e. 5 samples with window parameter equal to 2:

u(x) =

{
sinc(x) · sinc(x/2) if − 2 < x < 2

0 otherwise

with x = {−2, 1, 0, 1, 2}, where sinc(x) := sin(πx)
πx

.

In our implementation the user can specify index ranges and strides
via NumPy-style notation. Immediate applications include previewing,
subvolume selection and slicing, reversing dimensions, frame-by-frame
visualization in time-dependent data, etc. In all these cases the Tucker
core remains unchanged, so the filtering and downsampling asymptotic
costs amount to only O(NI2 log I) operations for the column-wise
factor convolution where I := max{I1, . . . , IN}.

6 RESULTS

We tested the proposed method with 12 integer and floating-point vol-
ume data sets, along with two time-varying volumes (all details and
sources are shown in Tab. 1). We use Eigen 3.2.9 for matrix manipu-
lations, products and eigenvalue decomposition, more specifically its
SelfAdjointEigenSolver class for symmetric real matrices. We
used a 4-core Intel i7-4810MQ CPU with 2.80GHz and 4GB RAM. All
renderings were generated via volume ray casting in ParaView [39].

We have measured the compression performance of TTHRESH
against four state-of-the-art algorithms:

• Tucker rank truncation and fixed core quantization [23] (our own
implementation). We use 8 and 32 bits for core and factor coeffi-
cients, respectively, and label this algorithm as TRUNC.

• ZFP [17] (version 0.5.4 as implemented in [44]). We use its fixed
accuracy mode (which usually yields the best compression rates),
serial execution mode, and vary its absolute error tolerance (-a).

• SZ [4] (version 2.0.1.0 as implemented in [45]). We use the
relative error bound mode and vary accordingly the relative bound
ratio parameter (relBoundRatio).

• SQ [6] (our own implementation). We vary the absolute error toler-
ance and stream the output through the LZMA lossless compressor
as advised in the original paper.

All codes were compiled with g++ at maximum optimization (-O3
flag). Since SZ does not readily support integer data types, we first
cast all 8-bit volumes to 64-bit floats; we measure compression ratios
w.r.t. the original data for all five compressors. Figs. 10 and 11 show

Table 1. The 14 data sets tested in this paper.

Name Dimensions Type Size Source
“Foot”, “Engine” 256× 256× 256 8-bit unsigned int 16 MB The Volume Library [40]

“Teapot” 256× 256× 178 8-bit unsigned int 11.1 MB The Volume Library [40]
“Isotropic-coarse”,

“Isotropic-fine”, “Channel”,
“MHD”, “Mixing”

512× 512× 512 32-bit float 512 MB All available pressure fields from the
Johns Hopkins Turbulence Database [1]

“Viscosity”, “Density” 384× 384× 256 64-bit float 288 MB Lawrence Livermore National Laboratory
(Miranda simulation [41])

“U” 288× 192× 28 64-bit float 11.8 MB National Center for Atmospheric Research
(Community Earth System Model [42])

“Jet-u” 400× 250× 200 64-bit float 152.6 MB Sandia National Laboratories
(S3D simulation [43])

“Isotropic-fine-time” 64× 64× 64× 64 32-bit float 64 MB Time-varying version of
the Isotropic-fine (third row)

“Hurricane” 50× 50× 91× 48 32-bit float 42 MB SciVis 2004 Contest Data Set, QVAPOR field

the resulting error curves in terms of PSNR vs. compression ratio over
all sample data sets. We observe a recurring pattern from lower to
higher compression ratio: our proposed algorithm performs similarly
(sometimes worse) than other methods for lower ratios, up to a tipping
point after which it is better by a widening margin. Although this
point can vary significantly, the general behavior is consistent across
all data sets we tested. We argue that the usual rates at which TTHRESH
performs best are the most adequate for visualization purposes.

To support this claim we present several volume renderings before
and after compression at two levels of quality in Fig. 12 as well as in
the paper teaser (Fig 1).

We observe how the fixed number of quantization bits used by
TRUNC entails a fixed error that often dominates that introduced by the
rank truncation. This explains the flat PSNR curves for TRUNC over
several data sets in Figs. 10 and 11. Interestingly, SQ is sometimes not
monotonic (see e.g. the results for the Channel volume). We attribute
this to its set partitioning strategy [6], whose resulting partitions can be
highly sensitive to even small variations of the error tolerance specified.

We also note that, at medium to high compression ratios, TTHRESH
tends to preserve well the coarsest features and smoothen out or elimi-
nate smaller details. See for example Fig. 13 for a sequence of zoomed-
in renderings under progressively heavier compression that make this
phenomenon evident. It is only at exceedingly high ratios that block-
like features start to appear, whereas other algorithms suffer from
a much faster visual degradation. This multiscale feature-selective
behavior is similar to that observed in truncation-based tensor compres-
sion [22].

It is further backed by empirical observation of the Fourier spectra
of our compressed data sets. In Fig. 14 we show three example factor
matrices for the U volume and their corresponding Fourier transforms
along the spatial dimension (i.e. factor columns). Often, each vector in
the HOSVD basis corresponds roughly to one frequency wavefunction
that has been tuned to better match the specific input data set. Due to the
hot corner phenomenon, most insignificant HOSVD core coefficients
are those that correspond to trailing factor columns (recall also Fig. 9)
that, in light of Fig. 14, contain mostly high frequencies. In short, we
can expect our coder to act as a low-pass filter. This is consistent with
what we showed in Fig. 13, namely smooth low-frequency artifacts that
arise in data compressed with TTHRESH.

To better illustrate this shift towards low frequencies, we depict in
Fig. 15 the Fourier magnitude histograms obtained at different com-
pression rates. Note that SZ, SQ and ZFP behave in the opposite way as
they rather shift the spectrum towards the high-frequency end.

Regarding computational speed, we plot in Fig. 16 the compres-
sion and decompression times for the smallest data set (the Teapot,
11.1MB) as well as for one of the 512MB ones (the Isotropic-fine).
Our method is between 0.5 and 2 orders of magnitude slower than the
fastest one, namely ZFP, but compression is generally faster than SQ.
It is rather asymmetric as we expected from Sec. 5: the average com-
pression/decompression times for those measurements was 2.4s/1.0s

(Teapot) and 61.5/25.8s (Isotropic-fine). To give more insight on the
differences between compression and decompression costs, we have
broken them down in Fig. 17 (Teapot volume). Note also that the
varying accuracy curves between all five compared algorithms make
a fully fair comparison difficult. For consistency with Fig. 10 we did
the comparison in terms of time vs. compression ratio, but note that
TTHRESH fares better in terms of quality in large parts of the error
spectrum.

Our last experiment is reported in Fig. 18, where we demonstrate
visual results of decimation along the factor matrices (Sec. 5) followed
by decompression. Note the differences between the three methods
implemented and the superiority of Lanczos’ kernel for this task.

7 DISCUSSION

We observe that the proposed algorithm achieves competitive accuracy
at low to medium compression ratios and consistently outperforms other
compressors at medium to high ratios; see the higher PSNR curves
for our method in the highlighted regions of each plot from Fig. 10.
The overtaking point at which TTHRESH surpasses the other algorithms
(marked by the vertical dotted lines) typically produces renderings that
are already close to visually indistinguishable to the original data set.
This is especially true for higher bit depths. We believe our method
is thus a good choice for applications with reasonable error tolerance
(chiefly, visualization-related). In addition, we showed how our choice
of global bases helps the method achieve a very smooth degradation
rate. This is manifested both as a Fourier spectrum shift and as a vi-
sually parsimonious erosion of the smaller details and features. Since
the transmission can be stopped at any arbitrary point within any bit
plane, the range of possible final errors has a very fine granularity. Also,
the error that arises from the core compression is upper-bounded by
definition of the stopping criterion. Last, the compressed-domain filter-
ing and resampling features are rather unique strengths of the tensor
decomposition framework, only possible thanks to its multilinearity.
Any separable filter and resampling can be applied with little cost by
manipulating the factors column-wise before the final Tucker recon-
struction. This is often much more challenging in other compression
methods, especially brick-based and non-transform ones. Even though
Lanczos antialiasing results are visually superior when lowering a data
set’s resolution, we believe the other decimation methods remain useful
for other operations such as region/slice selection, projections, etc.

Limitations

TTHRESH’s compression rates and smooth degradation come at the
price of its monolithic approach to the transform core. This puts it
in the slower end of the spectrum of volume compressors, especially
compared to those designed for speed such as ZFP. Random-access
decompression is also relatively costly, as one must traverse the whole
core in all cases. To improve compression/decompression speed one
may resort to splitting the data set and using the proposed compressor

0 20 40 60 80

Compression ratio

0

20

40

60

80

P
S

N
R

(d
B

)

11.6:1

Foot

TTHRESH
TRUNC
ZFP
SZ

SQ

0 20 40 60 80

Compression ratio

0

20

40

60

80

P
S

N
R

(d
B

)

5.1:1

Engine

TTHRESH
TRUNC
ZFP
SZ

SQ

0 20 40 60 80

Compression ratio

0

20

40

60

80

P
S

N
R

(d
B

)

10.5:1

Teapot

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0

20

40

60

80

100

P
S

N
R

(d
B

)

59.5:1

Jet-u

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0

20

40

60

80

100

P
S

N
R

(d
B

)

26.9:1

U

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0

50

100

150

200
P

S
N

R
(d

B
)

Viscosity

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0

50

100

150

200

P
S

N
R

(d
B

)

10.1:1

Density

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0

20

40

60

80

100

P
S

N
R

(d
B

)

11.8:1

Isotropic-coarse

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0

20

40

60

80

100

P
S

N
R

(d
B

)

11.6:1

Isotropic-fine

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0

20

40

60

80

100

P
S

N
R

(d
B

)

Channel

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0

20

40

60

80

100
P

S
N

R
(d

B
)

14.1:1

Mhd

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0

20

40

60

80

100

P
S

N
R

(d
B

)

7.1:1

Mixing

TTHRESH
TRUNC
ZFP
SZ

SQ

Fig. 10. Compression quality curves (higher is better) for our method compared to TRUNC, ZFP, SZ, and SQ over 12 example volumes and varying
compression ratios (up to 80:1 for integer data, and 200:1 for floating-point data). We show in gray all ratios where TTHRESH offers the highest PSNR
among all compressors.

0 50 100 150 200

Compression ratio

0

20

40

60

80

100

P
S

N
R

(d
B

)

Isotropic-fine-time

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0

10

20

30

40

50

P
S

N
R

(d
B

)

24.2:1

Hurricane

TTHRESH
TRUNC
ZFP
SZ

SQ

Fig. 11. Compression quality curves for two time-varying volumes; see
also Fig. 10.

on a brick-by-brick basis, in the spirit of tensor-compressed multireso-
lution rendering systems [23, 38].

8 CONCLUSION

We have introduced a novel tensor decomposition based compression
algorithm with an emphasis on storage/visualization applications whose
foremost priority is data reduction at high compression ratios. Unlike
previous HOSVD-driven approaches, this reduction is achieved by

keeping all ranks followed by careful lossless compression of all bit
planes up to a certain threshold. It is, to the best of our knowledge, the
first tensor compressor (and specifically, HOSVD-based) that uses a
bit-plane based strategy, also on the factor matrices. The main property
we exploited was factor orthogonality, which ensures that all coeffi-
cients affect equally the final l2 error and so allows us to sort the full
core as a single block. Our algorithm possesses advantages that are
inherent to multilinear transforms in general and tensor decompositions
in particular, including support for linear manipulation of the data set
in the compressed domain.

We developed TTHRESH focusing primarily on optimizing data re-
duction rates, and less so on general compression/decompression speed.
We have realized that these speeds (especially compression) can be
increased significantly at a relatively small accuracy cost in multiple
ways, for example by moderating the eigensolver’s number of itera-
tions or by preemptively discarding some of the least important core
slices. Also, we note that progressive decompression is compatible
with the proposed coder: after all, we encode bit planes from more to
less significant. To achieve progressiveness, coefficient signs should
be encoded as soon as the coefficient becomes significant, e.g. using a
negabinary base or deferred sign coding. In addition, factor columns
should be encoded as soon as they are needed. These possibilities will
be the subject of future investigation.

Fig. 12. Four example volumes: the Foot and Engine CT scans (both 8-bit unsigned int), and the Isotropic-coarse and Mixing turbulence simulations
(both 32-bit float). Rows from top to bottom: original, higher quality, and lower quality. All these compressed volumes take half or less the space
needed with the other four methods tested at equivalent PSNR (except the Foot at higher quality, which performs similarly); see also Fig. 10.

ACKNOWLEDGMENTS

This work was partially supported by the University of Zurich’s
Forschungskredit “Candoc”, grant number FK-16-012, and partially
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. The authors wish to thank Stephen Hamilton from Johns
Hopkins University as well as the other institutions listed in Tab. 1 for
kindly providing the data sets we have used for testing.

REFERENCES

[1] “Johns Hopkins Turbulence Database,” http://turbulence.pha.jhu.edu/
newcutout.aspx.

[2] R. Ballester-Ripoll and R. Pajarola, “Lossy volume compression using
Tucker truncation and thresholding,” The Visual Computer, pp. 1–14,
2015.

[3] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham, R. Ross,
and N. F. Samatova, “Compressing the incompressible with isabela: In-situ
reduction of spatio-temporal data,” in Euro-Par Conference on Parallel
Processing, vol. 1, Aug. 2011, pp. 366–379.

[4] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ.” in International Parallel and Distributed Processing Symposium,
May 2016, pp. 730–739.

[5] M. Soler, M. Plainchault, B. Conche, and J. Tierny, “Topologically con-
trolled lossy compression,” in IEEE PacificVis Symposium, 2018, pp.
46–55.

[6] J. Iverson, C. Kamath, and G. Karypis, “Fast and effective lossy com-
pression algorithms for scientific datasets,” in Euro-Par Conference on
Parallel Processing, 2012, pp. 843–856.

[7] E. Gobbetti, J. Iglesias Guitián, and F. Marton, “COVRA: A compression-
domain output-sensitive volume rendering architecture based on a sparse
representation of voxel blocks,” Computer Graphics Forum, vol. 31, no. 3,
pp. 1315–1324, 2012.

[8] S. Guthe and M. Goesele, “Variable length coding for GPU-based direct
volume rendering,” in Vision, Modeling and Visualization, October 2016.

[9] M. Balsa Rodriguez, E. Gobbetti, J. A. Iglesias Guitián, M. Makhinya,
F. Marton, R. Pajarola, and S. K. Suter, “A survey of compressed GPU
direct volume rendering,” Eurographics State of The Art Report (STAR),
May 2013.

[10] B.-L. Yeo and B. Liu, “Volume rendering of dct-based compressed 3d
scalar data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 1, no. 1, pp. 29–43, March 1995.

[11] S. Muraki, “Volume data and wavelet transforms,” IEEE Computer Graph-
ics and Applications, vol. 13, no. 4, pp. 50–56, July 1993.

[12] S. Guthe and W. Strasser, “Real-time decompression and visualization of
animated volume data,” in Proceedings IEEE Visualization, Oct 2001, pp.
349–572.

[13] K. G. Nguyen and D. Saupe, “Rapid high quality compression of volume
data for visualization,” Computer Graphics Forum, vol. 20, no. 3, pp.
49–57, 2002.

[14] S. Guthe, M. Wand, J. Gonser, and W. Strasser, “Interactive rendering of
large volume data sets,” in Proceedings IEEE Visualization, Oct 2002, pp.

Original 643 brick TTHRESH, 47.1dB, 1,855:1 ZFP, 47.1dB, 107:1 SZ, 46.0dB, 184:1 SQ, 46.1dB, 171:1

TTHRESH, 30.3dB, 7,463:1 TTHRESH, 38.6dB, 3,494:1 ZFP, 28.8dB, 160:1 SZ, 30.3dB, 3,482:1 SQ, 30.1dB, 335:1

Fig. 13. The HOSVD produces custom data-dependent bases that make the proposed algorithm degrade visually very smoothly up to extreme
compression rates. Depicted is a 643 brick that was cut out from the center of the Density volume after compression with varying quality and
algorithms (measurements correspond to the full volume). Unlike other compressors, TTHRESH avoids blocky artifacts; instead, it erodes and merges
features at progressively coarser scales.

1 144 288

Rank

1

144

288

S
p

at
ia

l
co

or
d

.
x

U(1)

1 96 192

Rank

1

96

192

S
p

at
ia

l
co

or
d

.
y

U(2)

1 14 28

Rank

1

14

28

S
p

at
ia

l
co

or
d

.
z

U(3)

(a) HOSVD factors

1 144 288

Rank

-π

0

π

F
re

q
u

en
cy

|Fourier(U(1))|

1 96 192

Rank

-π

0

π

F
re

q
u

en
cy

|Fourier(U(2))|

1 14 28

Rank

-π

0

π

F
re

q
u

en
cy

|Fourier(U(3))|

(b) Their column-wise Fourier transform, in magnitude

Fig. 14. Factors obtained from the U data set along with their Fourier
transform. HOSVD bases often resemble cosine wavefunctions and are
rather sparse signals in the frequency domain.

53–60.
[15] X. Wu and T. Qiu, “Wavelet coding of volumetric medical images for

high throughput and operability,” IEEE Transactions on Medical Imaging,
vol. 24, no. 6, pp. 719–727, June 2005.

[16] J. Clyne, P. Mininni, A. Norton, and M. Rast, “Interactive desktop analysis
of high resolution simulations: Application to turbulent plume dynamics
and current sheet formation,” New Journal of Physics, vol. 9, no. 8, p. 301,
2007.

[17] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[18] H. Wang and N. Ahuja, “Compact representation of multidimensional data
using tensor rank-one decomposition,” in Proceedings Pattern Recognition
Conference, 2004, pp. 44–47.

[19] Q. Wu, T. Xia, and Y. Yu, “Hierarchical tensor approximation of multi-
dimensional images,” in Proceedings IEEE International Conference in
Image Processing, vol. 4, 2007, pp. 49–52.

−2 0 2 4 6 8 10

ln |z|

26.5dB

36.4dB

57.1dB

99.7dB

(a) TTHRESH

−2 0 2 4 6 8 10

ln |z|

26.5dB

38.4dB

56.9dB

91.3dB

(b) ZFP

−2 0 2 4 6 8 10

ln |z|

25.7dB

36.5dB

55.2dB

93.2dB

(c) SZ

−2 0 2 4 6 8 10

ln |z|

25.9dB

36.5dB

56.8dB

92.7dB

(d) SQ

Fig. 15. Logarithmic histograms of the Fourier transform magnitude at
different compression quality levels of the U volume. TTHRESH shifts
the spectrum towards lower frequencies, as opposed to the other three
methods which tend to introduce higher frequencies instead.

[20] Q. Wu, T. Xia, C. Chen, H.-Y. S. Lin, H. Wang, and Y. Yu, “Hierarchical
tensor approximation of multidimensional visual data,” IEEE Transactions
on Visualization and Computer Graphics, vol. 14, no. 1, pp. 186–199,
2008.

[21] S. K. Suter, C. P. Zollikofer, and R. Pajarola, “Application of tensor ap-
proximation to multiscale volume feature representations,” in Proceedings
Vision, Modeling and Visualization, 2010, pp. 203–210.

[22] S. K. Suter, J. A. Iglesias Guitián, F. Marton, M. Agus, A. Elsener, C. P.
Zollikofer, M. Gopi, E. Gobbetti, and R. Pajarola, “Interactive multiscale
tensor reconstruction for multiresolution volume visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp.
2135–2143, 2011.

[23] S. K. Suter, M. Makhinya, and R. Pajarola, “TAMRESH: Tensor approx-
imation multiresolution hierarchy for interactive volume visualization,”
Computer Graphics Forum, 2013.

0 20 40 60 80

Compression ratio

−1.0

−0.5

0.0

0.5

1.0
lo

g
1
0
(c

om
pr

es
si

on
ti

m
e)

Teapot

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0.0

0.5

1.0

1.5

2.0

2.5

lo
g

1
0
(c

om
pr

es
si

on
ti

m
e)

Isotropic-fine

TTHRESH
TRUNC
ZFP
SZ

SQ

0 20 40 60 80

Compression ratio

−1.00

−0.75

−0.50

−0.25

0.00

0.25

lo
g

1
0
(d

ec
om

pr
es

si
on

ti
m

e)

Teapot

TTHRESH
TRUNC
ZFP
SZ

SQ

0 50 100 150 200

Compression ratio

0.0

0.5

1.0

1.5

lo
g

1
0
(d

ec
om

pr
es

si
on

ti
m

e)
Isotropic-fine

TTHRESH
TRUNC
ZFP
SZ

SQ

Fig. 16. Compression (top row) and decompression (bottom row) times
(in seconds) for two volumes and a range of different compression ratios.

0 20 40 60 80

Compression ratio

0

1000

2000

3000

4000

5000

T
im

e
(m

s)

Project

Bit plane encoding

Eigendecomposition

Load from disk

Other

(a) Compression

0 20 40 60 80

Compression ratio

0

1000

2000

3000

4000

5000

T
im

e
(m

s)

Project

Bit plane decoding

Save to disk

Other

(b) Decompression

Fig. 17. Compression/decompression times (Teapot): loading/saving the
data set, eigenvalue decomposition, tensor projection with Tucker factors,
and bit plane processing.

[24] R. Ballester-Ripoll, S. K. Suter, and R. Pajarola, “Analysis of tensor
approximation for compression-domain volume visualization,” Computers
and Graphics, vol. 47, pp. 34–47, 2015.

[25] G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays:
Compressive light field synthesis using multilayer displays with directional
backlighting,” ACM Transactions on Graphics, vol. 31, no. 4, pp. 80:1–11,
2012.

[26] R. Ballester-Ripoll and R. Pajarola, “Tensor decompositions for integral
histogram compression and look-up,” IEEE Transactions on Visualization
and Computer Graphics, vol. PP, pp. 1–12, 2018.

[27] R. Ruiters and R. Klein, “BTF compression via sparse tensor decomposi-
tion,” Computer Graphics Forum, vol. 28, no. 4, pp. 1181–1188, 2009.

[28] Y.-T. Tsai, “Parametric representations and tensor approximation algo-
rithms for real-time data-driven rendering,” Ph.D. dissertation, National
Chiao Tung University, May 2009.

[29] Y.-T. Tsai and Z.-C. Shih, “K-clustered tensor approximation: A sparse
multilinear model for real-time rendering,” ACM Transactions on Graph-
ics, vol. 31, no. 3, pp. 19:1–19:17, 2012.

[30] Y.-T. Tsai, “Multiway K-clustered tensor approximation: Toward high-
performance photorealistic data-driven rendering,” ACM Transactions on
Graphics, vol. 34, no. 5, pp. 157:1–15, 2015.

[31] L. de Lathauwer, B. de Moor, and J. Vandewalle, “On the best rank-1
and rank-(R1, R2, ..., RN) approximation of higher-order tensors,” SIAM
Journal of Matrix Analysis and Applications, vol. 21, no. 4, pp. 1324–1342,

(a) Original (b) Downsampling (c) Box filter (d) Lanczos-2

Fig. 18. (a) a 603 region of the Foot data set. (c-d): 2-fold decimated
versions at 7.5:1 compression using the three different methods from
Sec. 5. Lanczos minimizes both the blocky aliasing along edges of pure
downsampling and the erosion that the box filter incurs (top of the bone).

2000.
[32] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”

SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.
[33] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”

Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.
[34] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet co-

efficients,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp.
3445–3462, Dec 1993.

[35] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based
on set partitioning in hierarchical trees,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 6, no. 3, pp. 243–250, June 1996.

[36] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Transactions on Image Processing, vol. 9, no. 7, pp.
1158–1170, July 2000.

[37] B. N. Khoromskij and V. Khoromskaia, “Low rank Tucker-type tensor
approximation to classical potentials,” Central European Journal of Math-
ematics, vol. 5, no. 3, pp. 523–550, 2007.

[38] R. Ballester-Ripoll, D. Steiner, and R. Pajarola, “Multiresolution vol-
ume filtering in the tensor compressed domain,” IEEE Transaction on
Visualization and Computer Graphics, to appear 2018.

[39] “ParaView: an open-source, multi-platform data analysis and visualization
application,” http://www.paraview.org.

[40] “IAPR-TC18 Data Sets,” http://tc18.org/3D images.html.
[41] W. H. Cabot and A. W. Cook, “Reynolds number effects on Rayleigh-

Taylor instability with possible implications for type ia supernovae,” Na-
ture Physics, vol. 2, pp. 562 – 568, 2006.

[42] “Community Earth System Model by the National Center for Atmospheric
Research,” http://www.cesm.ucar.edu/index.html.

[43] R. Grout, A. Gruber, C. Yoo, and J. Chen, “Direct numerical simulation
of flame stabilization downstream of a transverse fuel jet in cross-flow,”
Proceedings of the Combustion Institute, vol. 33, no. 1, pp. 1629 – 1637,
2011.

[44] “ZFP: Library for compressed numerical arrays,” https://github.com/
LLNL/zfp.

[45] “SZ: Error-bounded floating-point data lossy compressor,” https://github.
com/disheng222/SZ.

