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Nanosecond plasmas for flow actuation

AC-SDBD interacting with smoke
+* AC Surface-dielectric barrier discharge (AC-SDBD) Flow direction 5

* Ditfuse and uniform plasmas

" “Jonic wind” generates a body-force coupled with
momentum in the external flow; (Corke et al., 2010)

*» Arc filaments

. . Covered Plasma actuator
= High temperature, constricted plasmas electrode_— (top view)
Exposed _%
electrode

Corke et al., 2010
* Flow control via heating% density change in the plasma affects ( )

mass balance of the system; (Leonov, 2004 & Webb et al., 2013) Four DC arc filament discharges
interacting with a jet

" Rapid localized heating generates strong compression wave;
(Samimy et al., 2007 & Adamovich, 2009)

“*Nanosecond pulsed plasma actuators:
P P

" Must be located at walls or jet exits

= High repetition rates: 1 = 100 kHz
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" Strong scaling implications for large volume flows XH
(Adamovich, 2009)




Energy deposition in flows by laser-induced plasmas

“*Provides non-intrusive deposition with high energy density
“*Rapid implementation allows changes in location, energy, and repetition rate

“**Flow interaction time limited by the repetition rate of the laser

“*Previous work has successfully implemented laser induced plasmas into supersonic flows
" Reduce pressure forces on blunt bodies in supersonic flows; [Adelgren et al., 2005]

" Deflect oblique shocks in supersonic inlets; [Han et al., 2002]

“*Relative energy imparted into the flow; [Knight, 2008
gy 1mp g

*Q: laser pulse energy (kJ) *Too: jet exit temperature (K)

c = Q / C.T v *Poo: jet exit density (kg/m®)  V: plasma volume (m?)
Pootp oo *Cy: heat capacity (k] /kg/K)

***Previous work have studied laser induced plasmas with € = 77-2100; [Adelgren et al., 2005]

Explore high-bandwidth effects of supersonic flows on pulse-burst laser-induced plasmas

Determine the conditions to sustain a pulse-burst laser-induced plasma at high Re jets




Experimental design

M: Mirror
P: Periscope

R: Razor Edge
J: Jet Location @

500 kHz pulse train with camera gate
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Burst rate: 5- 500 kHz, Burst duration: 1.5-10.5 ms
Total burst energy E ~ 15 J, e~13 — 300

Imaging of overexpanded, unperturbed jet

NPR = 25.8 NPR = 52.1
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C-D nozzle, M= 3.71
Nozzle pressure ratio (NPR) ~19.5-52.1

Toit = 80 K, Vit = 660 m/sdy = 6 mm




Laser-induced plasmas in quiescent air

Inverse Bremsstrahlung ‘° e As alanche “*Formation by two ionization mechanisms

£1 ° /] > Multiphoton=> seed electron generation

Impact 1onization

o

o Collisional cascade = electron avalanche

Tonization e QG Q QQ “*Vortex formation generates high velocity,

} Impact 1onization hot air jet
Ground State d ¢ “*Breakdown in air is stochastic

Multiphoton 1onization

Plasma-induced blast wave Core gas dynamics
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20 kHz burst rate
E= 310 mJ/pulse; Frame rate = 5 MHz, t,,, = 10 ns Frame rate = 60 kHz, 1, = 1 ps



Interaction between plasma-induced jets and supersonic flows

Location of plasma relative to jet Hot air from plasma

NPR= 19.2, 20 kHz burst rate
Frame rate 30 kHz

**Pushing/suction mechanism
“*Collapse of the oblique shock wave
“*Mach disk recovery

“*Downstream shock structure

“*Entrainment of hot gas

-1 0 1 -1 0 1 -1 0 1
Width (x/do) Width (x/d,)) Width (x/do)




,| Laser pulse energy affect on jet modulation

Location of plasma relative to jet Energy variance on jet modulation
E=75mJ E=130 mJ E=260 mJ

Mach Disk

0.5 0 0.5

05 0 05 -050 05 -05 0 05
Width (x/d,)

Width (x/do) Width (xfdo) Width (x/do)
NPR= 25.9, 5 kHz burst rate Frame rate 50 kHz, exposure 1 ps

“»Low laser pulse enerovy effects downstream shock structure. not oblique shock waves
p gy 5 q

+*Hioh laser pulse enerovy is destructive to jet
g p gy ]

Increasing laser pulse energy increase plasma volume and jet interaction




Height (y/d )

Power spectral density analysis of jet modulation by laser pulse

Regions of analysis
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NPR= 25.9, 5 kHz burst rate
E= 130 mJ/pulse

“*No analysis below 800 Hz, due to

Schlieren noise limitations

“*Prominent peaks
%5, 10, 10.5, 20, and 20.5 kHz

“»Instantaneous energy deposition

“*Peaks a function of laser energy

|Jet near and far fields are undulated by the laser-plasma




High repetition-rate breakdown in supersonic flow ‘—{

Energy deposition by burst rate

p (kgim®)
100&_ : 118
8 ® No jet
< 807, = With jet| 1| (1.6
B "
;‘% 60 | . 14
(@)
5 ' 2
9 .
> 40' S ®
o @
§ 1
W 20t
. 0.8
®
0

. : : : o
0 100 200 300 400 500
Repetition rate (kHz)
o Stochasticity in pulse-burst laser-induced plasma in quiescent air increases at higher burst rates
+*Refresh rate of the supersonic jet sustains breakdown at t < 350 kHz

“*Sustained breakdown at © > 350 kHz, requires both greater flow and jet exit density

Coupling pulse-burst laser-induced plasma to the supersonic jet reduces stochasticity




High-bandwidth laser-plasma/jet-flow interactions ‘=

Unperturbed jet, NPR = 52.1 500 kHz burst rate

7

Frame rate 5 MHz, exposure 10 ns

1.5
53 “* High repetition breakdown in the flow
:E: 1 % Permanent jet modulation
£ 05 * Continuous plasma emission at the jet core

i . ¢+ Shock re-excitation of plasma species
4 05 0 05 1
Width (x/d,)

Permanently disrupted jet N(Il) emission in jet core
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Height (yfdﬂ)

Implications for supersonic plasma ignition

N(ll) emission in jet core

—
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300 kHz burst rate
Frame rate 5 MHz, exposure 100 ns

Repeatability of plasma convection

4 05 0
Width x/d )

* Plasma is stretched during convection
* Path of convection is repeatable

% Plasma kernel interaction length
¢ 300 kHz: 4.8 mm
¢ 500 kHz: 3.0 mm

1.0

0.8




Ultrafast laser-induced breakdown spectroscopy (LIBS)

12
Variance throughout the burst Time evolution of single LIP
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“*Plasma varies shot-to-shot throughout burst

Wavelength (nm)

**Plasma initially has broadband emission from electron recombination processes

“*Strong spectral features appear as plasma is decaying

“*By 400 ns after breakdown, plasma no longer emits




13

Intensity (arb)

Preliminary temperature measurements

N(ll) Emission

12 : : - : : A
m |—Experimental Spectra |
|—Simulated Spectra
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T~29,000 K
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E= 17 mJ/pulse; Burst rate= 500 kHz;

Frame rate = 5 MHz, t

exp

= 100 ns

“*Spectra was fit using NIST LIBS database
**Chip dispersion = 0.1357 nm/pixel

oSignal-to-noise tradeoff with resolution

“*N_~ 1e18 cm™, assumed from previous work

“*Peak emission (A~500 nm) = 3S,°P, °D states
oE, ~187,000 to 226,000 cm!

“*Secondary emission (A~518 nm) = °P°, °D° states
oE, ~244,000 cm™

“*Sources of uncertainty
“*Only ionized nitrogen present in spectra

“*Raised baseline in fit




Conclusions Part |l

“* At all repetition rates, the presence of the jet was found to be critical and beneficial to
repeatable plasma breakdown.

“*Substantial deflection of supersonic, oblique shock waves was achieved with a laser
focus prior to the jet, within the jet and on the far side of the jet.

“*Increasing pulse energy increased the hot gas core/flow interaction time, but the
increase in plasma volume caused a more destructive blast-wave/jet interaction.

“*Spectral analysis at E = 130 m]J/ pulse showed strong modulation of the jet in the near
tield Mach disk and the far field shock train

“*N(II) emission imaging at 5 MHz demonstrated a 500 kHz burst could generate a near
continuous plasma held in the core flow.

“*High burst rate laser-induced plasmas cause permanent, controllable actuation of the
flow for the entire burst period, and this actuation has significant implications for non-
intrustve, plasma flame holding




High Energy Arc Faults
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* The dominant modes of energy transfer from DC arc /[ »
= cabinet and arc = jet are unknown /| How does this happen? _

% Well defined jetting mechanisms are critical to
informing hazard mitigation

**» Plasma’s “zone of influence” encompasses heat and

spectral exposure



16 I Small-scale physics for large-scale problem

Arc energy transfer mechanisms Aluminum arc jet

Time is -0.066127 s

" Anode
Graqg = 0€(T* —T%)

- O
/ conv = N (T — To)

conv
hy: film coefficient Cathode
0. Stefan-Boltzmann constant
€: emissivity
Challenges

< Evaluating emissivity and film coefficient %* Understanding DC arc parameters: electron
“* Determining emissive and convective number density, temperature

N S—— “* Measuring bulk jet parameters: conductivity,

velocity, temperature, etc.

Need stable, well characterized arcs to understand physics of source plasma and arc jets




HEAF testbed and diagnostics set-up
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Experimental Schematic

Traces from DC power supply
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5 kHz imaging

16000

—Early time

14000 | — Late time

12000

Optical emission spectroscopy N—

Anode

8000 -

Intensity (arb)

6000 |

4000 -

|| Detector 2000 1

200 300 400 500 600 700 800 900
Wavelength (nm)

Cathode




18 I Analyzing spectra: what can emission tell us? |
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——Carbon

Intensity (arb)
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200 400 600 800 1000
Wavelength (nm)
100 Hz acquisition rate, Ocean Optics

** Is there a raised baseline?
o Emitter has a graybody component to it (although graybody assumption might not be best)




Analyzing spectra: what can emission tell us?

10000 '
—Copper|| <* Atomic and/or molecular features?
O Atomic emission 1s two-step
5000 | process
*  Dissociation
I *  Excitation
" | » . al
200 300 400 500 600 700 800 900
10000 ‘ ** Atomic and/or molecular features?
—Carbon o Molecules emit from both
N, vibrational and rotational
5000 t SWAN bands energy states .

* As temperature increases,
more vibrational bands
are excited

s - . e ] * Temperature also changes
200 300 400 500 600 700 800 900 the manifold structure

Wavelength (nm)

(shape of the vibrational
band)




Spectral temperature analysis: broadband emission
20

Tungsten lamp calibration Spectral baseline fit
250 ‘ . . . | ; : : 2000 . ™ T
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A=-a"T+b

% Blackbody source, tungsten lamp, calibrated the baseline “plateau’ emission

%+ Calibration completed from 1000-3000 K

I From Wein’s Law, the wavelength of highest intensity is directly related to the temperature I




21 1 Spectral temperature analysis: Boltzmann plot of metallic atoms

I_hVAN_ hcNygA
" Tar Camz °

CEKT— o In (17\) _ — By Atz

oa) = ' Gy

E,: upper level energy g: upper level degeneracy
k: Boltzmann constant A: wavelength
A: transition probability I: measured transition intensity

“* Assume local thermal equilibrium (LTE)=> fast, Boltzmann plot
~100 ns at P =1 atm 05
% Ex: Cu-air plasma

Wavelength (nm) Upper energy (cm™) JEl

570 30783

® Data
— Fit

In(IN/A_g,)

578 30535
793 43137
809 43137

% Measurement sensitivity T with more energy levels 4 o sou oo obo sodiac oo oo
3 3.2 34 3.6 3.8 4 4.2 4.4

% Interference is reduced by choosing isolated features Eu ) «10*




22

—

Temperature (K

Comparison of inferred temperature measurements

Copper arc, | =100 A
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o Temperature inferred from broadband emission is lower than temperature of metallic atoms

% Instabilities in the arc effect the BBR temperature more significantly that the Cu vapor

temper ature

L




23 | Effect of arc stability on Al emission spectra

Al arc emission image Al arc emission spectra
Time is 0.73467 s T T seear ||
_ g | —Baseline Fit| |
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+*» “Stable” features appear to have the

same plateau emission

s % “Unstable” features show
f:!! ||l“ e LAM...._L : ﬁ contributions from hot gas core and

colder, re-radiating surrounding gas

Does graybody assumption hold for DC source?




24 | Effect of arc stability on inferred temperature

Al arc emission
Dependence of arc location on temperature
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“* When the arc jet encompasses the anode, a hotter blackbody radiator is inferred




25 I Convective flow field comparisons via Schlieren imaging

Development of copper flow field Development of aluminum flow field

¢ Mask (red box) limits arc emission, for better contrast and protects the camera from burning
% Copper jet demonstrates convective heat transfer to surrounding gas
% Aluminum jet shows burning particulates, soot formation, and convectively heated gas
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Conclusions Part

“*A DC arc produces a jet, which has varying stability with electrode geometry

“*The variance of the atc jet location effects the inferred graybody temperature more
than temperatures inferred from spectral emissivities

“*Temperature inferred from a Boltzmann plot is significantly higher than
temperatures inferred from broadband emission

“*Differing inferred temperatures implies that spectra is convoluted; holding both
DC plasma emission and re-radiating gas emission

“*Knowledge of power radiated versus power convected by the arc is critical to
understanding how high energy arc faults will effect their surrounding,
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28 I Continuing work

% Stark broadening for electron number densities in the plasmas
¢ Metallic vapor concentration calculations

% Comparison of graybody emissivities

+» Comparison of spectral emissivities

% Power radiation calculations




