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Subsurface Energy Activities

Subsurface energy technologies typically involve the change of fluid
flow, stress, thermal, chemical (aka THMC) status in fractured and
porous media

= Unconventional resources recovery
= Disposal of wastewater and nuclear waste

= Subsurface carbon and compressed gas storage

To improve subsurface energy activities and reduce adverse risks
(e.g., induced seismicity and environmental impact), current
understanding of (thermo-, chemo-)poro-mechanics needs to be
improved

Mesoscale analysis — linking discrete and complex pore-scale
behavior to continuum (macroscale) reservoir response — is key, yet
remains elusive as a result of the extreme heterogeneity and
resulting scale dependence.
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Multiscale Heterogeneity in Compositions,
Pore structure, and Mechanical Properties

» Understand how heterogeneity, pores, cracks, flaws etc. contribute to
shale poromechanics over scales and provide physical basis for core-scale
measured deformational and transport constitutive behavior

» Develop novel techniques and workflow for a linked imaging,
experimental, and modeling-based advancement of shale poromechanics

Clay-rich area,

Induced Induced fractures/ Inorganic matrix 64 nanoindentations

fractures  Natural fractures Microfracture .
. Load-displacement
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Force (uUN)
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Integrated Approach

¢ 40 cm diameter core of Mancos Shale
— Interlaminated fine mud, medium/ coarse
mud, and very fine sand
— 1-3 mm laminae
— Parallel lamina, wavy lenticular
lamina, ripple forms, and bioturbation
e Mineralogical and textural

characterization
— Macroscopic
— Optical petrography/microscopy
— Micro-CT ~
— XRD/X-ray Microprobe B FeolD  XRDaua
— Small Angle Neutron Scattering —
— Focused lon Beam-SEM
— Back-Scattered Electron Microscopy
— MAPS Mineralogy

e Mechanical Experiments
— Uni-/Tri-axial compression (1x2”)
— Brazilian Test (1x0.5%)

— Nanoindentation . Yoon et al. (AAPG, Memoir 2019, in press)
e Computational modeling Dewers et al. (AGU, Monograph, 2019)

A

» High Bay
Tests

< 55 0c
e » Brazilian Tests

[ === ]




Integrated Approach

e Mineralogical and textural characterization
— Macroscopic

— Micro-CT

— Small Angle Neutron Scattering
— Focused lon Beam-SEM



Multiscale characterization of physical, chemical,
and mechanical heterogeneity of nano-porous geomaterials

Macroscopic and
microscopic lithofacies
(optical petrography)

Optical and Confocal Microscopy Focused-Ton Beatn & Bioad-

mmmmmmmmm

cccccccc
mudstone

Ion Beam for milling

3D multiscale microCT

X-ray probe and QEMSCAN for mineralogy

-

Electron Microscopy |
| (Ultra) Small Angle Neutron Scattering |




MAPS Mineralogy

e SEM-based automated mineralogical

measurement, analysis, data integration
— Collection, overlay and re-registration of
multiple images from different modalities
— SEM, SEM-EDS, optical, CL, EBSD
— QEMSCAN measurement algorithms
e Mineral identification
— Spectral matching
— Each pixel — single/multiple minerals
— Elemental substitutions
— Simultaneous mineral element and count maps

X: 5978, Y: 60547, 287k counts, lllite-Smectite: 68.63%, lllite:31.37%,

— Measured
lllite-Smectite
lllite

¥ Chamosite
™ Zircon

¥ Sphalerite
™ Fut



Mineralogy Mapping

lon-milling polished Mancos
(1 inch diameter)

v Quartz [Silical
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rik
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Yellow Box (1.45 x 1.98 cm): BSE @ 1um & MAPS @ 10um
Red box (0.18 x 1.98 cm): BSE @ 0.2um & MAPS @ 2um



Mineralogy Mapping:
Scale/methods dependent

B FaceC gt:\(RD XR})cutA

[]

’

£l

4]

0 x 100 QFPS . mS

O scM

. ., @smM (]

4 @ mM
::aons @ Fracture fill

é®

e s*Bulk sample

X

Siliceous

Siliceous
marlstone

marlstone

20

Argillaceous
mudstone

Calcareous
mudstone

mudstone

100 + / } } } £ } } v 0 160 " ; ' 1 " v " / t 0
4] 10 20 30 40 50 60 70 80 90 100 0 10 20 30 a0 50 60 70 80 920 100
Clays Ductile Ductile/Brittle Brittle Carbonates Clays Ductile Ductile/Brittle Brittle Carbonates
Transition zone Transition zone
MAPS XRD
: (10+1 samples)
(2 and 10 microns)

Yoon et al. (AAPG, Memoir 2019, in press)



Mineralogy Mapping:
Scale/methods dependent

B Mapsmineralogy
©¢XRD

APetrographic point counting

@ Microprobe
¢ XRD Corr.

80
A
00 / AR .
Clays
100 A ‘ ‘ l - : ; ; ; ; t 0
0 10 20 30 40 50 60 70 80 90 100
Ductile Ductile/Brittle Brittle Carbonates
Transition zone

Kwon (@NMT, MS work, 2018)



Influence of geological attributes on mechanical
properties
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Integrated Approach

— Optical petrography/microscopy

— Micro-CT

— XRD/X-ray Microprobe

— Small Angle Neutron Scattering

— Focused lon Beam-SEM

— Back-Scattered Electron Microscopy
— MAPS Mineralogy

e Mechanical Experiments

e Computational modeling



Conceptual Model of Anisotropic
Layered System
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Axisymmetric Compression Testing
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Yoon et al. (AAPG, Memoir 2019, in press)



Axisymmetric Compression Testing

Horizontal slice
through the central
part of sample A. Loaded parallel to bedding (15B)
115 Fracture intersection &
bifurcation with small
One primary & aperture microfractures
two secondary

fractures Microfracture

propagation in between
quartz grains

Microfracture patterns
in between quartz

Curved main .
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Axial Stress (MPa)

Indirect Tension Results
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Numerical Simulations of Brittle Fracturing

: ‘ . 3 ] DIC
= Phase field model for crack ‘. " ~60 %
representation (Heister et al,2015) \; | - ~40 %
| : v .

Shale is modeled as two- Stiff .
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Effective Properties of Heterogeneous

Materials

Transversely isotropic effective medium for elastic parameters (Berryman, 1998)

= Spatial homogenization procedure leads to much simpler crack patterns than

those from the layered isotropic materials

= Crack paths in the effective medium are less tortuous due to (probably)
filtering out mesoscopic information via homogenization

= Smaller surface area created by the fracture process yields the reduced
tortuous crack paths with a diminished amount of energy dissipation

(much higher effective fracture toughness)

(a) Transversely isotropic
(horizontal)

(b) Transversely isotropic
(inclined)

(c) Transversely isotropic
(vertical)

Bulk Energy (J)
o

0 0.05 0.1 0.15
Displacement (mm)
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Displacement (mm)

Transversely
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Layered
Isotropic

Na et al.
(JGR 2017)



Integrated Approach

— Focused lon Beam-SEM
— Back-Scattered Electron Microscopy
— MAPS Mineralogy

e Mechanical Experiments

e Computational modeling



Nanolndentation

e Depth sensing/instrumented indentation Berkovich
— highly accurate load-displacement record indenter
— Analytical models to determine modulus,
hardness and other mechanical properties using
the load-displacement data

e Analytical concept LOADING
— Purely elastic deformation upon initial unloading
— Contact between a rigid indenter and S| Unosome
homogeneous isotropic elastic half spacing
— Compliance of the sample and indenter tip — e c
springs in series —
— Hardness = load/contact area he For g=1 // \ h,.

— Elastic modulus determined by stiffness (S) heFor €=0.72
DISPLACEMENT, h

POSSIBLE
RANGE FOR

h

e Dynamic Modulus Analysis at nm scale Oliver & Pharr (1992)



Initial Indentation Results

Indentation array: 16 x 16, 20 um spacing
[Hysitron Tribolndenter 900]

Indentation strain rate = 0.1 (Oliver et al., 1997) -
- x . Quartz (Silica)

(current change in displacement/current total disp.) ZEZ=:

Maximum load = 10 mN < e

Zircon

Dolomites
Apatites
Monazite
Pyrite
: Sphalerte
Ti oxides

BT OTIT

E=5~100 GPa BN

-



Multiscale Indentation Testing

Loading-unloading cycle
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Indentation Modulus (GPa)

Multiscale Indentation Testing

Mancos Position A Mancos Position A

Indentation Modulus (GPa)
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Effect of Mineralogy on Mechanical
Properties
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Nanoindentation Impressions

Low-clay percentage samples.
(1&2): surface of pure quartz
and feldspar having higher
values of mechanical
properties such as elastic
modulus and hardness.

(3): dissolution surface of
feldspar

(4-6): grain-to-grain boundary
and edge-of-grain, which have
lower mechanical properties
values.

NOTE: Q=quartz, P=pyrite,
C=carbonate, F=feldspar, and
IL=illite)

Yoon et al. (in prep)



Effect of Compositions and textures on
Mechanical Properties
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ABAQUS FEA

3D Mechanistic Modeling
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Upscaling for Mechanical Properties

Phase field modeling for averaging mechanical properties

Spatial mineralogical mapping with compositional heterogeneity
Development of correlation with nanoindentation results

Evaluation of soft cement or multi-mineral regions on mechanical responses
with various conditions (e.g., defects, layering, anisotropy)
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Velocities of Mancos Shale lithofacies
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Other Ongoing Works



Chemo-mechanical Processes:
Chemical Flooding in Nano-porous Chalk

FIB-SEM
(~10 pm)
Mg

concentration

Chemically
Altered Plasma

zone £ oA R, FIB-SEM

1250 2500

Samples from Nermoen et al., (JGR,2015) Yoon et al. (In prep)



Fracture Patterns: Borehole Breakout Test

2” diameter

Sy

Sh

Charles Choens’ work at SNL
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Permeability Control and
Proppants’ Behavior in Fractures

Fractured
grain

‘ - —
Micro-CT image with proppants in a Load cell#*

fracture

-
i

3

{Ram|#8

3D printing applications




Multiphysics Simulations

(a) Proppant loading = 0.11 Ib/f?

(b) Proppant loading
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Methane flow in kerogen “tubule”

5 nm = effective

size of pore throat 0.38 nm = one

methane molecule
1.7 nm = one C,,
molecule




Multiscale network and flows with ROMs + ML

Level 1:

* Nano/micro pore network (PN)
& flow model

» Generative adversarial neural
networks

Level 2:
* Natural/induced fracture
network (FN) & flow model

. 100’s m
Graph network system High fidelity model

Well 1

Well systems + Operations

Level 3:

» Well production & operations

* Well systems + graph network
under realistic operation
conditions

Degree of Freedom (DoF) = 10° PN, DoF=103-10%

Well 100

Data-driven model
with ROMs (DL for
flow sculpting,
Srep46368)

Transfer
learning or
response
function

Data-driven
model with
graph network
model

Multi graph
networks

Transfer
learning or
response
function

_, Data-driven
" model developed

with field data

Refs: Yang et al. (2016) Srep36673; Wang et al. (2017); Brown (2006), Report DE-FG02-98ER14906



Summary

¢ Integrated multiscale imaging and mechanical testing with
numerical simulation provides a robust approach to advancing
our understanding of shale (poro-) mechanical behaviors

e Texture/mineralogical characterization

— Recent advances in mineralogical mapping with high resolution imaging
over the large area

— Multiscale mineralogical and geologic features lead to considerable
heterogeneity of mechanical properties

e Mechanical tests

— Macroscopic and microscopic lithofacies have distinctively different
mechanical properties

— Bulk properties/averaging theory may be misleading as they can
represent averages of mechanically heterogeneous rock

— Microscopic heterogeneity of mechanical properties can control the
spatial distribution of fractures

— This heterogeneity should be taken into account for realistic mechanical

modeling and can scale up by rigorous theoretical and numerical
modeling



