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A large portion of people using the finite element method are faced with a
general task:

Deliver critical engineering analyses in a timeframe
consistent with project requirements
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Challenging engineering analyses are common at Sandia. Goal is to have a
general solution, must address the more burdensome models: multi-body /
material, complex geometries, contact, nonlinear materials, dynamic loading
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Finite Element Methods
e Triangle / tetrahedral elements
o Meshes are relatively easy to generate
o Approximation property issues. E.g. volumetric locking
@ Quadrilateral / hexahedral elements
o Better approximation properties
e Very time consuming to mesh

@ Polygonal / polyhedral formulations are a recent research thrust

Immersed / Embedded Domains
@ Mesh is structured and doesn’t line up with the domain
@ Meshing is trivial
@ Challenges in obtaining agreeable quality near the implicit surfaces
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IsoGeometric Analysis
@ Ties simulation to CAD by using the same basis functions for both
@ Appealing solution for problems in 2D or shells
@ Obtaining a volumetric representation is challenging
@ Solution quality tied to the quality of CAD representation

Meshfree Methods
@ Easy to generate approximation functions from point clouds
@ Challenges in representing boundaries, integrating




Background: Meshfree Methods
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Approximate solutions are constructed over a point cloud. Shape functions are
constructed as the product of a kernel function and a correction function

M) = Z‘i’ldl; Y = Clx;x —x1)ba(x — xp)

Point I
¢(x — ) on Q

Clx;x —x;) Zb (x —x;)' =H (x — x;)b(x)

H (x—x) =[Lx—x, (x—x)% ..., (x—x)"]
NP
b(x)is obtained by imposing completeness requirement: Z‘P,xf =x,0<i<n

NP =1

b(x) =H'(0)M '(x) where M(x)= ZH(x—x,)HT(x—xl)d)a(x—)q)
I=1
@ Kernel function: compact support, determines smoothness

@ Correction function: provides completeness
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Example Euclidean Window / Kernel Functions, Cubic B-Spline

Tensor Product

Radial
1—-62+6F  for0<F<j
d(F) =4 2—6F+6F—27 fori<rF<l1
0 otherwise,

= r(x)/R, the normalized distance.
_

~t
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With FEM, elements represent the domain and approximation functions are
tied to elements.

With meshfree methods, approximation functions come from point clouds,
boundary information is lost. Creating challenges representing:

@ Concave geometries ) ,
o o Essential boundaries
e Material interfaces
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Reproducing kernel approximations functions are used in a Galerkin
framework, creating the Reproducing Kernel Particle Method (RKPM).

Example, Galerkin form for elastostatics is:

Findu" € U" ¢ U suchthatWw" e Vv c v

vh-bdQ-l—J v hdr
I

JQ e(vV):o(uM)dQ = J

Q

where U = H; and V = H/. For Bubnov-Galerkin, U" = V".
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Window Function, ¢ Approximation Function, ¥

In general, approximation functions lack Kronecker delta
Wi (xs) # O,

are not interpolatory
u'(x;) # dy,

and lack the weak Kronecker delta property, which is
Y (x)=0,VxeTl, 1€V,

where V, is the set of all points not on the essential boundary, T.
Approximation spaces are not admissible, i.e. V" ¢ Hj and U" ¢ H,
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Visibility Method
Approximation Function, W

Require an internal line-of-sight between evaluation locations and window centers.
Resulting approximation functions are discontinuous. This can be problematic as the
approximation space in no longer in H', as required in the Galerkin form, but it has
been proven to still converge®.

3P, Krysl and T. Belytschko, “Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions,’
Computer Methods in Applied Mechanics and Engineering, vol. 148, no. 3—4, pp. 257277, 1997.




Conforming Window Functions*

4J. J. Koester and J.-S. Chen, “Conforming window functions for meshfree methods,” Computer Methods in Applied Mechanics and
Engineering, vol. 347, pp. 588621, 2019.
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In short
@ Building simulation models is very time consuming

@ Meshfree methods can efficiently provide approximation spaces but
complicated boundaries cause problems

Goal: Address the boundary challenges of meshfree methods
@ Should be systematic, requiring little or no user input
@ Ideally, retain smooth approximation spaces (C”, r > 0)
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The source of the boundary-related complications are that window functions, and
thus approximation functions, are not confined to the domain. To address this, a
procedure for creating boundary-conforming window functions has been developed.

The conceptual steps in creating conforming windows are:
@ Choose the subdivision strategy and create subdomains for each window

@ Define the function space (on the subdivisions) for building the window
function

@ Construct the functions by specifying the coefficients of the space

The conforming window functions replace the traditional window functions and the
rest of the RK or MLS method remains the same.
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Window functions will be defined on local, overlapping, subdomains that conform
to the domain. A global, contiguous mesh is not required. Some options:

@ Tensor product spaces: quadrilaterals, hexahedrons
@ Triangulations: triangles, tetrahedrons

Example Complicated Boundary Triangulation

As with FEM meshing, decomposing a body with tensor product subdivisions
is challenging, triangulating is much easier.




Subdivision e Laboratories

Overlapping window domains are required to build approximation functions
@ Extract “stars” from global triangulation

@ Construct local, kernel specific triangulations

Example for two vertices, using star? Local overlapping triangulations
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A means of building window functions on the subdivisions is required.
Bernstein-Bézier polynomials are constructed on triangles / tetrahedra and
theory exists for creating C” space on triangulations.

A bivariate Bernstein-Bézier polynomial:
P = Z CljkBljk’
i-+j+k=d
where c;; are coefficients and Bg.k are Bernstein basis polynomials of degree
d, expressed using the barycentric coordinates, by, by, b3

a DL, itk =d.

Blﬂ‘ iljlk!

Properties include partition of unity and non-negativity.




Bernstein-Bézier Polynomial i @ﬁf‘&"&m

Domain points and Bézier patch for a triangle with polynomial order, d = 5.

40 &320 230

Domain points Bézier patch with triangulation of

B-coefficients
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A C" smooth join along edge e := (v,, v3) of polynomials p and p on triangles
Fi= <V1,V2,V3> and T := <V4 V3, V2>'

Dyp(v) =Dpp(v), Vveeandn=0,---,r,

where u is any direction not parallel with e. This leads to the continuity constraints,

~ i .
Caje = E CoirpjtxByc(va), j+k=d—n, n=0,---,r.
V+Hp+K=n

Bézier patch with triangulation of
B-coefficients

C' Join, domain points
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Example smooth space Sé’z (Argyris Space, quintic, C' on edges, C? at vertices)
Minimal determining set example. Nodal minimal determining set: Values
and derivatives set at specific locations

Circles are coefficients associated with a
vertex (blue region), triangles for edges,  (Hermite interpolation) to define

filled are free and open are constrained. ~ functions:
UNulNe
veV ecé
N, = {eD¢DP} 0<a+p <2
N, = {emDue

where 1, and u, are the midpoint and
unit vector normal of edge e. ¢, is the
point evaluation functional defined as

ef =f(1).




Building Conforming Window ‘ @Sam,.
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Subdivisions with spaces are defined, need to build the window functions by
specifying the coefficients of the spaces.

To set the coefficients, Hermite interpolation is used. Function values and
derivatives needed at nodal parameter locations. Two methods of
determining the values have been developed.
@ Star windows: replace Euclidean with graph distances
@ Snap windows: projection of traditional window functions to the
conforming window space



Sandia
; . Center for Nat |
Star Window Functions . @mﬁ’éﬁ’m

Function values and derivative for Hermite interpolation.
Modify a traditional, radial cubic B-spline window function
Traditional window function:
1—6+6F  for0<7<3
G(F) =4 2—6F+6F* -2 fors <F<1
0 otherwise,
7 = r(x)/R, the normalized distance.

Replace 7 with r,, the normalized graph distance:

P 1 Vv €Ny, vo&Np
& dg(vo,vi)/Rg otherwise

dg(vo, vr) is the graph distance (integer) between vertex v; and the center vy,
R, is the chosen graph extent (an integer, e.g. star®s), N, is the set of nodal
parameter locations on conforming boundaries.




Normalized Graph Distances i @%

Normalized graph distances, d,, at the S;’Z nodal parameter locations for a
second order stars:

Away from a boundary

Near a boundary
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Figure: Interior conforming windows and approximation functions
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Non-
conforming at
essential
boundary

Conforming at
essential
boundary

br ¥y
(Window Function) (Approximation Function)
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Near Non-Convex Region o, Laboratories

Non-
conforming
window with
visibility check

Conforming
window with
convexity
improvement
br Yy
(Window Function) (Approximation Function)
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Project traditional window function to conforming window space.

@ Use all elements that are contained or
intersect a Euclidean ball

@ Use normalized Euclidean distance for
nodal locations inside the ball

@ Set the normalized distance for nodal
location outside the ball

Properties

@ Less sensitive to quality of the triangulation

@ Retains control for conforming to
boundaries, improving near non-convex
regions
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Figure: Snap Star Figure: Star?
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Construct window function using local triangulations, not from a global mesh

Figure: Local Triangulation Figure: Local Star



Examples, 2D
Conforming Reproducing Kernel (CRK)
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Elastic, patch test. Boundary conditions give a linear displacement field.

Undeformed Deformed ) RKPM,
triangulation triangulation transformation method

CRK star* CRK snap CRK local
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Method I? H,
RKPM with transformation method 2.05e-03  2.44e-02
Patch test error: CRK, star?, static condensation 7.65e-17  1.04e-15

CRK, snap, static condensation 8.57e-17 1.78e-15
CRK, local, static condensation 6.55e-17 8.63e-15

Transformation method:

° Vi(x;) =dy

° u'(x;) =d;

@ No Weak Kronecker-delta, inadmissible approximation spaces
Conforming window:

® W;(x;) # oy

° u'(x;)=d;

@ Weak Kronecker-delta — admissible approximation spaces

@ — Directly impose values along entire boundary (like FEM)
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An elastic plate with an edge crack
® E=3.E7, V =03 @ Plane strain
@ Mode | loading @ A=05
@ Exact displacement along edges (except _
re-entrant edges) ®p=la3
O =AM [(2—=Q(A+1))cos((A—1
Oy =AM [(24+ QA+ 1)) cos((A—1

0) — (A —1)cos((A—3)0)]
0)+ (A —1)cos((A—3)0)]

—

Oy =AM (A= 1) sin((A —3)0) + Q(A + 1) sin((A —1)6)]
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0.0, 0.5
-0.8 o FEM: 1.08 = CRK Snap: 1.10 0.0 wi FEM: 0.55 == CRK Snap: 0.54
=— RKPM: -0.0 == CRKstar® (v): 1.08 = — RKPM: 0.00 == CRKstar® (v): 0.54
== RKPM w Vis: 1.06 «i+  CRK Local: 1.11 ? == RKPMw Vis: 0.53 «i+  CRK Local: 0.54
g
& —0.5
RS
S)
=

-2.0 -1.8 -1.6 -1.4 -2.0 -1.8 -1.6 -14
—log(DOFS'?) —log(DOFS'?)
Figure: Convergence in u Figure: Convergence in energy



(a) RKPM (b) RKPM, visibility criteria
‘UI/I/ l‘llll
[1e+06
fj5e+5
c) CRK, star convex (d) Enriched CRK [
0e+00

Figure: Error in oy, near the crack tip. Nodal spacing #; = 0.02.
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Panel with an Inclusion Laboratores

An elastic panel with an inclusion

@ (4x4) panel, R = 1 for inclusion @ Tension in x direction
@ |Inclusion: E = 10.E4, v =0.3 @ Exact displacement on symmetry planes
@ Panel: E=10.E3,v =03 @ Exact traction on other edges
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Figure: €,, near the material interface.
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_3. _l.l:
—3.5 eamamenm
-2.0
-0 ’é
\\\\\\\\\\\\\ 315 -2.5
S S §
----------- FEM: 1.95
________ == RKPM: 0.96 —-3.0, == RKPM: 0.49
-5.0 n === CRK Snap: 1.97 == CRK Snap: 1.24
Yee” == CRKstar? (v): 1.97 == CRKstar® (v): 1.28
+ CRKLocal: 1.91 + CRK Local: 1.07
-3.4 -3.2 —-3.0 -2.8 -3.4 =3.2 —-3.0 -2.8
—log(DOFS'?) —log(DOFS'?)
Figure: Convergence in u Figure: Convergence in energy



3D Implementation
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The steps for creating conforming window in three dimensions directly
translate from two dimensions

@ Subdivision: triangulations — tetrahedral partitions

@ Function spaces: Bernstein-Bézier spaces on triangulations —
tetrahedral partitions

@ Specifying the coefficients: More parameters for the extra dimension

However, complexity increases for smooth Bernstein-Bézier spaces in three
dimensions. Evaluation of window values is more expensive.
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Extending 857 (the Argyris Space) to three dimensions leads to 8 §**(),
where 1,4, 2 is the smoothness at the faces, vertices and edges, respectively.

The solution to decrease complexity has been to define spaces on splits of
tetrahedral partition. For example, a C' space on the Alfeld split, S;

Required coefficients at different locations:
Space \Vertex Face Edge Tetrahedron
8ot 35 8 7 4

8; 10 2 3 1
(locations in un-split tetrahedral partition)

Alfeld Split
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For conforming window functions, adding a constraint to the process greatly
reduces the complexity.
Require integration points to be nodal locations (i.e. Hermite
interpolation locations) of the window function space. In other words,
triangulate the integration points.
@ Values are set at nodal locations, determination of coefficients and
evaluation of Bernstein-Bézier function is not required.

@ As such, no construction of Bernstein-Bézier spaces required. Values
are explicitly set at the integration points, implied elsewhere.

@ Pairs well with integration using smoothed gradients®

5J.-S. Chen, C.-T. Wu, S. Yoon, and Y. You, “A stabilized conforming nodal integration for Galerkin mesh-free methods,” International
Journal for Numerical Methods in Engineering, vol. 50, no. 2, pp. 435-466, 2001.
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Example: Stabilized Conforming Nodal Integration (SCNI) with boundary edge
integration using trapezoid rule. Triangulations extracted from a global mesh.

@ Input triangulation in blue

@ A Powell-Sabin split (black-dashes) is used to create nodal integration
domains (shaded region)

@ The split also provides the window function triangulations

@ A boundary integral is completed using values at nodal parameter locations
(red marks) and provided the smoothed strain-displacement matrix B or
deformation gradient F, used in the SCNI method.

CRK Nodes

Starting
Triangulation

Added Triangles

Integration Cell

w Evaluation Point




3D Examples



Taylor Bar Impact @%

Dynamic problem, solved using explicit time integration (central difference).

@ Initial velocity = 373m/s
@ Height = 2.346cm

@ J2 plasticity with power law hardening
@ Radius = 0.391cm

@ Axial displacement fixed on impact face

Side View
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CRK, FEM Hex
Tet Integration Reduced Integration
@ CRK Tet Integration: tet elements as gradient smoothing domains
@ FEM Hex: reduced integration w/ hourglass control
@ Blue Line: reference displacement outline (highly refined SD Hex)



= Y@ Nototel
Taylor Bar Results = Laboratores

The predictions have issues: volumetric locking, oscillations in hydrostatic
stress

Hydrostatic Stress



Addressing Volumetric Locking®

8G. Moutsanidis, J. Koester, M. Tupek, Y. Bazilevs, and J.-S. Chen, “B and F approaches for the treatment of near-incompressibility in
meshfree and immersed-particle methods,” Compuiational Particle Mechanics, accepted.
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As material approaches incompressiblity, approximations spaces have challenges
meeting the constraint and providing a reasonable displacement field. This has been
addressed in FEM in a few ways:

@ Mixed methods with both pressure and displacement degrees-of-freedom
(DOFS)
e Should satisfy LBB condition
o More expensive, complicated
@ Reduced integration
e Projects volumetric and deviatoric response to a lower order space
o Efficient, requires stabilization, setting of parameters
@ BandF

o Projects volumetric response to a lower order space, keeps deviatoric
as-is
o Improved coarse mesh accuracy, more expensive per DOF
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Volumetric Locking in Meshfree
Methods E ‘ @

The techniques from FEM have have been extended into meshfree methods. A
popular approach is Stabilized Conforming Nodal Integration (SCNI):

@ Comparable to reduced order elements
@ Provides consistent integration for meshfree methods

@ Efficient, has low energy modes requiring additional stabilization and setting of
parameters

Goal: Develop a method that addressing volumetric locking and:
@ Does not require setting stabilization parameters
@ [s variationally consistent, efficient

Leverage ideas from SCNI and B and F.
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The B method for small strains is extended to finite deformation with the F method.
The current position x of particle that was originally at location X is given by

x = ¢(X, ) with displacement u = ¢(X,1) — X =x—X
The deformation gradient is defined as
ox 0X+4+u 09X Ou ou
F = — = = — — = I —
0X 0X 0X + 0X + 0X
A multiplicative split is used to decompose the deformation gradient
F= Fdil Fdev
with detF = J = detF¥, detF% =1, F* =J '/3F, ¥ = j'/31
The volumetric part of F is replaces with a projected value

F = Fdil Fdev’

where
Fdil _ T[(Fdil) - WI,



New Projection for F
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A F-based projection is designed to be compatible with the window simplification
procedure. The projection leverages the smoothed gradient operator.

me%LVM1

Vi, = J dQ,
Qr

where () is the smoothing volume surrounding corresponding to a material point L.
Applying the divergence theorem leads to

ﬁMMZ%Lﬁﬂ

n is the outward facing surface normal for boundary T, of the smoothing volume.
A smoothed deformation gradient F around material point L to give

1 au 1 auf.’ 1 i

L
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For the conforming window F method two different domains are used for each
material point, a smaller domain Qfev provides the deviatoric portion and a larger
domain Q¢ provides the dilatational portion.

Nested smoothing domains Meshed domains
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For F at material point L, we have
F, = Fiil erv

with the deviatoric part coming from the smoothed deformation gradient of the
smaller cell, _
Fiev — F(QievL
and the dilatational part coming from the smoothed deformation gradient of the
larger cell,
Fdll JI/3(thl)I

del le[ Z 1% Jm lel Z Vm
ceC ceC

where C is the collection of cells/elements in the volumetric domain. This allows J to
be compute one time for every cell then aggregated as needed for J




Examples using F



3D Example: Taylor Bar Impact ) () ‘ m'r"aﬁ'm

CRK, CRK, CRK,
Tet Integration SCNI F

@ CRK Tet Integration: tet elements as gradient slnoothing domains
@ CRK F: tet elements for F¥¢*, star of elements F %/,
@ Blue Line: reference displacement outline (highly refined SD Hex)




Taylor Bar, Axial Stress S ‘ "a“""a'

Stress
-30e+08 -2e+8 -le+8 0 le+8 2e+8  3.0e+08
—_—

Hex mesh converted to tets | —

CRK, Tet Integration CRK, SCNI CRK, F
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Stress
-3.0e408 -2e+8  -le+8 0 le+8  2e+8 3.0e+08
1

Tet mesh (not converted from hex mesh)  —— | U —

CRK, Tet Integration CRK, SCNI CRK, F
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Taylor Bar Impact = uu%?m

Convergence of radial displacement with mesh refinement

0.80
0.75} 1
€
S
0
]
S 0.70F |
o
T
<
i
s CRK, F, [0.7927]
-------- CRK, [0.769]
0.65} = = = RKPM, SCNI, [0.7887] 1
----- RKPM, MSCNI, [0.7818]
——— Composite Tet, F, [0.7879]
+ Linear Tet, [0.7676]
SD Hex, [0.786]
UG Hex, [0.772]
0:60q 50 100 150 200 250

Number of Elements Along Length



Compression of Elastomer Billet ‘ s

Compressed from both ends

No in-plane deformation on the ends, free
elsewhere

Symmetric, 1/8 of domain simulated

Gent Model: K = 100 MPa, E = 1 MPa
— v =0.4983

4 mm

CRK: star? kernel

F uses each tetrahedron for F* and the star of
elements around each tetrahedron for F %,

Compared with Modified SCNI (MSCNI) with
stabilization coefficient o« = 0.05.
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Compression of Elastomer Billet S Laboratores

Hydrostatic Stress
-1.0e+06 0 1.0e+06

CRK RKPM-SCNI RKPM-MSCNI CRK-F
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@ (29 x 29 x 29 nm) cube

@ Shear displacement
i ] @ CRK: star? kernel
@ No in-plane deformation on the ends, free

elsewhere ] B_‘tusefs elach t(itrahedr(:jn for:‘f": aEddthe
star of elements around each tetrahedron
@ Elastomer, Gent Model: G = 950 kPa, for Féil.

K =920 MPa — v = 0.4995
@ Inclusions, Elastic: E = 25 GPa, v = 0.25

Domain Example Tet Mesh Example Hex Mesh




Center for
Extreme

Carbon Black Rubber e,

pressure
-3.0e+12 0 3.0e+12
|




Carbon Black Rubber ‘ m:::"'m

700 | s CRK-Snap, F 29.66 !
== == = RKPM, F 31.49 /
— Composite Tet 21.47 I
600 1 == 5D Hex 15.98
= = UG Hex 19.82
500
Z 400 -
(4]
o
S 300 1
1 T
200 A
100 -
O B

0 5 10 15 20 25 30
Displacement (nm)



Working with Low Quality Triangulations
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Generating subdivisions of complex geometries is often faced with many challenges
@ Small features need to be removed
@ Scanned systems may be represented with STLs, requiring extra processing

Challenging to get a mesh of quality tetrahedra. However, many methods exist that
readily produce meshes with low quality elements. E.g. Conformal Decomposition
Finite Element Method (CDFEM)”

Lithium lon Battery CDFEM Mesh, Close-Up
Goal: Develop and approach to use low quality triangulations but still have
agreeable accuracy, robustness and efficiency.

7S. A. Roberts, H. Mendoza, V. E. Brunini, and D. R. Noble, “A verified conformal decomposition finite element method for implicit,
many-material geometries,” Journal of Computational Physics, vol. 375, pp. 352-367, 2018.
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Addressing Low Quality Meshes (R @ shnein

A method has been developed to work with low quality meshes. In short, use
mesh only as a guide.
o Decimate by selecting a subset of vertices to be nodes carrying DOFs
@ Aggregate elements into better shaped integration cells.




Sandia
Addressing Low Quality Meshes e ‘ i

A k-means clustering process is used to accomplish the aggregation and
decimation:

@ Group elements into larger integration domains (polyhedra)
o Added cluster volume limiters to balance cluster size
@ Optionally split domains into subdomain and use with F process

@ Select one node per integration domain to carry degrees-of-freedom,
the rest just provide structure for the integration domains
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Lithium lon Battery e e

CDFEM mesh with 821,437 elements and 173,917 nodes, aggregated to give
50,000 cells, each containing one node and two subcells. Loaded in compression.

Initial Mesh




Lithium lon Battery u!niss

Initial State Final Displacement
Final State Final Stress

~200x time step advantage over a linear tet. Ran to completion
—

e
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Comments and Future Work
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Framework S ot

Goal: Improving the Analyst’s Response Time
Approach: Utilize the flexibility that meshfree methods provide, supply more
control where needed

@ Conforming window functions to handle boundary / geometry
challenges of meshfree methods.

@ An F method was developed to address volumetric locking.

@ A decimation and aggregation procedure was created to address low
quality triangulations.

Future Work:
@ Better classification for element aggregation / pair with other meshing
techniques
@ Extend to handle fracture, very large deformation




Questions?



