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Generations of Semiconductors

Gen 1: Ge and Si

Gen 2: Conventional IlI-Vs -
Arsenides, Phosphides, Antimonides
Gen 3: Wide-bandgaps — SiC, GaN,
InGaN

Gen 4: Ultra-Wide-Bandgaps —

Al Ga, N, (Al Ga,,),0,, diamond, c-
BN, others




Critical Electric Field and

Unipolar Figure-of-Merit
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Critical electric field
for avalanche breakdown

e Off-state: Integrate electric field to get breakdown voltage: Vg = WpE/2 (1)

e Gauss’ law: eE. = qN,W,; (2)

e On-state: Current transport due to carrier drift, resistance R,, = W/cA
Conductivity o = qu,n = qu,Ny assuming complete dopant ionization

Specific on-resistance R

on,sp

= R, A =W,/c = R,,A =W,/ qu.N, (3)

e Combining (1) and (2) gives dependence of V; on Ny and E.: V, = €E2/2qN,

e Combining (1), (2), and (3) one obtains the unipolar “figure-of-merit”:

R

on,sp

= 4VBZ/8“nEC3 - VBZ/Ron,sp = 8unEC3/4

Assumptions: Triangular electric field
profile and complete dopant ionization




Critical Electric Field Scales with -

Bandgap and Determines Unipolar FOM
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Dependence of E. on E; Unipolar FOM =
needs further study Vg /Ronsp = EULEC/4

Hudgins et al., IEEE Trans. Pwr. Elec. 18, 907 (2003); J. Y. Tsao et al., Adv. Elec. Mat. Adv. Elec. Mat. 4, 1600501 (2018)




Parameter at
27°C

Bandgap (eV)

Proj. bulk E¢
(MV/cm at
doping = 108
cm?)

n, (cm?)

e- drift
mobility
(cm?/Ves)

hole drift
mobility
(cm?/Ves)

Vet (107
cm/s):
e- & holes

Relative
permittivity

O'thermal

(W/meK)

Maturity
assessment:

- Doping (p &
n); or
polarization-
induced; or
surface-transfer

- Dual-use/
low-costor
low-volume/
high-cost

- Substrate
size/
availability

GaN
(for
reference)

34(3]

4.95[8]
(measured
baseline)

Various
(see Doping
below)

1000
[3,32,52,53]

11 [64]
(Hall mobility)

1.4 (e-) [16]

10.4 for Ellc
axis; 9.5 for
E perp. ¢
axis [30,31]

253 [66]

Mature for GaN
HEMTs;
Immature for
vert. GaN
devices

Bothn&p
(Si & Mg)
[3.37]

Dual use /
low cost

50-mm GaN
substrates;
GaN layers on
150-mm SiC &
200-mm Si

ALGa N

Interpolation
[37]

Varies non-

uniformly by

composition
“1

Various
(see
Doping
below)

Interpolation

Various

Various

Interpolation

Interpolation

Immature

n (Si) below
70% Al;

P (Mgdeep)
[35,37]

Dual use
I low
cost?

Uses
common
substrates
for GaN

6.0 [4]

154
[after 9]

Low at
300 K

426/ 300
2006 [63]/
1994 [52]

1.3 (e7)
[16]

9.76,E//c
axis [18];
NR perp.

to c axis

285/319
both 1987
[34]

Immature

Possible
S donor
[35]; no
good
acceptor

Low
volume/
high
cost?

2016:25

mm
2017:50
mm

[36]

Example
AIN/GaN
HEMT [1]

multiple

26
(reported)

1.2x10"

1200
(Hall
mobility)

2.8 (e-);
velocity
overshoot
due to short
gate [16]

<370[3]
(on 4H-
sic)

Mature

Polarization-
induced
2DEG

Mid to low
volume/
Mid to
high
cost?
On75-
mm SiC

UWBG Working Group

Parameter Refresh

B-Ga,0; Cubic BN Diamond Diamond
Mos
4.9 [5] 6.4 [6] 5.5[7] multiple
10.3 17.5 13.0 Depends on
[after 9] [after 9] [after 9] insulator
1.5x10" / TBD Various Various 4x1013/
2012[38]/ - (see Doping (see Doping 1.7x101¢
below) below) 2 [:";']’2“3
153/ 225 825/ TBD 4500/ 7300 TBD
(Hall mobility) (Hall mobility) 2002[26]/ 2014
2015[11]/ 2017 2003 [19] / - [27]
[65]
- 500/ TBD 3800/ 5300 340-47 |
(Hall mobility) 2002[26]/ 2014 TBD
1998 [20] / - 271 (over 2x10"7 —
6x10' cm hole
density)
2016[50]/ -
-/11@10%® - 1.9/2.3 (e-) TBD / TBD (e-)
cm? (e-) 2006 [33] / 1975 [28] ~0.94/ TBD
- 12015 [13] 1.4/1.1 (holes) (holes)
2006 [33] / 1981 [29] 2008[51]/ -
10 [12] 71 [21] 5.7[7] Depends on
insulator
11-27 1 16-22 768/ 940 22701/ 2290 2270 / 2290
2015[14]/ 2015 (nltumlﬁls)e!aplc (naturalisotopic (l!il’lll’r:!u!:’owplc
[15] ratio] ratio)
--12145 3300/3450 = 00013450
(isotopically (pure 12C; 1992-3 [24, 2511
pure] 1992-3 [24, 25]/ 2013 2013 [23]
1983 [22] /2013 [23] 23]
| e e e e
n type ntype Uﬂ"":;’p'e"::r'""‘ Surface-
(Sn donor) (S donor); Ny < mid10% cm; transfer
[38] deep Heavy for Ny, Ny > doping [48 -
acceptors [40]  mid-10' cm? [42-44] 51]
Dual use / low Low Low volume/ Low
cost? volume/ high cost? volume/
high cost? high cost?
2016: 50 mm Few-mm 2016:15& 25mm ‘2:51?6]151&;: mm
¢ i [45,46]. 7x20 mm; 301 JiX20 mim,
2017:1 ;)90 mm size Ht:IHT VAt o ._,,g‘.,:;,s,:o,‘d
[ER] Crystais on Si [47,58]. o SHIeG Eal,

2018: 38 mm [46].

2018: 38 mm [46].

Data format often is: Measured number / Theoretical number
Year [ref.] / Year [ref.]

» Working group study reviewed the
literature and determined best-
known parameters for WBG and
UWBG materials

» Materials included are:

*  GaN (reference)
. AlGaN
. AIN
. AlGaN/GaN HEMT
*  B-Ga0,
. c-BN
. Diamond
. Diamond MOS
» Results reported in J. Y. Tsao et al.,
Adv. Elec. Mat. 4, 1600501 (2018)

Next UWBG workshop coming up
May 14-16 at ARL in Adelphi, MD

@ENERGY, NYSA



Impact of Critical Electric Field

on Breakdown Voltage

Breakdown Voltage [k Breakdown Voltage [k
‘ | W, >W

50 / (non-puﬁch-th?ough)

® o GaN

W, > W,
fon-punch-through)

W, < Wy

5 Wp < WD (punch-through) (punch-through)

0 L I I Il I
10 5x10™ 10" 5x10" 10'"® 5x10"® 10"

14 14 4n15 15 4n16 16 4ni7
o 10 5x10™ 10 5x10Y 10 5x10™ 10
N, [om™] g ’

* Increasing E. may significantly increase Vg
* 100 kV device may be possible using materials like AIN
* But low doping and thick drift layers are also required

J. Dickerson, SNL




Power Density Scaling with i ]

Semiconductor Material Properties

. 600 — | -
T [
— .- i
‘gg“m: : :GEN #’__.-"‘! :
@ | | ol - '
c > 4H-SIC | .- |
g% 200 1 .k :
c o Ui £ _--7" » i
RO |~ -oF ' AIN |
O olkha” & i , H
0 5 10 15 20 25 30
HMFOM (Relative to Si)
a de-dc Converters o 3-® Inverters SNL “Coln Lonverter ;
e 1-® Inverters = 3-d Rectifier 90V, 90 mA -> 215 W/in
- -Trend
Relative Figures of Merit: HM-FOM seems to be a good
* Vertical UFOM = ¢ E3 predictor of power density in a
« Huang Material FOM = E_ /2 variety of power converter types

R. J. Kaplar, J. C. Neely, et al., IEEE Power Electronics Magazine (March 2017)
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UWBG Working Group Study: Twenty-Six Research -

Opportunities Identified for Technology Maturation

Four topical areas: J. Y. Tsao et al., Adv. Elec.
1. Materials: Bulk and epitaxial growth, point Mat. 4, 1600501 (2018)
and extended defects, doping, materials == s
. . Ultrawide-.B.andgap Semiconductors: Research
characterization, fundamental theory and DFT f’fg:ffj"C':jj::jjhjjz"fj
2. Physics: Electronic transport at low and high ¢
fields, optical properties, phonon transport, i i s
electrical breakdown, carrier confinement e
3. Devices: Device architectures, fundamental =

limits to device performance, device
fabrication and processing techniques, co-
design for thermal packaging

DO 10.1002/2eim. 201600501

4. Applications: New applications enabled by —
UWBG deylce's, device performance targe.ts, L combined topics in
power switching needs, RF needs, UV emitter report; 26 research
& detectors, quantum information — challenges identified

NYSA i




Doping Challenges in

UWBG Materials

p-type doping very challenging with c o
increasing Al: kT~ 0.026 eV
E,(GaN)~180meV | | e, M Thermal activation of holes
E, (AIN) ~ 500 meV ? 8 not viable for high-Al alloys
N 5
Homojunction Heterojunction Polarization-doped p-Superlattice
p-GaN p-GaN p-GaN p-GaN
Graded Al composition p-AIN/AIGaN
p-Aly 70Ga 30N ‘ | p-Al 30Ga 70N ‘ | e ‘ ‘ superlattice

——— o ———

n-Alg 70Gag 30N

5-8 um
n = 2-5e16 cm3

AIN
Sapphire

M. Crawford, SNL

NYSA



Edge Termination for High Lo ]

Breakdown Voltage

» Edge termination is critical to prevent
premature breakdown
* Breakdown will be well below value
b e predicted by 1D model if no edge
JTE " lower acosptor densty termination is not used

n-type voltage-blocking layer

—_—»
wider space
n-type voltage-blocking layer

* Due to electric field enhancement at
) E R e ‘ corners, surfaces, etc.
"TE " lower acceptor densiy » Variety of edge termination schemes are
n-type voltage-blocking layer .
possible

(d) * Guard rings, junction termination
extension (JTE), field plates, beveling

* Well-developed for Si and SiC

D][P]lnﬂ[P]ID]F}IDﬂ]PLJ tech no I Ogies
JTE —— o . . .
PP e i * Processing is challenging in UWBG

materials

T. Kimoto and Y. Yonezawa, Mat. Sci. in Semicon. Proc. 78, 43 (2018)

@ ENERGY



Tradeoffs Between Higher Critical Field |

and Reduced Mobility for Alloys

Breakdown voltage of AlIGaN
HEMTs vs. G-D spacing

2000 NaEnjO, IEDEM 2007
S600F~  53% /38%
() : ' : N
o , | \
% 12000 ! !
> : ; : Al 39% / 16%
§ &) _ L-F"ri;- :
L= 5 3 : -1
<~ 400F-4 16%/GaN
o L L R I SN A -
= n ;._.a “:.!::“ ...I.........Jl....,....l...“....j T

0 2 4 6 m 10} 12

'~ Gate-Drain Spacing (um)

Higher Al compositions:
» Higher breakdown voltages

Electron mobility vs. AlIGaN

channel composition
2000 i i i il

t& 1- Nango, TED 2014}
a‘-;? ‘ 2- Hashimoto, PSSC 201
2150 1\ o arraoma 3 Hetmersscd
% ‘ 5-Taniuse, APL2006
gim ~ Alloy scattering
= - & limits mobility  sangia
& e |- 100/85
= Sandia 85/7_#

o K I L i l {

00 02 1.0

Al M@l@ F!ramtmxm —b X, > 85%

Highest Al compositions:
» Higher mobility is predicted

Thermal conductivity has similar issue

NYSA
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Sufficient band offsets
* Low interfacial defect density

Difficult to find gate dielectrics on UWBG materials that have

)
<
<

@ ENERGY

E. A. Paisley et al., Appl. Phys. Lett. 107, 102101 (2015)




Ohmic Contact Development

Al /~a NIAL ~Aa N 0 Aly 35Gag 1sN/Alg 70Gag ;0N
5 3 . Au 50 nm
st P ~10° Q cm? A
3 \ Ni 15 nm
2 —
<, g Al 100 nm
E £ 0
g ? g 2 +1gpm I Ti 25 nm
5- ; ——
- A -t | AlGaN/Substrate
3 %8 30 pm ,
Y e Sai A
4 A " 900°C anneal
2 M3 2 3 0 1 2 3 4 5
3 2 3 Voltage (V)
25 nm Al . Ga, N
| 400 mm Al ;6a,,N Graded heterostructure approach
M-smmmwﬁ%m
Graded Layer 50nm spacing -
lﬁmmm . T T T T T T
_ 2.9 o AN = RC1 =0.15 Q.mm
Sapphire Substrate Sapphire Substrate R, = 158 Q/sq

-l
o
T

»
T

30nm Al, 75Gag 5N
(UID)

AIN on Sapphire

Resistance (ohm)

H
T

- -6 2
psp = 1.4x10™ Q.cm”]

0 1 2 3 4 5 6 7
Spacing (um)

(a) (b)
S. Bajaj et al., Appl. Phys. Lett. 133508 (2016)

Green = Al-Ga-N (high Al)

TEM cross-section: (P. Kotula, M. Miller) .
Blue = Au (some Ti)

Magenta = Ni-Al

B. Klein, SNL Red = Al-Ga-N (low Al)

TV



Example UWBG Device:

Vertical Al, ;Ga, ;N PiN Diode

b Ay N | Gal
p- Aly,Gag N — 0.4 um

= * Drift region doping mid-10'® cm n-type
S + Record Vg2/R,, ., = 150 MW/cm? for AlGaN
— * Drift region thickness = 4.3 um
— (Si grade)

peecec ML T o LT PASSSY * Current density up to 3.5 kA/cm? measured

n+ %Eéamm _? 1.2 ym

wid-Al, 4Gay N — 0.6 pm
AN ~ 1.6 pm

sapphire substrate -1.2 mm 4t 1.5
- 100
Forward bias luminescence il —
< “:3_ < 10 16 mQ-cm?
= = £
2.1 J10" € rry
g2 2 9
8 S é 0.5
1F 41072
<\
0 " ; ” . 0.0 - }
1627 1200 800  -400 0 7 *Voltage (V)
Voltage [V]
A Allorman ot al., Elec. Lett. 52(15), 1319 (2016) On-resistance likely limited by quasi-vertical design

@ ENERGY




Critical Electric Field Scaling and
Thicker Drift Regions for Higher V;

Critical Electric Field vs. Bandgap

~5.9 MV/cm

(scaling as E2)

T 16 | _]
& « lI-Nitrides + AIN
; 14 B ’
= - - ~Hudgins, 2003 - E_.
o 12 (Eg"2.5) P
Q 7
iI 10 ,/ I
2 8 4 57%AIGaN?
o ’ ‘
2 6 # 30%AIGaN? ;
E 4 4 GaN!
= |
G 2 InSb GaAs 4H-siC

0o ® |

0 2 4 6

Bandgap (eV)

Devices grown using thicker
drift regions show higher

breakdown voltage

Current (A)

4.3 um Al, ;Ga, ;N drift region is

punched-through at breakdown

Punch-through analysis indicates E. =

5.9 MV/cm, consistent with E.~E;2>
scaling

Equipment

/ Limited
I I' I v I

0.0

-2.0E-7 1

-4.0E-7 1

-6.0E-7 1

-8.0E-7 1

—5.5um
—T7.5um
9 um

—11 um

-1.0E-6

1 - ArmstrongEL 2016; 2 — Allerman EL 2016; 3 — Nishikawa et al. JJAP 46 (4B), 2316 (2007)

®
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-3000 -2500 -2000 -1500 -1000 -500

Voltage (V)

0




Comparison of Breakdown Voltages
Reported for IlI-N PiN Diodes

GaN diode

(Vertical)

AlGaN di

(Quasi-ver

A. Allerman, SNL

P-contact

Bre?ll((s;) i No (cm-3)  Drift (um) Material Group
4.7 /5.0 2-16e15 33 GaN Hosei Univ.
N+ GaN Substrate 4.0 2-5e15 40 GaN Avogy
N-contact 3.9 3el5 30 GaN Sandia
l' :P'E_ ht, \‘ 3.7 5915 >30 GaN AVOgy
pre0alGal 3.5 1-12e15 32 GaN Hosei Univ.
>3 0.8-3e16 11 30%-AGaN Sandia
I 3.0 0.8-3el6 9 30%-AGaN Sandia
+AlGaN (Contact)
AN 3.0 1-10e15 20 GaN Hitachi
Sapphire
Advantages of Ultra-Wide-Bandgap AlGaN
GaN Al ;Ga, ;N
-3 15 16
N, (cm) low 10 low 10 Larger
Drift (um) 20-30 ~10 E-&E;
TDD (cm-2) <106 low 10° €@ Impact?

Ref

EDL 36 p1180 (2015) /
Jpn J Appl. P. 57 (2018)

EDL 36 p1073 (2015)

EL 52 p1170 (2016)

EDL 35 p247 (2014)

IEDM15-237 (2015)
This work

This work

Jpn J Appl Phys 52
p028007 (2013)
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Al-Rich Heterostructure-Based L]

Transistors

Electrical Characteristics

SGU
Ret:(10,11)GL2D10C2 SGD-SGU SGD
1.0E+20 50
‘ NN T V =54,3-2-101234V
- @ — VNAS5909a - Center 9
1.0E+19 - ; 40+
? 1.0E418 Ei 30l
Aly ;0Gag 30N channel z gy E
£ 10E+17 % 20+
a % E
w N =
E 1.0E416 e 10}
o Y e
Sapphire substrate MR g = 2
1.0E+14 . 10 " : . ) )
0.0 0.1 0.2 03 04 0 2 4 6 8 10
Depth (um) Vvd (V)
® Sheet resistance: 2200 Q /O]
® Pinch-off voltage: -4.5V
® Sheet charge density: 6 x 1012 cm™?
® Inferred mobility: 250 cm?/Vs
® Breakdown field exceeds that of
GaN HEMTs

(@ ENERGY



Extreme Temperature Operation

of AlGaN Transistors

m m 50 50
S G D Illl]llll]llll IIII]IIII]IIII
- AIN barrier : [ 20K | [ ey
40 | Ves=2V | 40 .
Al, Ga, 4N channel
AIN buffer § - § -
AIN substrate i-, 20 E,-, 20
10 10
120~ 0 0
0 5 10 15 0 5 10 15
‘;. 100~ \ Vi V Vi V
§ 80~ a b
E AIN/Al, 6GA, 4N
5 oo : . § -
3 / Drain current is insensitive to
2 40
EE temperature up to 300°C
& 20k Alg p5Gag 75N/GaN . .
e e Likely due to dominance of alloy
0 1 | | | tho i
E — = = = scattering in Al, ;Ga, 4N channel
mpershics, °C  Good Ohmic contacts

N. Yafune et al., Elec. Lett. 50 (3), 211 (2014)
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Ga,O; Transistors

AlLO0,
20 nm
100
Leo L,™2pm, W, =200 um
! b - -
- gofles ™S Lo=180Mm | 4v-0v
Lys=25um AV =4V
n~-Ga,0, channel (0.3 ym) —_— “¥eas
e
UID Ga,0, buffer (0.9 ym) 5 60
Fe-doped semi-insulating c
B-Ga,0, (010) substrate T2 40 V =88\
(a) gl ‘
20
Vh =758V
reir U TP TP Sr—— “‘L—I—I—I—
0 10 20 30 40 700 750 800

V:s (V)

(a)

()

M. H. Wong et al,, Elec. Dev. Lett. 37 (2), 212 (2016)
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Diamond PiN Diodes

n-type
i-layer

p-type

n-type
i-layer

Type lIb Substrate
Type lla Substrate L

2
103!_ ..."‘10’ 10
10'f 10°
?10"_{ 10° “c
af
G10°F Q10" =
?"10-5; 310-2 3
ﬂ10.7{ = =Diode A ] , = -
¢ =/'=Diode B 10 X 35 1
107} <>-o:od:c 10 4 = 1/(kT) (ev4p)7
e Lea a2 4 Leaa a a Lo s a2 3 10 — L |
600 -450 -300 -150 O 0 05 1 15 2 25 3
V (Volts) V (Volts)
(a) (a)

M. Dutta et al., Elec. Dev. Lett. 37 (9), 1170 (2016)
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Summary

» UWBG semiconductors represent the next generation of
semiconductors for high-power electronics

» Material properties directly impact device performance
(e.g. critical electric field)

» But many material properties are not well known, and
many material growth and device processing challenges
exist

» Much research is ongoing, and the literature on UWBG
materials and devices is growing rapidly

NYSA



