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Generations of Semiconductors

➢ Gen 1: Ge and Si
➢ Gen 2: Conventional III-Vs

Arsenides, Phosphides, Antimonides
➢ Gen 3: Wide-bandgaps SiC, GaN,

InGaN
➢ Gen 4: Ultra-Wide-Bandgaps

AlxGa1_,,N, (AlxGal J203, diamond, c-
BN, others



Critical Electric Field and
Unipolar Figure-of-Merit

R„

Drift
region

Substrate

Anode

ineenneeni

Cathode

Electric field

Ec

CD
-C35

Critical electric field
for avalanche breakdown

• Off-state: Integrate electric field to get breakdown voltage: VB = WDEC/2 (1)

• Gauss' law: cEc = qNDWD (2)

• On-state: Current transport due to carrier drift, resistance Ron = WD/CTA

Conductivity cy = minn = qiunND assuming complete dopant ionization

Specific on-resistance Ron,so = RonA = WD/6 lionA = WD/ coinND (3)

• Combining (1) and (2) gives dependence of VB on ND and Ec: VB = ac2/2C1ND

• Combining (1), (2), and (3) one obtains the unipolar "figure-of-merit":

Ronsp = 4VB2/Ellin E3 VB2/Ron,sp = clinEC3/4 Assumptions: Triangular electric field

profile and complete dopant ionization

"647E* 3



Critical Electric Field Scales with
Bandgap and Determines Unipolar FOM
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_ " E 3 varies with

EG at least to the

6th power
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Bandgap (eV)
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Dependence of Ec on EG

needs further study
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102

Improving
performance GaN

I 11 .11

103 104

Breakdown voltage (V)

Unipolar FOM =

VB2/Ron,sp = clinEC3/4

Hudgins et al., IEEE Trans. Pwr. Elec. 18, 907 (2003); J. Y. Tsao et al., Adv. Elec. Mat. Adv. Elec. Mat. 4, 1600501 (2018)
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UWBG Working Group

Parameter Refresh
Material-Properties Table for Electronic Applications

Parameter at
27°C

GaN
(for

reference)

AIN Example

AIN/GaN
HEMT [1]

p-Ga00, Cubic BN Diamond iamon
MOS

Bandgap (eV) 3.4 [3] h'emowl." 6.0 [4] multiple 4.9 [5] 6.4 [6] 5.5 [7] multiple
[37]

Proj. bulk Ec 4.95 [8] vaZry,onb- 15.4 2.6
(MV/crn at (measured MaosrtionY [after 9] (reported)
doping = 1016 baseline) [411
CM-3)

10.3
[after 9]

17.5
[after 9]

13.0 Depends on I

[after 9] insulator

n, (cm') Various Various Low at 1.2x10'3 1.5x1013 / TBD Various Various

(see Doping (see 300 K 2012[38]1-- (see Doping (see Doping
below) Doping below) below)

below)

4x10,3/
1.7x10,4

2012 [48] / 2013
[49]

e- drift 1000 '333.33.1363." 426 / 300 1200
mobility [3,32,52,53] 2006 [63] / (asa

(crns/V.$) 1994 [52] III.xn‘YI

153 / 225
(Hall mobility)

2015 [11]/ 2017
[65]

825 / TBD 4500 / 7300 TBD
(H. eloxlitg 2002 [26] / 2014
2003 [19] / [27]

hole drift 11 [64] Various

mobility (Hall mobility)

(cm2/V.$)

500 / TBD 3800 / 5300
(Hall mobility) 2002 [26] / 2014
1998 [20] / [27]

340-47 /
TBD

(over 2x10c -
6x10. cm" hole

density]
2016 [50] 1 --

v. 1(107
cm/s):
e- & holes

1.4 (e-) [16] Various 1.3 (e-)
[16]

2.8 (e-);
velogitY
orshoot
due
ve
to short

gate [16]

--/ 1.1 @ 101.
cm-3 (e-)

--/ 2015 [13]

1.9 / 2.3 (e-) TBD / TBD (e-)
2006 [33] / 1975 1281 - 0.94 / TBD
1.4 / 1.1 (holes) (holes)
2066 [33] / 1981 [29] 2008[51]/ --

Relative
permittivity

10.4 for E//c ince-Poise. 9.76, Eflc
axis; 9.5 for axis [18];
E perp. c NR perp.

axis [30,31] to c axis

10 [12] 7.1 [21] 5.7 [7] Depends on

insulator

Qthermal
(W/m.K)

253 [66] Interpolation 285 / 319 < 370 [3] 11-27 / 16-22
both 1987 (on 4H- 2015 [14] / 2015

[34] SIC) [15]

768 / 940
(natural isotopic

ratio)
/ 2145

(isotopically
pure)

1983 [221 / 2013 [23]

2270 / 2290
(natural isotopic

ratio)

3300 / 3450
(pure.C)

199,3 [24, 25] / 2013
[23]

2270 / 2290
(natural tsotopic

ratio)
3300 / 3450

(Purel3C)
1592-3 [24. 25] /

2013 [23]

Maturity
assessment:

Mature forGaN immature immature Mature Immature Immature Immature Immature
HEMTs;

lmmaturetor
vert.GaN
devices

- Doping (p
n); or
polarization-
induced; or
surface-transfer

Both n & p
(Si & Mg)
[3,37]

n (Si) below
70% Al;

p (Mg deep)
[35,37]

Possible
S donor
[35]; no
good

acceptor

Polarization-
induced
20EG

n type
(Sn donor)

[38]

n type Light to medium Surface-
(S donor); No .,Pnrra rcm.), transfer

deep Heavy for eln, let > doping [48 -
acceptors [40] mid-10s cm' [42-44] 51]

- Dual-use/

low-cost or
low-volume/
high-cost

Dual use / Dual use Low
low cost / low volume/

cost? high
cost?

Mid to low
volume/
Mid to
high
cost?

Dual use / low Low Low volume/ Low
cost? volume/ high cost? volume/

high cost? high cost?

- Substrate
size/
availability

50-rnm GaN
substrates;
GaN layers on
150-inin SiC
200-min Si

Uses 2016:25
common mm
substrates 2017:50
for GaN mm

[36]

On 75- 2016: 50 rnrn Few-rnrn 2016:15 825 mm 2016: 15 8 25 mm

rnrn SiC 2017: 100 rnrn size HPHT [45,46]. 7020mm; [45,46]. 7220 nen;
Larger diamond L arger chmlond

[39] crystals on $i [47,58]. on Si [47,58].

2018:38mm [46]. 
2018: 38 mm [46].

Data format often is: Measured number / Theoretical number
Year [ref.] / Year [ref.]

➢ Working group study reviewed the

literature and determined best-
known parameters for WBG and

UWBG materials
➢ Materials included are:

• GaN (reference)
• AIGaN

• AIN

• AIGaN/GaN HEMT

• 13 a 203

• c-BN

• Diamond
• Diamond MOS

➢ Results reported in J. Y. Tsao et al.,
Adv. Elec. Mat. 4, 1600501 (2018)

Next UWBG workshop coming up

May 14-16 at ARL in Adelphi, MD

® U.S. DEPARTMENT OF

ENERGY



Impact of Critical Electric Field
on Breakdown Voltage
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35
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0
10

14

Breakdown Volta e

WP < WD (punch-through)

5x1014 1015

WP WD
(non-punch-through)

5x10
15 

10
16

ND [CIT1 3]

5x1016 1017

12

10

8

6

70

60

50

-E- 40
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10

0
1014

Breakdown Volta

5x1014 101:: 5)(10 '' 1015

N [crn-3]

• Increasing Ec may significantly increase VB
• 100 kV device may be possible using materials like AIN
• But low doping and thick drift layers are also required

J. Dickerson, SNL
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,tt 26- 41

Power Density Scaling with

Semiconductor Material Properties

GaN

4H-SiC

Si
I

go'

IP

•

AIN
0
0 5 10 15 20 26 30

HMFOM (Relative to Si)

..111.11111

jA dc-dc Conv4) erters o 3- Inverters
• 1-4, inverters = 34 Rectifier
- -Trend

Relative Figures of Merit:

• Vertical UFOM = c[tnEc3

• Huang Material FOM = Edin1/2

R. J. Kaplar, J. C. Neely, et al., IEEE Power Electronics Magazine (March 2017)

SNL "Coin Converter"
90 V, 90 mA 4 215 W/in3

HM-FOM seems to be a good

predictor of power density in a

variety of power converter types

7



UWBG Working Group Study: Twenty-Six Research

Opportunities Identified for Technology Maturation

Four topical areas:

1. Materials: Bulk and epitaxial growth, point

and extended defects, doping, materials
characterization, fundamental theory and DFT

2. Physics: Electronic transport at low and high

fields, optical properties, phonon transport,

electrical breakdown, carrier confinement

3. Devices: Device architectures, fundamental
limits to device performance, device
fabrication and processing techniques, co-
design for thermal packaging

4. Applications: New applications enabled by
UWBG devices, device performance targets,
power switching needs, RF needs, UV emitter

& detectors, quantum information

J. Y. Tsao et al., Adv. Elec.
Mat. 4, 1600501 (2018)

REVIEW A pwtRcep
MATERIALS

Ultrawide-Bandgap Semiconductors: Research
Opportunities and Challenges

J. Y. Tsao,. S. Chowdhury, M. A. Hollis.' D. Jena, N. M.Johnson, K. &Jones, R.J.
S. Rajan, C G. Van de Walk, E. &Pout, C L Chua, R. Collwo, M. E. Colthn,J. A Cooper,

K. R. Evans, S. Graham, T. A Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam,

P. W. Juodatvikis, M. A. Khan, A. D. Koehler,J. H. Leach, U. K. Mishra, R.J. Nemanich,

R. C. N. Pilawa-Podgunki,J. B. Shealy, Z. Sitar, M.J. Tadjer, A F. Witutski, M. Wraback,

and J. A Simmons
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Doping Challenges in

UWBG Materials

p-type doping very challenging with

increasing AI:

Ea (GaN) —180 meV

Ea (AIN) — 500 meV

Homojunction

p-GaN

p-A10.70Ga0.30N

M. Crawford, SNL

Mg

Ev j

Heterojunction

p-GaN

p-A10.30Ga0.70N

Polarization-doped

p-GaN

Graded Al composition
(0.704 0)

n-A10.70Ga0.30N

5 - 8 !um

n = 2-5e16 cm-3

n-A10.70Ga0.30N

AIN

Sapphire

kT 0.026 eV

Thermal activation of holes

not viable for high-Al alloys

p-Superlattice

p-GaN

suoeriattice 

itiERBelr m ic&co
N V kw 4.?A-4



Edge Termination for High

Breakdown Voltage

(a)

(b)

(d)

surface pass4varroa layer
•••••••••••,•••,•••••••••,•,•••••••••••••••••44.•...,.1 • . • . • • • • • • • . •4 • • • • .

11111111111rnir"lir"j"

n-type voltage-blOCklog laYer

surface passavabon layer

P. p

JTE tower acceptor densay

n-type voltage-blocking layer

surface passrvalion layer. . .
P-

JFE 
lower acceptor densoty

n-type voltage-blocking layer

surface passmakon layer

P-

JTE

n-type voltage-blocking layer

p

miler space

surfeCC passrvatiOn layer

P 1[ PI 1.P.1 IP] 1P1PIPI Irl 
JTE

ander space narrower nag

n-type voitage-blocking Layer

➢ Edge termination is critical to prevent
premature breakdown
• Breakdown will be well below value

predicted by 1D model if no edge
termination is not used

• Due to electric field enhancement at
corners, surfaces, etc.

➢ Variety of edge termination schemes are
possible
• Guard rings, junction termination

extension (JTE), field plates, beveling
• Well-developed for Si and SiC

technologies
• Processing is challenging in UWBG

materials

T. Kimoto and Y. Yonezawa, Mat. Sci. in Semicon. Proc. 78, 43 (2018)

INIRlifec;ri kavtc-44 10



Tradeoffs Between Higher Critical Field
and Reduced Mobility for Alloys

Breakdown voltage of AlGaN

HEMTs vs. G-D spacing

Nanjo, IEDM 2007

53% / 38%

39% / 16%
I.

",.I , .. r"*

I .r•

16% / GaN

--- -
1  

r) 12.
Gate-Drain Spacing (µm)

Higher AI compositions:

Higher breakdown voltages

2000

1500

0

Electron mobility vs. AIGaN

channel composition

11

1- Nengo, TED 2014)
2- Heshimotoi PSSC 201.
3- Heshimotoi PSSC 2014
4- Heshimotoi PSSA •
5-Teniustit APL 2006

Alloy scattering

limits mobility Sandia

100/85
Sandia 85/70

••••.0

0.0 0.2 0.4 0.6 0.0 1.0

AI Mole Fraction XAI > 85%

Highest AI compositions:

Higher mobility is predicted

Thermal conductivity has similar issue

ENERGY
Iffk .W ICI•95
V A' ?A-4 1



Gate Dielectrics for

UWBG Materials

(Mg,Ca)0/GaN heterovalent interface

b

MCO
2 nm

• • • 4 .11 M 4 ki k , y rr .1 4
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)
 

3.0

Band Offsets

•
2.5

2.0

1.5
0

1.0

0.5

0.0
0 20 40 60 80

Al (%x) content AlxGa1-xN

Difficult to find gate dielectrics on UWBG materials that have:
• Sufficient band offsets
• Low interfacial defect density

•

•

• Valence band
• Conduction band

E. A. Paisley et al., Appl. Phys. Lett. 107, 102101 (2015)

100
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Ohmic Contact Development

5

4

3

2

Ze 1

1-; 0
-1

-2

-3

-4

5
-3

A I /T.% RI IA I ft.% Al

- pc -10-5 cm2

t;

- 5 pm
- 10 pm

- 15 pm
20 pm
25 pm
30 pm

-2 •1 0 1
Voltage (V)

2 3

415ama,46.~

1.16rreimidgl

SamadmeSakiblette

TEM cross-section: (P. Kotula, M. Miller)

B. Klein, SNL

Alo 5Gao. 5N/A10 0Ga0.30N

-3 -2 -1 0 1
Voltage (V)

2 3 4 5

Graded layer 50 en

Green = Al-Ga-N (high Al)

Blue = Au (some Ti)

Magenta = Ni-Al

Red = Al-Ga-N (low Al)

Au 50 nm

Ni 15 nm

Al 100 nm

Ti 25 nm

AlGaN/Substrate

900°C anneal

Graded heterostructure approach

S 4

Rc1

spacing
  D

t=4> RSH  

-Mr
AIGaN channel

30nm Alo 75Ga0 25N
(UID)

AIN on Sapphire

(a)

cu

Q)

14

4

... .....

Rcl = 0.15 Q.MM

RsH = 158 C2/sq

E,SP = 1 .4x1 0-6 .Q.CrT12-

1 2 3 4 5 6

Spacing (prn)

(b)

S. Bajaj et al., Appl. Phys. Lett. 133508 (2016)

T
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Example UWBG Device:

Vertical A10.3Ga0.7N PiN Diode

p- A µon

+

A
KVRXC1/4"CCCO1

—

—11.6

Forward bias luminescence

A. Allerman et al., Elec. Lett. 52(15), 1319 (2016)

10°

• Drift region doping mid-1016 cm-3 n-type

• Record VB2/Ron,sp = 150 MW/cm2 for AIGaN

• Drift region thickness = 4.3 lam

• Current density up to 3.5 kA/cm2 measured

C
u
r
r
e
n
t
 [
it

A]
 

1.5

16 mci-cm2

3 4
-1627 -1200 -800 -400 0 

1 2 

Voltage (V) 
5 6

Voltage [V]

On-resistance likely limited by quasi-vertical design

0
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Critical Electric Field Scaling and
Thicker Drift Regions for Higher VB

Critical Electric Field vs. Bandgap

16

14
• Ill-Nitrides AIN

>

— 12 - - - Hudgins,2003 Ecrit 5.9 MV/cm

as Eg2 5)
-a

10

(EgA2.5)
(scaling

LE

8 57%AIGaN3

a) 6
LTJ

30%AIGaN2

Tz 4 GaN1

2 _do

0
InSb GaAs
•

4H-SiC

2 4 6
Bandgap (eV)

Devices grown using thicker
drift regions show higher

breakdown voltage

• 4.3 [tm A10.3Ga0.7N drift region is
punched-through at breakdown

• Punch-through analysis indicates Ec =
5.9 MV/cm, consistent with Ec—E62.5
scaling

0.0

-2.0E-7

-4.0E-7
•Cd

-6.0E-7
C.)

-8.0E-7

-1.0E-6
-3000 -2500 -2000 -1500 -1000 -500

Voltage (V)
1 — Armstrong EL 2016; 2 — Allerman EL 2016; 3 — Nishikawa et al. JJAP 46 (4B), 2316 (2007)

Equipment
Limited

5.5 um

7.5 um

9 um

11 um

eiNERBecir MI .vAr+cr5
VAT4 ?A-4 15



Comparison of Breakdown Voltages
Reported for III-N PiN Diodes

GaN diode

(Vertical)

AIGaN di

(Quasi-ye!

A. Allerman, SNL

P-GaN

n- GaN

(Drift region)

N+ GaN Substrate

N-contact

N-contact

P Contact

p-30%AIGaN

n-30%AIGaN
(Drift )

N+ 30%AIGaN (Contact)

Sapphire

Breakdown
(kV)

No (cm-3) Drift (um) Material Group Ref

4.7 / 5.0 2-16e15 33 GaN Hosei Univ.
EDL 36 p1180 (2015) /

Jpn J Appl. P. 57 (2018)

4.0 2-5e15 40 GaN Avogy EDL 36 p1073 (2015)

3.9 3e15 30 GaN Sandia EL 52 p1170 (2016)

3.7 5e15 >30 GaN Avogy EDL 35 p247 (2014)

3.5 1-12e15 32 GaN Hosei Univ. IEDM15-237 (2015)

>3 0.8-3e16 11 30%-AGaN Sandia This work

3.0 0.8-3e16 9 30%-AGaN Sandia This work

3.0 1-10e15 20 GaN Hitachi
Jpn J Appl Phys 52

p028007 (2013)

Advantages of Ultra-Wide-Bandgap AIGaN

GaN

No (cm-3) low 1015

Drift (µm) 20-30

TDD (cm-2) < 106

A10.3Ga0.7N

low 1016 I 
IN 

Larger

—10 EC & EG

low 109 IN Impact?

ENEkair •Vmr&ci, 16



Al-Rich Heterostructure-Based

Transistors

A10.85Ga0.15N barrier

A10.70Ga0.30N channel

AIN nucleation and buffer layer

Sapphire substrate

1.0E+20

g 1.0E+10
61.

1.0E+12

Ea 1 0E+16
ss
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• Sheet resistance: 2200 S//

• Pinch-off voltage: -4.5 V

• Sheet charge density: 6 x 1012 cm-2

• Inferred mobility: 250 cm2/Vs

• Breakdown field exceeds that of

GaN HEMTs
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Extreme Temperature Operation

of AIGaN Transistors
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Drain current is insensitive to

temperature up to 300°C
• Likely due to dominance of alloy

scattering in A10.6Ga0AN channel

• Good Ohmic contacts
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Ga203 Transistors
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Diamond PiN Diodes
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Summary

➢ UWBG semiconductors represent the next generation of
semiconductors for high-power electronics

➢ Material properties directly impact device performance
(e.g. critical electric field)

➢ But many material properties are not well known, and
many material growth and device processing challenges
exist

➢ Much research is ongoing, and the literature on UWBG
materials and devices is growing rapidly
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