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Nanostructuring has become a promising strategy for enhancing hydrogen storage properties of
metal hydrides. Nanostructured and nanoscale hydrides can strongly influence the thermodynamics
and kinetics of hydrogen absorption and desorption by modifying the reaction pathways and
increasing the rate-limiting reaction rates. Additionally, the materials at the nanoscale offer the
possibility of tailoring technical parameters independently of their bulk counterparts.

Ob ective: Use nanostructuring to improve kinetics, alter reaction pathways, and study the
effects of particle size, defects, and nanointerfaces on thermodynamics.
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Synthesis of nanoscale metal hydrides
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The HyMARC team exploring nanoconfinement as a general strategy to create nanoscale metal
hydrides, either by confining nanoparticles inside a host (nanoscaffolding) or by encapsulation of a
material with a rigid matrix (nanoencapsulation). The scaffold has pores into which the confined
material is introduced, bound, and then restricted from movement. Nanoencapsulation includes
incorporation of a nanoscale hydride inside a secondary material which is not necessarily porous, and
itivulvus a-pru-fur mud riariuslruuluru lhal club cis a bar Hut lu parliulu/grairi gruwlh arid dyglurriurciliuri.

Enthalpy-entropy effects in nanoscale hydrides
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Nanoscale metal hydrides display Pressure-Composition-Temperature
(PCT) isotherms that are substantially modified compared to bulk.
o Nanoconfinement of binary (MgH2) and complex metal hydrides

(LINH2/2LIH, NaAIH4) is accompanied by a decrease in AH, which is
often counteracted by a decrease in AS.

o Calculations reveal that the enthalpy-entropy compensation in
nanoscale metal hydrides is due to anharmonic surface entropy effects.
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Stress and strain effects
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Our goal is to establish a mechanistic understanding of strain and
stress effects on the kinetics and thermodynamics of metal
hydrides. (7)
o Our calculations indicate that polycrystalline metal hydrides 20

experience higher local stresses, that can enhance the reaction
kinetics . 10

o The mechanical stiffness of the host was found to have a large
effect on the reaction enthalpy, with the stiffer substrates 0
resulting in larger decreases in dehydrogenation enthalpy.
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FT-IR spectra and TEM images of (i) as-
synthesized (black), (ii) dehydrogenated
(red), (iii) rehydrogenated (blue) Mg(BH4)2.
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Role of internal nanointerfaces
Li3N nanoconfinement

Metallic Li

Liquid NH3

• •

Bulk
Li3N + H2 Li2NH + LiH

Li2NH + LiH + H2 LINH2 + 2LiH

Nano (Li3N in 3-10 nm nanoporous C):
Li3N + 2H2 LiNH2 + 2LiH

o The Li3N@C nanocomposite displays one of
the highest reversibly H2 capacity among
nanoconfined metal hydrides (5.2 wt% H2).

o The full cycling capacity in the Li3N/[LiNH2 +
2LiH] system occurs 180°C lower than bulk.

o DFT and phase-field modeling results show that
internal nanointerfaces and the core-shell
microstructure are responsible for the dramatic
improvements in hydrogen storage properties of
the nanoconfined Li3N/[LiNH2+2LiH].
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o Reduced graphene oxide (rGO) are versatile in encapsulation of MgH2 and Mg(BH4)2 nanoparticles.
o The weight penalty is minimized by confining the hydride in atomically thin graphene sheets, with the

added benefit of protecting the hydride from oxygen and moisture.
o In the case of MgH2, the reversible capacity reaches 7.0% by weight, whereas in the case of Mg(BH4)2,

the maximum hydrogen capacity exceeds 10%.

Molecularly dispersed metal hydride species
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o A new form of hydride nanoconfinement is demonstrated by creating molecular Mg(BH4)2 species
coordinated to bipyridine nitrogen atoms inside pores of Ui0-67bpy.

o TEM/EDS measurements reveal that Mg and B are homogeneously distributed within Ui0-67-bpy.
o Nitrogen and magnesium edge XAS data confirm bidentate coordination of Mg(ll) by N-chelate groups.
o Sieverts measurements unveil that the hydrogen desorption kinetics are faster than for bulk Mg(BH4)2 ,

with the onset of hydrogen desorption lower compared to bulk.

Summary and Conclusions
Nanoscaffolding in carbons and nanoencapsulation in graphene-based materials leads to

significant improvements in both the kinetics and thermodynamics of hydrogen storage reactions.

PCT and direct van't Hoff measurements indicate that the entropy of hydrogen desorption is

reduced at nanoscale. DFT data show that this is due to anharmonic surface entropy effects.

Experiments and theory suggests that strain, stress, and nanointerfaces can govern the hydrogen

uptake and release in MgH2, NaAIH4, LiNH2/2LiH, and high-capacity metal borohydrides.
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