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Background

• US DoE Advanced Scientific Computing (ASC) is refreshing their major computing

resources

• FY16 Trinity — Split Intel Haswell and KNL cluster

• FY19 Sierra — IBM Power with Nvidia accelerators

• FY21 ATS-3 — In bidding process

• The DoE realized that current production codes wouldn't run on these modern
architectures

• New program element to develop new applications

• Advanced Technology Demonstration and Mitigation — ATDM

• ATDM has since moved into the exascale computing initiative — ECP

• ATDM culminates in a level 1 milestone in FY20
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EMPIRE

• Sandia has two applications which are designed to meet the goals of the ATDM
project

• EMPIRE — Sandia's electromagnetic plasma simulation tool

• SPARC — Sandia's hypersonic reentry code

• EMPIRE — ElectroMagnetic Plasma In Realistic Environments

• Code being built up from scratch starting in 2015

• Well, built using an existing component infrastructure inside of Trilinos

• Goal — Hybrid PIC-Fluid simulation for a 30B element mesh simulation on half of

Sierra and one other capability cluster (Trinity or Astra)

• Build on the SNL component architecture
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EMPIRE expands simulation capability across the plasma physics spectrum

• EMPHASIS: Current production tool

• EMPIRE adds new capabilities:

• Written for advanced computing

a rch itectu res

Code

EMPHASIS

EMPIRE

• Expanded particle-based modeling regime

• Full continuum fluid plasma modeling for

high density plasmas

• Hybrid particle-fluid modeling for

intermediate densities

• EMPIRE will enable:

• Higher fidelity modeling of critical plasma

applications

• Towards exascale simulation
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EMPIRE Overview

• EMPIRE is Sandia's "next generation" plasma simulation tool

• Unstructured mesh

• Finite element discretization

• Particle in cell or multi fluid discretizations

• Developed for performance portability

• Uses implicit compatible discretization for Maxwell's equation
• Different time integration methods

• Requires a matrix inversion each time-step

• Uses projected electric fields to push particles
• L2 or lumped

• Supports 2 and 3 dimensional models

• Particles scale to 1/4M cores on Trinity
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EMPIRE-EM

• EMPIRE-EM is the electromagnetic solver, and ...

• Time integration routines

• Diagnostics

• Parsing utilities

• Output utilities

• Utility classes

• EMPIRE-EM holds everything that is used by multiple modules

• EMPIRE-PIC and EMPIRE-Fluid build upon this core piece of code
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EMPIRE Hierarchy

■ EMPIRE is built upon the Trilinos library

• Panzer is the top level library which provides all the FEM discretization tools

Simplifies the assembly of linear and non-linear FEM problems

Assembles residual and Jacobian systems

• Trilinos also provides the linear solver technology

Belos — Krylov solvers

MueLu — Multilevel preconditioner

Teko — Blocked linear system library

Tpetra — Sparse distributed matrices and vectors

Tempus — General time integration package

• Kokkos — Portable threading library for CPU/GPU systems

EMPIRE-
Hybrid

;
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EMPIRE Base Component

• EMPIRE base component provides the basic infrastructure for EMPIRE

• Electromagnetic and electrostatic discretizations and solvers

• Matrices are built using the Panzer component of Trilinos

• Decompose a complex model into a graph of simple kernels

• Assemble these operations into a directed acyclic graph (DAG)

• Evaluate the graph building Jacobian terms through automatic differenation

• Time integration infrastructure

• Diagnostic infrastructure

• Point, Line, and volumetric diagnostics supported

• Parsing and input deck validation utilities

Focus of
this section

EMPIRE
Suite

EMPIRElt
Hybrid

EMPIRE-
PIC

EMPIRE EM

Panzer/Trilinos
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Equation Sets

DAG-based Expression Evaluation

• Decompose a complex model into a graph of simple kernels

(functors)
• Decomposition is NOT unique

• Supports rapid development, separation of concerns and
extensibility.

• A node in the graph evaluates one or more fields:

• Declare fields to evaluate

• Declare dependent fields

• Function to perform evaluation

• Separation of data (Fields) and kernels (Expressions) that

operate on the data
• Fields are accessed via multidimensional array interface (shards or kokkos)
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Handling Maxwell Equation Involutions
Function spaces posses an exact sequence property where the
derivative maps into the next space, e.g.:

Hv p Hv L2
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Exact sequence finite elements have been constructed1 (note 17,,h c 1-1,):
Nodal Edge space Face space Cell space

space Vvh VhVX Vh V2h

V V X V •
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1 Bochey, P., Edwards, H. C., Kirby, R. C., Peterson, K., & Ridzal, D. (2012).
Solving pdes with intrepid. Scientific Programming, 20(2), 151-180.



Enforcing no magnetic monopoles

Continuous:

v . (013 + v x E) = o  v • atB = 0
at

V • B = 0 (assuming satisfied at t = 0)

Discrete FE: 

Let Bh c V.

Edge space
17vh;<
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Face space
17vh.

arTtil cqx , then the argument is straightforward and follows
the continuous case:

.  
aBh 
( x Eh Bh =) =   •v

at 
+v o •› v Ot 0

V • Bh = 0 (assuming satisfied at t = 0)

Note that no magnetic monopoles is enforced strongly 11



Enforcing Gauss Law (CG fluids, DG in progress)
Continuous: Nodal Edge space

V • (atE c2V x B =
CO a

at ( V • E) =

ma

1 
o • (paua)

CO a Ma

x  qa
at (V•E) = 

1 2_  atpo,   V • E = 1—
co Tria COa

Discrete FE (ignoring BCS): 
Let Eh c qix at4 pa Uha Sah EV4

Ampere's Law

OtEh • Oh — Bh • V X Oh = — — 
q

60 a

pa ua)

Use continuity

a ma

7 then using the weak forms:

ma
phaucch voh c v1-4x

space 17vh
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Continuity
atpah h h v e c vI4

Use exact sequence on the test space and substituting continuity into Ampere's:

Apply Exact Sequence: Vsph E vo

OtEh • V0h = 1 q pah ucch voh,
CO Tnaa

Apply Continuity
1 qcv h

atiOce016 > Eh • v0h =
CO rnaa a

qa h h
Pa0
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General Performance Strategy

■ EMPIRE has adopted an MPI+X approach

■ MPI is used for across node or sockets

■ Some threading approach is used on node

■ Kokkos provides an abstraction layer for X

■ In Kokkos one can choose Pthreads, OpenMP or Cuda as X

■ This allows us to write a single code and achieve portable execution

■ Work and specialization is still required to achieve performance on different systems

■ Different aspects of the algorithm are broken into a per-particle or per-element
block

■ Blocks are then distributed across different threads via kokkos
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Abstractions
Patterns, Policies, and Spaces

■ Parallel Pattern of user's computations

■ parallel_for, parallel_reduce, parallel_scan, task-graph, ... (extensible)

■ Execution Policy tells how user computation will execute

■ Static scheduling, dynamic scheduling, thread-teams, ... (extensible)

■ Execution Space tells where computations will execute
■ Which cores, numa region, GPU, ... (extensible)

■ Memory Space tells where user data resides
■ Host memory, GPU memory, high bandwidth memory, ... (extensible)

■ Layout (policy) tells how user array data is laid out
■ Row-major, column-major, array-of-struct, struct-of-array ... (extensible)

■ Differentiating: Layout and Memory Space
■ Versus other programming models (OpenMP, OpenACC, ...)

■ Critical for performance portability ...



EMPIRE-PIC Component

• EMPIRE-PIC builds on the base components adding a particle discretization

• Structure mimics the base component

• Augments parsing and diagnostics routines

• Augments the time integration routines

• Standard leap-frog implemented

• Contains all the boundary, loading for particles

• Field based boundary conditions live in the base class
EMPIRE

/ Suite

Focus of
this section

PIC • Fluid

EMPIRE EM

Panzer/Trilin
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Particle Formulation for Plasmas
Sandia
National
Laboratories

Particle in Cell (PIC) is a solution technique which uses the particle formulation for
plasmas

Assumes that the particle distribution is represented as a delta function of particles in both space
and time

f =16(x-xi)6(v-vi)

Then Newton's laws are applied to these particles

dYi qi
  = vi, =   E(xi) vi x fi(xj))
dt dt mL

Then the distribution is updated

j
+ 2  Vf, (11 (f(x,i)+vi x f3(x2))8f? 0
m Oft

Resulting in the Klimontovich equation

This formulation is used by PIC



Particle In Cell

■ PIC starts with the Klimontovich equation and simplifies

■ Fields are computed on a mesh and interpolated to the particles

■ Particles represent a large number of physical particles

■ Particle motion coupled back to the field solve through charges and currents

■ Typically these equations are solved using leap-frog integration on a regular mesh
via MPI

■ EMPIRE uses:

■ Unstructured mesh

■ Finite element method (FEM)

■ General time integration (tempus)

■ MPI+Kokkos threading

Weight Particles
to Grid

Update Particle
Positions

Solve for Electric
Potential and Field

on Grid

Update Forces
and Velocity
of Particles



Finite Element and PIC

• The basics of the particle parts of PIC are unchanged between FEM and FDTD

• Particles are accelerated and moved the same way

• Current is still weighted to the mesh

• Field solve is totally different though - Use the weak form

• Starting with Ampere's equation

• Multiply by a test function and integrate

• Expand solutions in test function spaces

Integrate curl by parts

• Generates a matrix equation

• Similar matrix for B equation

di)

at 
=VxH—J

OD
lv (.— V x H + J)Fidv

( )fi7 da d/ eTi hihjv x +.1

a
MD atd = KHh — f JFjdv

v

Fidv



FEM Current weighting

• The original charge conserving PIC current weighting used a
"charge through faces" argument to develop weighing

• Weak form gives a more formal idea of current weighting
t-F At

1 gidv =If f qpvp• Fidv dt17

p t 17

• But the velocity is a delta function in space, making the
integral a simple evaluation

f
t+At

gidv =If qpviA(xp(t)) dt
t

P

• For tets, this reduces to the midpoint rule of integration

• Artifact for the current weighting

• lf you place a particle in the domain and move it, an immobile ghost
charge is left behind

• Fluid code as well



EMPIRE Performance Setup

■ Requirement — EMPIRE needs 10 time-steps/second

■ EMPIRE was ran on Trinity at the scale of 4096 nodes for 100 steps
■ Haswell - 2 MPI ranks/node, 16 threads per rank — 128k cores

■ Knights Landing — 4 MPI ranks/node, 16 threads per rank — 256k cores

■ Problem used the same geometry
■ Cubit generated tetrahedral mesh "blob"

■ Problem was scaled up in particle and element count

■ Problem was run electrostatically and electromagnetically

Size
# of

Element
s

# of
Nodes

# of
Edges

# of
Faces

# of
Particle

s

S 337k 60k 406k 683k 16M

M 2.68M 462k 3.18M 5.40M 128M

L 20.7M 3.51M 24.4M 41.6M 1B

XL 166M 27.9M 195M 333M 8.2B

XXL 1.332B 223M 1.56B 2.67B 65.6B



EMPIRE Overall Performance

E

4096

1024

256

64

16

4

1

EMPIRE-PIC blob EM Trinity HSW

S Main

M Main

- L Main —M—

XL Main —M—

Squares - Time Loop 
:Triangles - inear Solve
Circles - Par icle Updates

4096

1024

256

64

16

4

1

4 16 64 256

HSW nodes (32 cores/node)

EMPIRE-PIC blob EM Trinity KNL-1HT

S Main LE—

M Main
- L Main —M-

--XL Main —M-

: Squares - Time Loop
:Triangles - Linear Solve
Circles - Particle Update

1024 4096

4 16 64 256

KNL-1HT nodes (64 cores/node)

1024 4096

()E
H

E

4096

1024

256

4096

1024

256

64

16

4

EMPIRE-PIC blob ES Trinity HSW

S Main LE—

M Main

L Main —M—

XL Main —M—

XXL Mai n—M—

Squares - ime Loop
:Triangles - Linear Solve
Circles - Par 'cle Update

1 4 16 64 256

HSW nodes (32 cores/node)

EMPIRE-PIC blob ES Trinity KNL-1HT

1024 4096

S Vain LE—

Main —M-

- L Main —M-

--XL Main —M—

XXL Main 1-

Squares - Time Loop 
: Triangles - Linear Solve :
Circles - Particle Updates

1 4 16 64 256

KNL-1HT nodes (64 cores/node)

1024

Plots of EMPIRE scaling, left EM, right ES, top HSW, bottom KNL

4096



EMPIRE-PIC Summary

• EMPIRE-PIC is approaching the capability of our current production code

• Many many important features and diagnostics are yet implemented

• EMPIRE-PIC has been shown to scale to 1/4M cores

• EMPIRE-PIC is performance portable

• Recompile for different backends, main code remains the same

• Verification suite is building

• Not shown but linear problems showing correct convergence

• Validation effort underway
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EMPIRE: A hierarchy of capabilities

EMPIRE
Suite

Men

-Hybrid

MN

-PIC J

EMPIRE EM

MIlisra.

Panzer/Trilinos

Collisions
DSMC/MCC
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Focus of
this section

• EMPIRE's goal: Accurately simulate plasmas across regimes on next-generation
exascale computing platforms

• Expands the range of critical plasma applications that we can address with high
confidence and fidelity
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25 SPIN Sandia's Particle InOFFIfAeL USrE OaNLYction Library

SPIN handles chemistry and inner
particle forces

Complex collision types:
• Ionization

• Excitation

• Dissociation / chemical reaction with
>2 products

• Molecular cross-sections from an
analytic model or read from a table

• Particles can have different weights,
allowing accurate simulation of trace
species

1e36

1.30 -

1.25 -

Z-
7, 1.20 -
Z

1.15 -

►

) 

szszzsZxxxxxxxxxzxzzxX

Nc=16

Nc=32

Nc=64

Nc=128

Nc=256

Nc=512

Nc=1024

Nc=2048

Nc=4096

Nc=8192

5 10 15
it

20 25 30

Convergence test to analytic solution of the 4th
moment of the velocity distribution for Bobylev-
Krook-Wu relaxation using different numbers of
molecules per cell.
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• 1D ionization of argon using EMPIRE with SPIN compared to Aleph
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SPIN Summary Road M aP USE ONLY

• SPIN is in its initial form but starting to do real problems

• Coming months:

• Run on GPUs with Kokkos

• MCC collisions with background fluid

• Relativistic collisions

• Provide Empire-Fluid with momentum/energy transfer rates derived from SPIN cross-
sections

• Merge particles to control total particle count

• Long-term:

• Rotational/vibrational excitation and energy transfer

• Particle-specific random numbers (for parallel reproducibility)

• Non-isotropic scattering

3/28/2019 OFFICIAL USE ONLY



EMPIRE: A hierarchy of capabilities

EMPIRE
Suite

Men

-Hybrid

MN 191/12111M

-PIC J -Fluid

EMPIRE EM

Panzer/Trilinos

Collisions
DSMC/MCC
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H Focus of
this section

• EMPIRE's goal: Accurately simulate plasmas across regimes on next-generation
exascale computing platforms

• Expands the range of critical plasma applications that we can address with high
confidence and fidelity
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Maxwell coupled to fluid formulation for plasmas

• Multi-species Euler
coupled to Maxwell

• Strong collisions
terms

• Lots of time scales
• Maxwell involutions

must be enforced

5
-
M
o
m
e
n
t
 F
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id
 

mme

-

ot + V • (Va +pa)lice ua • Ha + ha) 
rna

OE
c2V x B = paua

Ot E0 Tnaa

OB

at 
+VxE=0

1
—
2

srcs

V • E =

aPa  

at 
+ 

(pa U ) =

srcs

mar src

sinks

mar sink

8(Paua) + V • (paua ua paI +Ha) = q pa (E ua x B)
at Ma

EmausrcFs"
srcs
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V • B = 0

Important to satisfy involutions numerical 2 9



Fluid plasma implementation

Developing a blended finite element discretization:

• Electromagnetic fields use conformal continuous-
Galerkin (CG) finite elements

u To enforce involutions by construction

o Maximize shared code with EMPIRE-PIC

• Fluid fields use discontinuous-Galerkin (DG) finite
elements

, Couples to CG EM solvers

o Handling shocks and steep gradients

Potential for high order to handle waves

Using IMEX time integration to split fast and slow
time scales

• Many application dependent stiff time scales

Take home: These
plasmas are hard to

simulate!

Plasma frequency

q,,n,

maECI

Cyclotron frequency

qaB
cuca =

ma

Collision frequency

—
nfl 1+ 

M
a

Mfl
Vaß 3 3

TA //aTZ(i 1 ma TflV

1 1- mfl 7', )
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Momentum diffusivity

/la
Va = —

Pa

Thermal diffusivity

ka
Ka — —

Pa

Flow velocity

ua

Speed of sound

vsa =
Y Pa

Pa

Speed of light

C >> 1,1a,i2sa
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Implicit-Explicit (IMEX) Time Integration

IMEX methods split fast and slow modes

• Implicit terms solve for stiff modes (plasma
oscillation, speed of light)

• Explicit terms are accurately resolved

• Combine with block/physics-based
preconditioning for implicit solves

• IMEX assumes an additive decomposition: F(11) G(U) = 0

3 Stage IMEX-RK Algorithm
implicit Soivei Explicit Solves

—1411(<+ ;03

(i) = g(u(0,t.+ r
f (i) = f (a],tR ,t 00

u(2) = +dt Aar + A21141) 
( )
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Oss (2) , + cvel
= f (u(2) ,t. + 2,11

un+1 = Lin + (Sir + avin+s2f0)+boi°1111111P

71;
ca
u_

Implicit
At -> CFL 1

Explicit

L1
G (

1
//) F1(11)
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o

31



Fast/Stiff/Implicit modes in plasma model

Stiff Modes:
Speed of light
Plasma Oscillation
Collisions
Cyclotron frequency

Emc,rsrc
srcs sinks

ma 
rsink

(pa Ida V • (pa lice + pa I + la (E
Ot M a

DE

at

OB
+V><E=0

at
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ETnallsrcrsrc

srcs sinks

maucersink E Rao@

/ce

C2 77< B patio
Tria

a

• Speed of light arises from coupling of electromagnetic field: explicit CFL —cAtlAx
• Plasma oscillation arises from Ampere's law to momentum conservation: explicit CFL
• Collisions explicit CFL—At
• Cyclotron frequency explicit CFL-113lAt

 \ If the plasma oscillation is implicit, then the mass flux
needs to be im • licit for maintenance of Gauss law 32



Non-Linear Circular Polarized Alfven Waves: EMPIRE-Fluid

• Circularly Polarized Alfven Wave:

• Exact, non-linear solution to ideal MHD equations

• Extremely useful for:

• Diagnosing faults in numerical scheme (see e.g. Beckwith &

Stone, 2011)

• EMPIRE-Fluid initial results:

Wave aligned with grid propagates stably

Wave oblique to grid develops checkerboard instability and fails

Possible solution: add divergence cleaning methodology

With divergence cleaning: oblique wave propagates in stable
fashion

DB: frarne_25.xdrnf
Time:1.25
Pm,Alm*,
wig Br

.7Gij °i•
• 237

05 
1'U X-Axis

Pm•-ftiGda
wY Be

NM'S °SMaNaliT

X-Axis

kh
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Non-Linear Circular Polarized Alfven Waves: EMPIRE-Fluid

• Circularly Polarized Alfven Wave:

• Exact, non-linear solution to ideal MHD

equations

• Extremely useful for:

• Diagnosing faults in numerical scheme

(see e.g. Beckwith & Stone, 2011)

• EMPIRE-Fluid initial results:

One-dimensional wave converges with

expected order of accuracy in RMS-error after
1 wave crossing period

2nd Order accurate scheme
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Non-Linear Circular Polarized Alfven Waves: EMPIRE-Fluid

• Circularly Polarized Alfven Wave:

• Exact, non-linear solution to ideal MHD

equations

• Extremely useful for:

• Diagnosing faults in numerical scheme

(see e.g. Beckwith & Stone, 2011)

• EMPIRE-Fluid initial results:

One-dimensional wave converges with

expected order of accuracy in RMS-error after
1 wave crossing period

,#

J

-

  0 I"1,10 
I

0 I I
p,014.4reWA05 — r I.

3rd Order accurate scheme

Sandia
National
Laboratories

rurrprrurprruppErprEpprmTITITITPIrerrrrrrrrrrurrerrurrprrunm EGPFITITITINKFMIPMFMTFTFVFM

...........



Non-Linear Circular Polarized Alfven Waves: EMPIRE-Fluid

• Circularly Polarized Alfven Wave:

• Exact, non-linear solution to ideal MHD

equations

• Extremely useful for:

• Diagnosing faults in numerical scheme

(see e.g. Beckwith & Stone, 2011)

• EMPIRE-Fluid initial results:

Two-dimensional wave converges with

expected order of accuracy in RMS-error after
1 wave crossing period

F AIM

2nd Order accurate scheme
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Non-Linear Circular Polarized Alfven Waves: EMPIRE-Fluid

• Circularly Polarized Alfven Wave:

• Exact, non-linear solution to ideal MHD

equations

• Extremely useful for:

• Diagnosing faults in numerical scheme

(see e.g. Beckwith & Stone, 2011)

• EMPIRE-Fluid initial results:

Two-dimensional wave converges with

expected order of accuracy in RMS-error after
1 wave crossing period

il
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3rd Order accurate scheme
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Non-Linear Circular Polarized Alfven Waves: EMPIRE-Fluid

• Circularly Polarized Alfven Wave:

• Exact, non-linear solution to ideal MHD equations t 2.5

• Extremely useful for:

• Diagnosing faults in numerical scheme (see e.g. Beckwith & ▪ 15
Stone, 2011)

• EMPIRE-Fluid results:

• Now being used as part of the vvtest suite for EMPIRE-Fluid

(M. Scott Swan)

• Run for 12 different combinations of spatial basis order 5SPRK3

10

1 0
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i0 2'5 3:5
5patial Order

ig 
and time integrator.

S
862  55PRK2  

• Most combinations converge very close to the theoretical SSPRK2  RK2  
RK2  

SSPRK3  
rate. SSPRK3  RK2  5SPRK2  

SSPRK3  RK1  
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Summary: EMPIRE-Fluid

• EMPIRE-Fluid is the multi-fluid plasma simulation component of a broader
plasma simulation tool being developed at Sandia to provide high fidelity
modeling of critical plasma applications

• We have been working on benchmarking discretization approaches on a
range of linear and non-linear problems:
• Demonstrated that discretization can deliver 3rd order accuracy for non-

linear problems
• We have incorporated Implicit-Explicit (IMEX) methods to allow us to step

over stiff time scales efficiently
• We also are able to handle steep gradients and are beginning the

comparison to PIC methods
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National
Laboratories

39



EMPIRE: A hierarchy of capabilities

Focus of h
this section

EMPIRE
Suite

Men

-Hybrid

MN MIlisra.
-PIC J -Fluid

EMPIRE EM

Panzer/Trilinos

Collisions
DSMC/MCC

• EMPIRE's goal: Accurately simulate plasmas across regimes on next-generation
exascale computing platforms

• Expands the range of critical plasma applications that we can address with high
confidence and fidelity
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EMPIRE Hybrid: Plasma Oscillation
• E. Cyr has shown that a plasma oscillation can be setup assuming

an neutralizing background fluid by setting an initial electric field
to E=O. Writing the momentum and Ampere equations gives:

Otvi = qi E E = Cain(ryt)
ml

q2 VI = ql  CC08(7t) + A
Otv2 = —E mil'

7n2

€00,E = —qinivi — q2n1V2

eni 4n2 qini 

• Simulation 7= 1 I tneli = tinns' C

va — --Ccos(-rt) —
mry

4(.2 + 64(.1, 
Ql 

7( 
, A = + 

mey
C/

E, +6E)

• Kinetic (PIC) ions; fluid (DG) electrons; Maxwell (DG) with
cleaning

• Spatially constant by construction, though the fluid and PIC
solvers are definitely not constrained in that way.

• The time integration is explicit SSPRK3 for the fluid+Maxwell;
operator split with the particle update.

• The particles are initially randomly distributed throughout
the domain

• When the Debye length is sufficiently resolved, the analytic
solution is recovered.

1 1 e+7 -

1 e+7

9e+6 -

8e+6 -

7e+6 -

6e+6-

5e+6-

4e+6

3e+6

2e+6
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0

- 1 e+6

2 e+6
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—avg electron_ux (stats)

— avg vx-ions (stats)
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Resolution: 64x64 mesh, with 256000 particles (total);
Debye length = 7.234643e-7; Debye length / Cell
length = 2.828 41



EMPIRE Hybrid: Plasma Oscillation

• E. Cyr has shown that a plasma oscillation can be setup assuming
an neutralizing background fluid by setting an initial electric field
to E=O. Writing the momentum and Ampere equations gives:

€00tE = — q2n1172

MOM* VE. CAA.
MUMMA. a.. Ma* pm...Tam.

Mte mud MOSM.meerrave

IrabeRRI Rat ram6.1.444

onna+ =  C=  ,A=v1+ C. 
0774 q2n2

474 474 qini /7r1 Ql 
7= 

(it -Fez) miry

• Simulation setup (E. Cyr):

• All simulations used the following parameters:

nl = 1e18,n2 = 1e20

q1 = —1Oqe, q2 = ge
m1 = lO0rnedn2 = me

= 1e7, v2 = —1e6

• PIC and Fluid codes were coupled through EM fields only, no
collisions
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2eA
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— avg electron vx (Fluld)

— avg lo n vx (PIC)

e- I I 2+-11 3e-11 4e-11 5e-11 6e-11 7e-11 8e-11 9e-11 1e-10 1.1e-10 1.2e-10

• If the Debye length is not sufficiently resolved, the solution Resolution: 4x4 mesh, with 100 particles (total);
becomes very noisy and deviates from the analytic solution. Debye length = 7.234643e-7; Debye length / Cell

length = 0.08838 42



EMPIRE Hybrid: Plasma Oscillation
■ Initial condition:

• Spatially constant by construction, though the fluid and PIC solvers are

definitely not constrained in that way.

• The particles are initially randomly distributed throughout the domain

• Initial temperature given to the PIC and Fluid species of T = 21987 K to

create a Debye length that can be sufficiently resolved.

■ Algorithm:

• Electrons + EM use DG spatial discretization (divergence cleaning)

• Ions: particle-in-cell discretization

• Time integration: electrons + EM use explicit SSPRK3; PIC is (first

order) operator split

• The time integration is explicit SSPRK3 for the fluid+Maxwell; operator

split with the particle update.

■ Simulation setup:

• Resolution

Low: 4x4 mesh, with 100 particles (total); Debye length =

7.234643e-7; Debye length / Cell length = 0.17675

Medium: 16x16 mesh, with 1600 particles (total); Debye length =

7.234643e-7; Debye length / Cell length =0.717

High: 64x64 mesh, with 25600 particles (total); Debye length =

7.234643e-7; Debye length / Cell length = 2.828

Low resolution:

Medium resolution:

1.05.7

750.1.8

8.5.8

a

95.8

2

1

500000

A00000

165.7

9.5.56

6.501-6
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—avg Ions vx (PIC)
—avg election vx Meld)
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—avg electron vx (Flula)

—avg Ione vx (PIC)
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High resolution: not pictured 43



EMPIRE Hybrid: Plasma Oscillation

■ PIC has a spatial stability limit, requiring the Debye length of
the plasma to be sufficiently resolved by the mesh.
• If the Debye length is under-resolved, the fluid will heat up until the

Debye length is resolved.

• Temperature in PIC is represented by particle velocity noise, so an

increase in temperature translates to an increase in particle noise.

• The Fluid code tracks temperature as a scalar value on each node, and

noise is interpreted as just noise.

• This heating in PIC translates to increasing error/noise in the Fluid part of

Hybird

■ The explicit time stepper in fluid has a CFL stability limit
• Properly resolving the Debye length for PIC forces an inconveniently small

time step value to satisfy the CFL condition

• The CFL stability restriction in these simulations was much more

restrictive than the plasma oscillation frequency.

• Using an implicit time stepper with a CG electromagnetic solve fixes this

problem and greatly increases performance.
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Initial Progress on R&D Hybrid lmplicit/IMEX 

Multifluid Plasma and Kinetic — PIC Coupling 

• Goal: Develop a R&D hybrid IMEX plasma code with 5-moment multifluid model + Electromagnetics

(Drekar) coupled to particle-in-cell (PIC) model (EMPIRE-PIC).

• Essential character of modest R&D effort

• Flexible and extensible for complex multiphysics multispecies plasma systems

• Robust, accurate, and scalable solution for longer-time-scale simulations. Focus on coupling with

higher-order multi-rate IMEX time-integration

• Performance Portable on emerging HPC architectures: HSW, KNL, CUDA,

• Component-based: heavily leverage existing R&D plasma simulation capabilities and SNL/ECP

software stack (e.g. Trilinos, Kokkos, Panzer, ....)

• Physics/Plasma Capability Components

• Drekar: Scalable multifluid plasma solver

lmplicit/IMEX & Newton-Krylov (sources and fast-waves)

FE H(grad) and structure preserving (nodal, edge, face)

Hyperbolic Systems: Algebraic flux limited CG

• EMPIRE-PIC: Scalable PIC solver

• Currently explicit, implicit under development

R. Pawlowski, J. Shadid,
S. Conde &ATDM
EMPIRE Team (E. Philips,
E. Cyr, M. Bettencourt) Unknowns
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Scaling of ion/electron multiflud plasma block

preconditioner for 3D Soliton: lon-Acoustic wave

Avg. Iterations per time-step

Avg. CPU time per time-step

1.0E+05 
1 6Ki.c,2ocores: T1r.inEiat7

1.0E+08 1.0E+09
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Initial Proof-of-principle: 

Simple Operator Split Coupled Model 
Titsud (v-,(07,(0)= (E(Xi(t),t) V(t) x B(Xi(t),t))

Projection to Particle
Mesh

(E B) •

EMPIRE-PIC: Integrate
Equations of Motion,
Moving Particles

Drekar: Integration of PDE
Equations on Grid

(o, J)j
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p(x.t)= qs f duNs(x,u,t)
species

J(x, t) = qs duuNs(x, u, t)
species

Weighting
v)i (p J)i

a Pa
V R-p"± • (Paua) =at

a( 
palla) Ha)—qana B) R,±V-(palla 0 Ua + Pal- ± (E ± Ua X =at p.u“

ae.
ha) E (27 Re.at +v • ((ea + pa)ua +ria • Ua ± — ganalla • + =

°E —vxl- B+J= °—B+vxE=o;0; J =EqknkukE° at atpo k

R. Pawlowski, J. Shadid, S.
Conde &ATDM EMPIRE
Team (E. Philips, E. Cyr, M.
Bettencourt)
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1st Proof-of-principle for Drekar/EMPIRE-PIC Coupling

• First coupling of Drekar to EMPIRE-PIC for a Langmuir Wave

• Simple proof-of-principle (Drekar solves electrostatic potential, EMPIRE-

PIC electrons)

• Replace PIC EM Solver with Drekar EM

• 1024 cells, 9K particles

• Plots show Ex line plot over spatial domain: red is cell averaged solution

in Drekar, blue is EM-PIC standalone solution at nodes.

• After projection Drekar solution matches EMPIRE's.

• Verified coupling of fields from Drekar PDE solver to EMPIRE-PIC

particle push

• Results show good agreement as expected

R. Pawlowski, J.
Shadid, S. Conde &
ATDM EMPIRE Team
(E. Philips, E. Cyr, M.
Bettencourt)
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Preliminary Hybrid Fluid/Kinetic Capability in Drekar: 
E.g. Ion/Electron Plasma Oscillation 

Coupled system time integration:

• Current / Proof-of-principle: 1st order operator split coupling (2nd order implementation straightforward)
• Fluid electron Euler and electro-static Poisson system time integration

• SDIRK 2nd order, 2 stage: L-Stable
• SDIRK 3rd order, 2 stage: A-Stable

• Ion kinetic system PIC (standard EMPIRE Particle push)

Lu

3110000

25CCOO-

20CCOO-

150000-

100000-

5CC00-

I avg E_eclge (0) (Point Siuttlics)

143111 243111 35.111 45.111 5e.-11 6e -11 743111 Bell 1 95111 1.5110 1.1e-10

• Theory period: 1.06192e-11

• Computed period: 1.0593e-11, 0.25% error

with Wp,, =
q,110

1110E0

t (s)

• Demonstrated L-stable fluid/EM solve can control high-frequency unresolved time-scales (during startup in this case)
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SDIRK 3, 2 A-stable
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SDIRK 2, 2 L-stable
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t (s)

Integrator Stability Period % Error

DIRK 2nd Order, 2 stage L-Stable 1.1111E-11 4.63E+00

DIRK 3rd Order, 2 stage A-Stable 1.1111E-11 4.63E+00
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R. Pawlowski, J.
Shadid, S. Conde &
ATDM EMPIRE
Team (E. Philips, E.
Cyr, M. Bettencourt)
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Time Integration for Hybrid Multifluid PIC plasma capability

• Goal higher-order integration with flexible stability properties (R&D)
Multirate generalized-structure additive partitioned IMEX RK
• Longer time-step implicit integrator for fluid continuum / EM system
• lon kinetic system smaller integral steps that match up with PDE solver (goal)

I 

Current 1st order operator split:

<  . ,,,v  1ii :lir  : ir.1

I 
.  'i

  1 Explicit PIC

11 'l Implicit multifluid/EM

Multirate generalized-structure additive partitioned IMEX RK:

I lit 1111 11 ; 1111111 I

Explicit PIC

Implicit multifluid/EM

Status:
• Demonstrated 1st order operator split with implicit A/L-stable PDE solves
• Demonstrated some control over high-frequency unresolved modes (Ex)
• Developing a multirate RK capability in Tempus time integration package
• Preparing hybrid software coupling for more advanced time integration capabilities
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R. Pawlowski, J.
Shadid, S.
Conde &ATDM
EMPIRE Team
(E. Philips, E.
Cyr, M.
Bettencourt)
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Summary: EMPIRE-Hybrid
• We have begun exploring methods for hybrid PIC-Fluid simulations:

• Utilizing first order coupling strategies; PIC push separated from Fluid/Maxwell
• Motivation: understand where simple temporal coupling strategies fail and develop

methodology to mitigate
• EMPIRE-PIC/Fluid (particle push + DG Fluid/Maxwell):

• Particle noise can induce shocks within fluid
• Ensuring conservation of momentum/energy requires careful treatment of coupling of

plasma to EM fluid
• EMPIRE-PIC/Drekar

• Drekar provides mature multi-fluid scheme that enables experimentation with temporal
discretizations

• EM solver matches EMPIRE-EM results
• Results indicate particle noise triggers plasma oscillation

• Method gives accurate results
• Both hybrid approaches provide foundation to develop methodologies to address issues of

noise, EM discretization, time stepping this FY.
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Oh, and don't forget ICNSP

2019 ICN
international Conference on
Numerical Simulation of Plasmas.

September 3-5, 2019
Santa Fe, New Mexico
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