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Molybdenum disulphide (MoS2): Chemistry & sliding friction

molybdenum disulphide
p = 0.02 - 0.06 (inert @ 1N)
p = 0.15 - 0.25 (humid alr @ 1N)
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(A) Depiction of the layered structure of MoS, lamellae stacked upon one
another. (B) Hexagonal stack lattice structure of MoS, with atomic spacing
and sequencing.
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Friction: Amontonian v. Non-Amontonian

Amontonian Friction

F,

Ff = µF,

Ff

• /-1 = FN

• Ff does not depend on contact
area

• Kinetic Friction does not depend
on sliding speed
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Friction: Amontonian v. Non-Amontonian

Amontonian Friction

F,

Ff = µFN

Ff

• /-1 = FN

• Ff does not depend on contact
area

• Kinetic Friction does not depend
on sliding speed

I.L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
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Friction: Amontonian v. Non-Amontonian

Amontonian Friction

F,

Ff = µFN

• /-1 = ;-„f
• Ff does not depend on contact

area

• Kinetic Friction does not depend
on sliding speed

I.L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
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Friction: Amontonian v. Non-Amontonian

Amontonian Friction

FN

Ff = µFN

Ff

• /-1 = FN

• Ff does not depend on contact
area

• Kinetic Friction does not depend
on sliding speed

I.L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
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S = So+ceP, where P = FN/Areal

Ff = SoAreal + ctFN
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Friction: Amonton*.n v. Non-Amontonian

Amontonian Friction

Ff = µFN

° = Fv

O F f does not depend on contact
area

(t) Kinetic Friction does not depend
on sliding speed

I.L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
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Friction: enton".n v. Non-Amontonian

Amontonian Friction

Ff = µFN

Ff.

° /1)= F;v

O F f does not depend on contact
area

Kinetic Friction does not depend
on sliding speed

I L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
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Friction: enton*.n v. Non-Amontonian

Amontonian Friction

= INAIII1

41111(/
111.1111•111•1•!"

O F f

FN

• Ff does not depend on contact
area

• Kinetic Friction does not depend
on sliding speed

I L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
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T-dependence µ= µ(T, P) and S = S(T) via MoS2 Friction
Experiments
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Nudged Elastic Band Calculations and Commensurate Sliding

Cr• rotation
ICOMMenSUlate,

Translation direction

315° rotation
n;omrrensurate

W'
commensurate incommensurate
egg shell egg shell
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Nudged Elastic Band Calculations and Commensurate Sliding
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Rotation Barrier
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Incommensurate Barrier
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A Toy Model in terms of energy barriers (mechanisms to sliding)
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A Toy Model in terms of energy barriers (me i is • slidin.
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The model and scaled data from S(T) = Sa.(T)

S(T) =

S(T) = SL (1 — exp   AE _L

(  

 ))exp
kgT IcBT 

exp 
ki3T

What is SL?
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MD ReaxFF Simulations
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o Six normal forces used at each
temperature

dFf 

• FG = dFN

• Data set of S(T) from MD
simulations
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The model and data from S(T) =
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The model and data from S(T) = Sa.(T)
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The model and data from S(T) = S.L.QT)
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The model and data from S(T) = SLis,,,,,(T)
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Atomistic Origins of Temperature-Dependent Shear Strength in 2D
Materials
John F. Curry,' Adam R. Hinkle," Tomas F. Babuska," Mark A. Wilson,' Michael T. Dugger,
Brandon A. Krick,' Nicolas Argibay,*'-re and Michael Chandross*'"I"

'Material, Physical and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States

'Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States

ABSTRACT: We present a model that predicts the macroscale
temperature-dependent interfacial shear strength of 2D materials like
MoS2 based on atomistic mechanisms and energetic barriers to sliding.
Atomistic simulations were used to systematically determine the lamellar
size-dependent rotation and translation energy barriers, that were used
to accurately predict a broad range of experimental data. This framework
provides insight about the origins of characteristic shear strengths of 2D
materials.

MOSimulation of MoS,Shear

o,• experiments

• simulations

- — model prediction

increasing temperature

KEYWORDS: 2D materials, MoS2, molybdenum disulfide, nudged elastic band, superlubricity, molecular dynamics, activation energy,
temperature
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Evidence of low friction in soft, bare, pure metals
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becomes vanishingly small." Bowden
& Hughes, Nature 1938.
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less than 0.10 was observed!' Tamai,
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Sliding friction of BCC Tantalum slabs
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Generalized friction map for (FCC) metals J. Mater. Sci. 52 2780 (2017)
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Surface topography and roughness

Height Profile h(x,y)
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Greenwood, Williamson, Proc. Roy. Soc. Lond. A 295, 300 (1966)

Sandia National Laboratories



Friction Fractals
000000000000000000000000000 0.00000000000000000

Self-affine system

C(q) = (2±0 f d2x (h(x), h(x + (5x))e—i'q

C(q) N q-2(1±11) where H ranges from 0 - 1

(d) GEOLOGICAL FAULTS
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B.N.J. Persson, Tribol. Lett. 54, 99 (2014)

A common origin in plastic deformation? Quantify?
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Plasticy and self-affine scaling

Experiments of polycrystalline Cu and single—crystal KCI
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Bi-axial compression of Au(111), H.E. Alloy, and CuZr glass
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Bi-axial compression of Au(111), H.E. Alloy, and CuZr glass
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The radially averaged PSD for amorphous CuZr and Au(111)
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C(q) q_2(1+H): H as a function of strain
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C(q) q_2(1+H): H as a function of strain
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PSD of plane of atoms within the bulk
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Bulk -.'splacement correlation

3D displacement correlations

Gz,(P) = (uz(0)uz(71)

Fourier transform:

Gzz(0
3-2H

2D in-plane correlations

C (q) qGzz(q)

h(x) = uz(x, z = 0)

Lx
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Bulk -.'splacement correlation

3D displacement correlations

Gz,(P) = (uz(0)uz(71)

Fourier transform:
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Elastic Limi in crystalline materials

Thermal disorder and
elastic constants
Campana, Muser, PRB 74, 075420

(2006)

H = —
1
—
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C(q)^ q
-2-2H = q-1

mPflfIs and Fra
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Elastic Limi in crystalline materials

Thermal disorder and
elastic constants
Campana, Muser, PRB 74, 075420

(2006)
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Elastic Limit in crystalline materials

Elastic regime of
amorphous solid
DiDonna, Lubensky, PRE 72,

066619 (2005)

Gzz N q-2
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Elastic Limit in crystalline materials

Elastic regime of

amorphous solid

DiDonna, Lubensky, PRE 72,

066619 (2005)
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Temperature dependence on the self-affinity
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