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Molybdenum disulphide (MoSs):

Run-In Processes

molybdenum disulphide
1=0.02-0.06 (inert@ 1N)
H=0.15-0.25 (humid air @ 1N)

Fn

transfer 1) Transfer Film Formation

film "\

basal planes parallel

to surface
—

2) Shear-induced
crystallite re-orientation

@ Molybdenum

(A) Depiction of the layered structure of MoS, lamellae stacked upon one
another. (B) Hexagonal stack lattice structure of MoS, with atomic spacing

and sequencing.
oriented surface layer & randomly oriented
of 002 basal planes of MoS; nanocrystalline MoS,
3-10nm sliding surface
B

Deposited film is made of many
small randomly oriented crystallites
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Friction: Amontonian v. Non-Amontonian

@ F; does not depend on contact
area

@ Kinetic Friction does not depend
on sliding speed
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Friction: Amontonian v. Non-Amontonian

I.L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
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Amontonian Friction

FRICTION COEFFICIENT
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INVERSE HERTZIAN PRESSURE, 1/GPs

@ F; does not depend on contact
area

@ Kinetic Friction does not depend
on sliding speed
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Friction: Amontonian v. Non-Amontonian

I.L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
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Friction: Amontonian v. Non-Amontonian

I.L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
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INVERSE HERTZIAN PRESSURE, 1/GPs
F
0 M= ﬁ S = So-‘rOtP, where P = FN/Areal

Ff = SOAreal = OtFN
@ F; does not depend on contact
area

@ Kinetic Friction does not depend
on sliding speed
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Friction: Amontonian v. Non-Amontonian

I.L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
9.20

Amontonian Friction

FRICTION COEFFICIENT

2 4 &
INVERSE HERTZIAN PRESSURE, 1/GPs

o /'L:?—I{, S:SO+C¥P,whereP:FN/Area1
Ff = SOAreal + aFN
@ F; does not depend on contact p=a+S8,/P

area

@ Kinetic Friction does not depend
on sliding speed
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Friction: Amontonian v. Non-Amontonian

I.L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
Amontonian Friction 02

FRICTION COEFFICIENT

2 4 €
INVERSE HERTZIAN PRESSURE, 1/GPs

o H= m S:SO+GP,WhereP:FN/Atea1
Fr=5,A1ca + aF
@ F; does not depend on contact ! 1Al
area p=a+5/P
2
S, 3R\?® _1
@ Kinetic Friction does not depend ~ FO = Som (E) Fy?

on sliding speed
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Friction: Amontonian v. Non-Amontonian

I.L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)

Amontonian Friction -
i
2
3
:
INVERSEZNERTZIAP: PRESSURE, 1/GPs
e n = % S=S0+ap,whereP=FN/Area1
Ff = SoAreal + OéFN
@ F; does not depend on contact = g B P
area )
S S 3R\ 3 o
@ Kinetic Friction does not depend P T2\ 1R N
on sliding speed
S, = 25 MPa
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T-dependence p = (T, P) and S = S(T') via MoSy Friction

Experiments
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Nudged Elastic Band Calculation
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Nudged Elastic Band Calculation
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Rotation Barrier

Translation direction
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Incommensurate Barrier
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A Toy Model in terms of energy barriers (mechanisms to sliding)
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The probability and failure
to overcome a barrier n

—AE,

Pn = Aexp ]%7

fa=1-pn

The probability to slide and
fail to slide (friction):

pslide = p’l‘pl + f?"pc
f side — 1 - psﬁde
=1- (prpi + frpc)
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The model and scaled data from S(T) = S f...(T)

S(T) = Spfuu(T)

S(T) =St (1 — exp (————-AEIQ;A,ET) — exp (— ﬁ}ff) + exp (————AE,:B*Q%EC))

What is 5.7
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top layer, 1 km/s —»

* T=75K

z — mu=014
rigid layer £60 A T=150K
mobilelayer 35BS O0IOSSIIOC S ] — mu=0.11

2
N 5 m T=225K
nano-platelets 4nm w40 ~— mu =0.090
mobile layer s ® T=300K
rigid layer 8 —— mu =0.082
T2

200 300 400
Normal Force (nN)

@ Six normal forces used at each

temperature
_ dFy
® U= TFy

o Data set of S(T") from MD
simulations
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The model and data from S(T') = Sp f..(T)
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The model and data from S(T') = Sp f..(T)

S, = 55.3 MPa
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The model and data from S(T') = Sp f..(T)

S(T) = St (1 — exp (—L,g%&) — exp (— ,?BET) + exp (——AE,;;%EC))
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The model and data from S(T') = Sp f..(T)
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Letter available now online

EXIAPPLIED
NANO MATERIALS @ Cite This: ACS Appl. Nano Mater. XXX, XXX, XXX-XXX www.acsanm.org

Atomistic Origins of Temperature-Dependent Shear Strength in 2D
Materials

John F. Curry,*’i‘-l" Adam R. Hinkle, " Tomas F. Babuska,””* Mark A. Wilson,” Michael T. Dugger,Jr
Brandon A. Krick,*® Nicolas Axgibay,*’+"3" and Michael Chandross*'"

"Material, Physical and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
$Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States

ABSTRACT: We present a model that predicts the macroscale MD Simulation of MoS, Shear
temperature-dependent interfacial shear strength of 2D materials like
MoS, based on isti hanisms and getic barriers to sliding.
Atomistic simulations were used to ically d the lamellar
size-dependent rotation and translation energy barriers, that were used
to accurately predict a broad range of experimental data. This framework
provides insight about the origins of characteristic shear strengths of 2D
materials.

increaseing shsear strength

0,8 experiments Brgss
® simulations ©
~— model prediction

increasing temperature

KEYWORDS: 2D materials, MoS,, molybdenum disulfide, nudged elastic band, superlubricity, molecular dynamics, activation energy,
temperature
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Evidence of low friction in soft, bare, pure metals

sl Pure Auindry N, @ 1 mN “when surfaces are cleaned in a good
il vacuum, the sliding friction...
g 10 becomes vanishingly small.” Bowden
§ o8 & Hughes, Nature 1938.
é 06
2 o4l “It was found quite unexpectedly that
02 W with some metals, very low friction
| M Sy N | UM SN N U S— ”» i
O e e less than 0.10 was observed.” Tamai,
cycle number J. Appl. Phys. 1961
1.0 = I
o8 Pure Niindry N, @ 98 mN by 1
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Sliding friction of BCC Tantalum slabs
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Generalized friction map for (FCC) metals J. mater. sci. 52:2780 (2017)
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Part 2: Fractals
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Fractals

Surface topography and roughness

Height Profile h(x,y)

h(xo
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1
hiims :EV((VZh)Z) hims = V(IVh|?) hems = /(h?)

Greenwood, Williamson, Proc. Roy. Soc. Lond. A 295, 300 (1966)
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ystem

C(a) = Gy | P (h(@), bz + o) e

C(q) ~ q~20+H) where H ranges from 0 - 1

(d) GEOLOGICAL FAULTS
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T. Candela et al., J. Geophys. Res. Solid Earth 117, 1 (2012) B.N.J. Persson, Tribol. Lett. 54, 99 (2014)

A common origin in plastic deformation? Quantify?
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Plasticy and self-affine scaling

Experiments of polycrystalline Cu and single—crystal KCl1 Experiments of metallic glasses
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1D ONLY

NO ATOMISTIC STUDIES

1000 Time (s)

Antonaglia, J. et. al. Sci. Rep. 4, 4382(2014)
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Volumetric Strain

NiCoFeTi
[ X NOK@)
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Root-mean square height
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Au(111)

Amorphous CuZr
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Fractals

The radially averaged PSD for amorphous CuZr and Au(111

C(q) ~ q—2(1+H)

2-D Radial PSD at 0.0 Perc. Strain
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+H). H as a function of strain
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Hurst exponent H
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+H). H as a function of strain
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Bulk zz-displacement correlation

3D displacement correlations
G2 (F) = (uz(0)u=(7))
Fourier transform:
Goa(q) ~ g 372H
2D in-plane correlations

h(x) = u,(x,z = 0)

D

z

L.x
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3D displacement correlations

Fourier transform:

Gzz (@ "y q—3—2H

2D in-plane correlations

h(x) = u,(x,z = 0)
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Displacement correlation (nm)
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Fractals

Elastic Limit in crystalline materials

Thermal disorder and
elastic constants
Campana, Miiser, PRB 74, 075420

(2006)
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Thermal disorder and
elastic constants
Campana, Miiser, PRB 74, 075420

(2006)

Hurst exponent H
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Elastic Limit in crystalline materials

Elastic regime of
amorphous solid
DiDonna, Lubensky, PRE 72,
066619 (2005)

Gzz e q_2
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Elastic regime of — 2% strain

amorphous solid ‘ — G, ~ g LT (-1884,-167)
2[ L ;
DiDonna, Lubensky, PRE 72, 10 N\ 3.5 % strain
J/ — G, ~ g 2129 (-2:253,-2.005)
066619 (2005 ;
(200%) / —+ 6% strain
100k // G, ~ g1 (-2097-1.849)
—2 = "
G:.~q E i « |2 % strain, undefor. Ref
= — @, ~ g2 (~4106-4.018)
1072 ]
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Temperature dependence on the self-affinity

H=H(T)
Affect on h(x,y,t=0) Independent of temperature
CuZr NiCoFeTi
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