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Hydrogen-powered cars are now commercially available

HYDROGEN FUEL IS @
CLOSER THAN YOU THINK

I

e 700 bar pressurized tanks
 265-312 mile range
* Refueling stations being

installed in some areas



Although fuel cell vehicles are now commercially available,
compressed H, storage falls short of several DOE targets

700 Bar Compressed Gas (2015 record) vs. revised DOE Ultimate Targets
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TPRD = Thermally Activated Pressure Relief Device
Credit: Process Modeling Group, Nuclear Engineering Division. Argonne National Laboratory (ANL)
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How is hydrogen stored?
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2005-2013: 3 DOE/EERE-funded Centers of Excellence
focused on materials development
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Although many materials were investigated, none were identified that met all
DOE technical targets



2009-2015 Hydrogen Storage Engineering Center of Excellence
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| Enabling Technologies |

HSECoE formed to address lack of knowledge concerning system and engineering aspects of

complete materials-based hydrogen storage systems .



Hydrogen Materials Advanced Research Consortium (HyMARC):
highly coordinated capabilities to accelerate materials discovery

HyMARC Phase 1:
* FY16—-FY 18

* 3 DOE Labs

* Budget S3M/yr
HyMARC Phase 2:
* FY19-FY22

* 5DOE Labs

* Budget 58 M/yr

N
N NIST center for
I

Neutron Researc h

ADVAN ::nj
LIGHT SOURCE

MOLECULAR Iﬂ
FOUNDRY

A
I

rererer

Facilities BERKELEY LAB

Seedling Projects

* Applied material development
* Novel material concepts
* High-risk, high-reward
* Concept feasibility demonstration
* Advanced development of viable concepts

* Foundational R&D

* Computational models

* Synthetic protocols

* Advanced characterization tools

* Validation of material performance
* Guidance to FOA projects

* Database development



HyMARC objective: accelerate discovery of breakthrough storage
materials by providing capabilities and foundational understanding

Foundational understanding of phenomena governing
thermodynamics and kinetics limiting the development .
of solid-state hydrogen storage materials
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* New characterization tools and methods (surface,
bulk, soft X-ray, synchrotron)
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Relevance: poorly understood phenomena at length scales from
<1 nm to um govern storage material behavior

Distinct chemical/physical processes affect Multiple length scales must be
the bulk properties of storage materials taken into account
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“Design rules” are needed to guide materials discovery

BIMARC @



Metal-Organic Frameworks (MOFs) are among the most promising
hydrogen sorbents

“Thousands of MOFs are now known
e.g. see Furukawa et al. Science 2013
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No sorbent materials can meet all of the DOE targets
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H, binds too weakly to provide sufficient capacity at ambient temperature
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Recent HyMARC research indicates H, binding energies can ... .n’

be increased in MOFs e

Research of J. R. Long and coworkers
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* |n situ powder neutron diffraction: Extremely short Cu-D, distance observed in Cu'-
MFU-4/ by neutron powder diffraction. Corroborates strong binding enthalpy and
large red-shift of u(H—H) observed from DRIFTS.

= High-P adsorption: Open Cu* sites saturate at relatively low pressures. Volumetric
usable capacity for Cu'-MFU-4/ surpasses Ni,(m-dobdc) at 75 ° C.

= DRIFTS in V,Cl, g(btdd): VTIR confirms high enthalpy of adsorption. Enthalpy—entropy
relation distinct from M,(dobdc) family. &EJMARC :_"
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High hydrogen capacity metal hydrides, but strong
chemisorption and H, release/uptake are limiting

BIMARC @)

Des.
M(AH,), _)E MA, +1/2xyH,
_ Abs.
Eli Bogdanovic et al. J. Alloys Comp. 1997, 253-254, 1

2NaAlH, =— 2NaH +2Al+3H;  goodanovic, Schwickardi, U.S. Patent 6,106,801, 2000

Mg(N H2)2 +2LiIH = LizMg(NH)z + 2H2 Cheng et al. Angew. Chem. Int. Ed. 2009, 48, 5828
Luo et al. J. Alloys Comp. 2004, 381, 284

Pinkerton et al. J. Phys. Chem. C 2007, 111, 12881
Vajo et al. J. Phys. Chem. C. 2005, 109, 3719

Soloveichik et al. Int. J. Hydrogen Energy, 2009, 34, 916
_» +
Mg(BH4)2 Mng 4H2 Severa et al. Chem. Commun. 2010, 46, 421

OLiBH, + MgH, == 2LiH + MgB, + 4H,

high dehydrogenation contamination of H, gas

temperatures Problems & @ with impurity gases
Challenges

high pressure required @ @ y loss of capacity upon

for rehydrogenation cycling

stable intermediates
([B,,H,,]%, [NH]?, etc.
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Nanoscale metal hydrides accelerates release kinetics

(
Design Parameters bulk- KH-6nm-
Li;N Li;N

Reversible capacity. wt% 8.2 5.4

Thermal cond., W m™! K- 1.0 9.6

Density of hydride bed, kg m- 710 760

Total system mass, kg 312 252

Total hydride mass, kg 112 116 0

x 1.01 t t + t + i + + +

Tank outer diameter, m 0.46 0.45 s LiH 10 nm 3.2 nm
Tank length, m 2.21 2.19 Bos :

System volume, m3 0.256 0.227 103 ﬁ

% 2025 Gravimetric Target 33 40 = %% 2 50 75 100 2 5 7 1000 25 %0 75 100
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= Used HSCOE Metal Hydride Finite Element model to reveal non-intuitive tradeoffs

and benefits of using nanoscale metal hydrides in an operational H, storage tank
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Techno-economic analysis suggests large-scale production of
MOF sorbents is economically feasible
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Aqueous: replace organic solvents with water
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See D. DeSantis et al. Energy & Fuels, DOI: 10.1021/acs.energyfuels.6b02510
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EUMARC (@) Take-home messages

Compressed gas (700 bar): physically impossible to meet DOE volumetric target
Solid-state materials have potential to meet DOE targets

HyMARC: a National Laboratory team focused on accelerating materials discovery:
* Foundational research

Development of advanced characterization tools

Computational modeling across all relevant length scales

Innovative materials synthesis and development

Collaboration and assistance to Seedling projects

In FY19, Research to develop Hydrogen Carriers was initiated (Tom Autrey, PNNL,
lead)
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Enabling twice the energy density for onboard H, storage
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