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Hydrogen-powered cars are now commercially available

HYDROGEN FUEL IS
CLOSER THAN YOU THINK

MEET THE FUTURE OF DRIVING

-

It co- till 11 10

• 700 bar pressurized tanks

• 265 — 312 mile range

• Refueling stations being

installed in some areas



Although fuel cell vehicles are now commercially available,
compressed H2 storage falls short of several DOE targets

700 Bar Compressed Gas (2015 record) vs. revised DOE Ultimate Targets

Dome protection

High-density polymer liner

Carbon fiber composite

Temperature sensor

TPRD = Thermally Activated Pressure Relief Device

Credit: Process Modeling Group, Nuclear Engineering Division. Argonne National Laboratory (ANL)
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How is hydrogen stored?
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Although many materials were investigated, none were identified that met all
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2009-2015 Hydrogen Storage Engineering Center of Excellence
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Hydrogen Materials Advanced Research Consortium (HyMARC):

highly coordinated capabilities to accelerate materials discovery

HyMARC Phase 1:

• FY16 — FY 18

• 3 DOE Labs

• Budget 53M/yr

HyMARC Phase 2:

• FY19 — FY22

• 5 DOE Labs

• Budget $8 M/yr
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Seedling Projects 

• Applied material development

• Novel material concepts

• High-risk, high-reward

• Concept feasibility demonstration

• Advanced development of viable concepts

• Foundational R&D

• Computational models

• Synthetic protocols

• Advanced characterization tools

• Validation of material performance

• Guidance to FOA projects

• Database development
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HyMARC objective: accelerate discovery of breakthrough storage
materials by providing capabilities and foundational understanding

Foundational understanding of phenomena governing
thermodynamics and kinetics limiting the development
of solid-state hydrogen storage materials

HyMARC will deliver community tools and capabilities:

• Computational models and databases for high-
throughput materials screening

• New characterization tools and methods (surface,
bulk, soft X-ray, synchrotron)

• Tailorable synthetic platforms for probing nanoscale
phenomena
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Relevance: poorly understood phenomena at length scales from
< 1 nm to µ,m govern storage material behavior

Distinct chemical/physical processes affect
the bulk properties of storage materials
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Metal-Organic Frameworks (MOFs) are among the most promising

hydrogen sorbents
Thousands of MOFs are now known
e.g. see Furukawa et al. Science 2013
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No sorbent materials can meet all of the DOE targets
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H2 binds too weakly to provide sufficient capacity at ambient temperature
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DOE Targets HyMARC is focusing on are in red
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Recent HyMARC research indicates H2 binding energies can
be increased in MOFs
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Research of J. R. Long and coworkers
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• In situ powder neutron diffraction: Extremely short Cu—D2 distance observed in Cul-

MFU-4/ by neutron powder diffraction. Corroborates strong binding enthalpy and

large red-shift of u(H—H) observed from DRIFTS.

3875

• High-P adsorption: Open Cu+ sites saturate at relatively low pressures. Volumetric

usable capacity for Cul-MFU-4/ surpasses Ni2(m-dobdc) at 75 ° C.

• DRIFTS in v2C12.8(btdd): VTIR confirms high enthalpy of adsorption. Enthalpy—entropy

relation distinct from M2(dobdc) family. *MAK 40 12



High hydrogen capacity metal hydrides, but strong
chemisorption and H2 release/uptake are limiting 0411AAK

M(AHA,

4bs.
TiCI3

2NaAIH4 2NaH + 2A1 + 3H2

Mg(NH2)2 + 2LiH Li2Mg(NH)2 + 2H2

2LiBH4 + MgH2 2LiH + MgB2 + 4H2

Mg(BH4)2 MgB2 + 4H2

high dehydrogenation

temperatures

high pressure required

for rehydrogenation

MAy + 1/2xyH2

Bogdanovic et al. J. Alloys Comp. 1997, 253-254, 1
Bogdanovic, Schwickardi, U.S. Patent 6,106,801, 2000

Cheng et al. Angew. Chem. Int. Ed. 2009, 48, 5828
Luo et al. J. Alloys Comp. 2004, 381, 284

Pinkerton et al. J. Phys. Chem. C 2007, 111, 12881
Vajo et al. J. Phys. Chem. C. 2005, 109, 3719

Soloveichik et al. Int. J. Hydrogen Energy, 2009, 34, 916
Severa et al. Chem. Commun. 2010, 46, 421

Problems &
Challenges

stable intermediates

121 41212-, 1-AIHE-, etc.

contamination of H2 gas

with impurity gases

loss of capacity upon

cycling



04MARC
Nanoscale metal hydrides accelerates release kinetics
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Design Parameters
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MHFE-SAH tank design

rUsed HSCOE Metal Hydride Finite Element model to reveal non-intuitive tradeoffs
and benefits of using nanoscale metal hydrides in an operational H2 storage tank
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Techno-economic analysis suggests large-scale production of
MOF sorbents is economically feasible

Production of 2.5 Mkg/year of Mg2(dobdc)

(dobdc4— = 2,5-dioxido-1,4- benzenedicarboxylate; Mg-MOF-74)
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Baseline: solvothermal process

LAG: Liquid-Assisted Grinding

Aqueous: replace organic solvents with water

Increase Lower Lower

Yield from Metal Salt Linker

69% to Price by Price by

92% 50% 50%

4,013 4,0.36

increase Lower Lower

Yield from Metal Salt Linker

92% to Price by Price by

95% 50% 50%

See D. DeSantis et al. Energy & Fuels, DOl: 10.1021/acs.energyfuels.6b02510
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0I4MARC Take-home messages

Compressed gas (700 bar): physically impossible to meet DOE volumetric target

Solid-state materials have potential to meet DOE targets

HyMARC: a National Laboratory team focused on accelerating materials discovery:

• Foundational research

• Development of advanced characterization tools

• Computational modeling across all relevant length scales

• Innovative materials synthesis and development

• Collaboration and assistance to Seedling projects

In FY19, Research to develop Hydrogen Carriers was initiated (Tom Autrey, PNNL,

lead)
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Enabling twice the energy density for onboard H2 storage
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