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Sandia National Laboratories



SANDIA NATIONAL LABORATORIES
ORIGIN

Exceptional service in the national interest

® July 1945: Los Alamos
creates Z Division

® Nonnuclear component
engineering

*November 1, 1949:
Sandia Laboratory
established

—
5 to undertals this task. 1In my opinion you have here an opportunity ' r f %
o 4

to render an exceptional service in the national interest. F:[“ e
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SANDIA NATIONAL LABORATORIES
MAIN ROLE AND AREAS OF INTEREST

SANDIA HAS FIVE MAJOR
PROGRAM PORTFOLIOS
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SANDIA NATIONAL LABORATORIES
ALGORITHMS R&D: FROM CORE SOLVERS TO MODELING AND SIMULATION APPLICATIONS
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FIGURE: Courtesy of Brian Adams
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SANDIA NATIONAL LABORATORIES
DAKOTA - EXPLORE AND DESIGN WITH CONFIDENCE

Algorithms for design exploration and simulation credibility
» Suite of iterative mathematical and statistical methods that interface to
computational models
» Makes sophisticated parametric exploration of simulations practical for a
computational design-analyze-test cycle

Features
> Sensitivity: Which are the crucial factors/parameters?
» Uncertainty: How safe, reliable, or robust is my system?
» Optimization: What is the best performing design or control?
» Calibration/Parameter Estimation: What models and parameters best match
data?

Credible Prediction
» Verification: Is the model implemented correctly, converging as expected?
» Validation: How does the model compare to experimental data, including

> DAKOTA

https://dakota.sandia.gov/
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Uncertainty Quantification

UNCERTAINTY QUANTIFICATION
DOE AND DOD DEPLOYMENT ACTIVITIES

Stewardship (NNSAASC) Energy (ASCR, EERE, NE) Climate (SciDAC, CSSEF, ACME)
Safety in abnormal environments Wind turbines, nuclear reactors Ice sheets, CISM CESM ISSM, CSDMS

fowlaw

iy sidinglow

meliresze disu

bedtopography

CHWM: push fwd

Addtnl. Office of Science: ,EDW“'EPD
(SciDAC, EFRC) ju
Comp. Matls: waste forms /
hazardous matls (WastePD, CHWM)
MHD: Tokamak disruption (TDS)

Uniform

Pareto-
i nind

00 v
-3.00-1.50 000 150 3.00 450 6:00 7.50 9.00
Activation Energy (eV)

FIGURE: Courtesy of Mike Eldred

High-fidelity state-of-the-art modeling and simulations with HPC
» Severe simulations budget constraints
» Significant dimensionality driven by model complexity
Recent Advancements on Multifidelity UQ 6/69



Uncertainty Quantification

UNCERTAINTY QUANTIFICATION
RICH SET OF MODELING CHOICES - DISCRETIZATION VS FIDELITY

Multi-fidelity: several accuracy levels available

» Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)
» Numerical methods (high/low order, Euler/RANS/LES, etc...)

» Numerical discretization (fine/coarse mesh...)

» Quality of statistics (long/short time history for turbulent flow...)

Reynolds E
Averaged Navier- i tress RA?
Stokes (RANS) W RANS model
i

Large Eddy
Simulation (LES)

Potential Flow

Potential
\ Flow

Regions

vortex sheet

L19p1d 19POIN 3

Hybrid RANS/LE
Relationships amongst models can be difficult to anticipate

» A simple hierarchical sequence can correspond to strict modeling choices (e.g.
discretization levels)

» More often, for some Qol, we can have peer models
Recent Advancements on Multifidelity UQ 7/69
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Multifidelity sampling

UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION - WHY SAMPLING METHODS?

UQ context at a glance:
» High-dimensionality, non-linearity and possibly non-smooth responses

» Rich physics and several discretization levels/models available

Natural candidate:

» Sampling-based (MC-like) approaches because they are non-intrusive, robust and
flexible...

» Drawback: Slow convergence O(N~1/2) — many realizations to build reliable
statistics

Goal of the talk: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

» Simplified (low-fidelity) models are inaccurate but cheap
» low-variance estimates

» High-fidelity models are costly, but accurate
» low-bias estimates

Recent Advancements on Multifidelity UQ 8/69



Monte Carlo



Multifidelity sampling

MONTE CARLO
GENERALITIES

Let consider a random variable @, we want to compute its expected value E [@] (or some high-order moment):

AMC
QN = —

Recent Advancements on Multifidelity UQ 9/69



Multifidelity sampling

MONTE CARLO
GENERALITIES

Let consider a random variable @, we want to compute its expected value E [@] (or some high-order moment):

i 1@
A ==-> QY
Ni:]

Let's use MC to compute the value 7 o

Hit e
0 P Miss @

Recent Advancements on Multifidelity UQ 9/69



J Multifidelity sampling

MONTE CARLO
GENERALITIES

Let consider a random variable @, we want to compute its expected value E [@] (or some high-order moment):
N
LS
N i=1

#Hit

Let's use MC to compute the value 7 o<

Estimated Pi

24 . : . . .
0 100 200 300 400 500 600 700 800 900 1000

Repetition

Recent Advancements on Multifidelity UQ 9/69



Multifidelity sampling

MONTE CARLO
GENERALITIES

Let consider a random variable @, we want to compute its expected value E [@] (or some high-order moment):

e 1&g
v ==>.9 9
N £
i=1
#Hit
Let's use MC to compute the value 7 o<
3.8 T r T T - -
N=100 ——
N =1000
36 pi ——

Estimated Pi

26

24 . : . . .
0 100 200 300 400 500 600 700 800 900 1000

Repetition
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Multifidelity sampling €

MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

QMC, def 1Y @)
u N = ZQ

Hit
Miss

Recent Advancements on Multifidelity UQ 10/69



Multifidelity sampling

MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

e, der L 1 ZQ(”

N =100, Nx=4 ——

pr =
Est Mean ——
3.8 T T T T T T T T T
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Multifidelity sampling

MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

e, der L 1 ZQ(”

N =100, Nx=16

p!
Est Mean (Nx=4)
Est Mean (Nx=16)

3.8 T T T T T T

|‘|.‘T d w"i’”ﬂl\ ll“ \1’||\||Hu||n i

Estimated Pi
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Multifidelity sampling

MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:
AMC 2 T AMC 2
E (@ —EQD*] = var [@%] + E(@m — Q)
» Sampling error: replacing the expected value by a (finite) sample average, i.e.

Var [QMC } Valer]

From the CLT, for N — oo

Var [Q]

(MY —EQ) ~ | ——N(@©,1)

» Model fidelity (e.g. discretization): finite accuracy

Recent Advancements on Multifidelity UQ 12/69



Multifidelity sampling

MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:
AMC 2 N AMC 2
E [(@)% — E[QD?] = var [uK] + (E(Qu — Q)
» Sampling error: replacing the expected value by a (finite) sample average, i.e.

Var [Q%,CN} = Va;v[Q]
From the CLT, for N — oo
7 Vi
(@% -~ @) ~ =

» Model fidelity (e.g. discretization): finite accuracy

N(0,1)

Accurate estimation = Large number of samples evaluated for the high fidelity model

Recent Advancements on Multifidelity UQ W 12/69



Multifidelity sampling

ACCELERATING MONTE CARLO
BRINGING MULTIPLE FIDELITY MODELS INTO THE PICTURE

Pivotal idea:
» High-fidelity models are costly, but accurate
» low-bias estimates
» Simplified (low-fidelity) models are inaccurate but cheap
» low-variance estimates

Single Fidelity

Multi Fidelity

Hi e Hit
Miss o wiss
1
LT °l
B L .
0
- 05
o o
Hi e . Hit
Mss o ol ol wiss
0 05 1
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Multifidelity sampling

CONTROL VARIATE
PIVOTAL ROLE

A Control Variate MC estimator (function G with E [G] known)
ay = ax° -8 (GN° - E(Q))
Properties:
> Unbiased, ie. E [@F] = E [@}€]
Varl/? Q)
PNarll2 (@)

Cov(@Q, G)
VarlZZ (@ Varl/Z (G)

> argénin Var [Q}C\'}V] — B =

» Pearson’s p = where [p| < 1

‘ var [45] = Var [QH] (1 - %)

Recent Advancements on Multifidelity UQ 14/69



Multifidelity sampling

CONTROL VARIATE
PIVOTAL ROLE

A Control Variate MC estimator (function G with E [G] known)

A = QN -8 (GN° - E(a1)
Properties:

> Unbiased, ie. E [@F] = E [@}€]

Varl/2 Q)
“PYarll? (G)
CovQ, G)
Varl/ (@ Varl7% (@)

> argénin Var [Q}C\'}V] — B =

» Pearson’s p = where [p| < 1

‘ var [45] = Var [QH] (1 - %)

Q: How does the control variate approach enter in the picture?
A: By means of the (geometrical) MLMC and multifidelity strategy

0 Single resolution level
» Cheap lower fidelity (Multifidelity)

1 Applying it recursively
» Spatial discretization (Multilevel)

2 Applying it recursively across resolutions/model forms
» Spatial discretization and cheap lower fidelity (Multilevel-Multifidelity)

Recent Advancements on Multifidelity UQ 14/69
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Multifidelity sampling

MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity Qol, QHF to decrease its variance

QHFCV QHN+O¢<QZI‘{N7]E [Q}CJFD

Recent Advancements on Multifidelity UQ 15/69



Multifidelity sampling

MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity Qol, QHF to decrease its variance

QHFCV QHN+O¢<QZI‘{N7]E [Q}CJFD

In practical situations
» the term E [QIL;[F] is unknown (low fidelity # analytic function)
» we use an additional and independent set ALF = (r — 1)NHF

NHF

[0l = e X

Finally the variance is

[QHF cv] — Var [Q}‘I{F] ( -1, )

[1] Pasupathy, R., Taaffe, M., Schmeiser, B. W. & Wang, W., Control-variate estimation using estimated
control means. //E Transactions, 44(5), 381-385, 2012

[2] Ng, LW.T. & Willcox, K. Multifidelity Approaches for Optimization Under Uncertainty. Int. J. Numer.
Meth. Engng 100, no. 10, pp. 746772, 2014.

[3] Peherstorfer, B., Willcox, K. & Gunzburger, M., Optimal Model Management for Multifidelity Monte Carlo
Estimation. SIAM J. Sci. Comput. 38(5), A3163A3194.
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Multifidelity sampling

MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as

.| e
1— p2
HF
NHF+ _ Var [@3] 1— r*—lpz
e2/2 r*
NN e SABL T
09 \\\\
08 \\\ N \\_
3 07 AN
g 06 ; : Theta
S8 05 - g & = g s
o ———— §—
3 03 06
e 05
02 0.4
03 ——
O L, . WU Db EE T 4 02—
: 01 —
0 I B L T
1 1000 10000
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Multifidelity sampling

GEOMETRICAL MLMC
ACCELERATING THE MONTE CARLO METHOD WITH MULTILEVEL STRATEGIES

Multilevel MC: Sampling from several approximations @y of @ (Multigrid...)

Ingredients:

> (My:0=0,... LywithMy <M; < - <M, &M

» Estimation of E [@p7] by means of correction w.r.t. the next lower level

e QM - QM = £>0 inearii L L
2% M A neortty, i (@] = E [Quag |+ D E [@nr, — Qur,_,| = 0 EIVe]
Qo £=0 =1 =0

»  Multilevel Monte Carlo estimator

L
Qe G = ZN Z(Q o )

£=0 £ i=1

» The Mean Square Error is
E[@F -EQ)7] = Z Ny 'Var [Y,] + (E [Qu — Q)2

Note If @)y — @ (in a mean square sense), then Var [Y,] £

Recent Advancements on Multifidelity UQ 17/69



Multifidelity sampling

GEOMETRICAL MLMC
DESIGNING A MLMC SIMULATION: COST ESTIMATION

Let us consider the numerical cost of the estimator
L
L
c@t) => N,
=0

Determining the ideal number of samples per level (i.e. minimum cost at fixed
variance)

L
C(QM") =D _NeCe L
£=0 Lagrange multiplier 2 (Var [V C )1/2 Var [YZ]
——————— 4 =5 § kI1LE — &
2
& k=0

L Ce
> N, War[y,) =£%/2
£=0

L
Var [Q%L] = ZNZlVar (Yy).

£=0

MLMC has been originally introduced for problems for which it is possible to control the highest resolution
to achieve a desired MSE

[1] Giles, M.B., Multilevel Monte Carlo path simulation. Oper. Res. 56, 607-617, 2008.

[2] Haji-Ali, A., Nobile, F., Tempone, R. Multi Index Monte Carlo: When Sparsity Meets Sampling, Numerische

Mathematik, Vol. 132, Pages 767806, 2016.
Recent Advancements on Multlfldehty uQ 18/69



Multilevel-Multifidelity Monte Carlo



Multifidelity sampling

MULTILEVEL-MULTIFIDELITY APPROACH
COMBINATION OF DISCRETIZATION AND MODEL FORM

» OUTER SHELL - Multi-level

Lyp Lur
E[QfF] =S E[vi] =Y T
=0 =0

» INNER BLOCK — Multi-fidelity (i.e. control variate on each level)

Y = V5 o, (Y - B [YIT))

Final properties of the estimator

AMLMF _ LZHF - HF GLF _ 1 [yLF
QM [YZ + ae (Y( - [Yk })]
1=0

and

Lyr
2 1 ry
Var [QMMLMF] Zl i <NZHF Var [j! ?F] (1 1+, p[2)>

Recent Advancements on Multifidelity UQ 19/69




Multifidelity sampling

MULTILEVEL-MULTIFIDELITY
OPTIMAL ALLOCATION ACROSS DISCRETIZATION AND MODEL FORMS

» Target accuracy for the estimator: &
» Cost per level is now Czq = C?‘F + C%‘F (1 +ryp)

» the (constrained) optimization problem is

Lyp Lyrp
1
. _ HF -eq HF _ 2
:gbgmm (L), where L = E_ Ny Cpi+ A E_ N—HFVar [YZ ]Az(rz) e“/2
NEF o £=0 =0 "¢
rp—1

b Az(rz)zlfpi .
£

After the first iteration the algorithm can adjust the number of samples on the HF or LF side depending on the
correlation properties discovered on flight

After the minimization (NI[F = N?F + AIZF = N?Frz)

2 wy, where wy = C?F/C%F
4

1/2
2 Lur (Var [YEIF] C?F !

Ag
2 2
ol 't 1-—p 7

[1] G. Geraci, M.S. Eldred & G. laccarino, A multifidelity control variate approach for the multilevel Monte Carlo
technique. Center for Turbulence Research, Annual Research Briefs 2015, pp. 169-181.
[2] G. Geraci, M.S. Eldred & G. laccarino, A multifidelity multilevel Monte Carlo method for uncertainty

propagation in aerospace applications 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech
Forum, (AIAA 2017-1951)

Recent Advancements on Multifidelity UQ
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Multifidelity sampling

Heat equation — Parabolic 1D

Recent Advancements on Multifidelity UQ 20/69



Multifidelity sampling

HEAT EQUATION
VERIFICATION TEST CASE (WE KNOW THE EXACT SOLUTION)

Heat-equation in presence of uncertain thermal diffusivity and initial condition:
du(x,&,t) Pu(x, &)
ot o)z =
u(x,€,0) =up(x,€), t€[0,tg] and £€=CR
u(x,€,t)|pq =10
uo(x, &) = G(&)F1(x) + Z(§)F2(x)

0, a>0,x€[0,L]=QCR

800 f° Initial condition
Low Fidelity =——
600 - __High Fidelity
400 | > Low—fidelity:
300 | ] fow = {1, 273} —E [Qlow] =33.15

> High-fidelity: 7pigh = flow U {9,21} —

e WA W ARY/EVI E [@pign] = 41.98
200 » Discrepancy E [@nigh] — E [Qiow] = 8.83
-400 (21%)
0 0.2 0.4 016 0.8 1

ulx.te)

-600
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Multifidelity sampling

NUMERICAL RESULTS
DESIGNING A CHALLENGING TEST CASE - MC ON N, = 1000

50 , . | |
MC LF —e—
MR
F ]
® exact HF ——
40
| LF HF
S 8 | # modes 3 21
E Nx Wy
£=0 5 30 42
30 e=0 FRNE
£=2 30 100 23
® =3 60 200 23
20 ; ,

0 100000 200000 300000 400000 500000 600000 700000
N

@ The LF cannot increase the overall accuracy because it is heavily biased...
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Multifidelity sampling

NUMERICAL RESULTS

MULTI-LEVEL MULTI-FIDELITY (COMPARISON WITH MLMC AND MC)

65

MLMC +--3¢c--=
MLMF —e—

exact e

60

55
50

EQ)

45 -
40 |
35t M—

30

25 ‘ :

e @ X Y X

10 100 1000 10000
N

100000

Expected Value

Recent Advancements on Multifidelity UQ
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epsilon

10
L
01}
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10 100 1000 10000 100000 1e+06 1e+07
N
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Multifidelity sampling

Non-linear elastic waves propagation — Hyperbolic CLAWs 1D

Recent Advancements on Multifidelity UQ 23/69



Multifidelity sampling

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES

» Rod constituted by 50 layers, two alternated materials (A and B) with constitutive laws
oa =Kie+Kj, K =1 and K§ =¢ ¢& ~ 1(0.01,0.02)
o =KBe+ KB, K} =15 and Ki=08

» Uncertain initial static (u(x,t = 0) = 0) pre-loading state:

(x — 0.35)(x — 0.25)\ .
&3 exp (——) if 0<x<1/2 &3 ~U(0.5,2)
. 2 x 0.002
( & - 065 — 0‘75)) if 1/2<x<1 U(0.5,6.5)
S %0 2 % 0.002 ! * & o

> Spatially varying uncertain density: p(x) = £; + 0.5sin (27x), &; ~ U(1.5,2)
» Clamped rod as B.C.

12
LF21 nodes - - -
L 28322 e Nx N: Ay -
Wi o e - - - LowsFidelity 21 o0 | S4 R0
HF 101 nodes —— 41 100 1.8 x 10
8t HF 201 nodes —— (GODUNOV) _3
HF 401 nodes 81 150 1.2 x 10
HF 1001 nod —4
” Inital Solution 151 | 288 | 6.25 x 10
¢ \ —7
& High-fidelity 0L | 200 495X 1;)0_ .
(MUSCL-van Leer) 201, 400 -0 X 4
401 900 2x 10

1001 | 2000 9 x 10~°

TABLE: Low- and high- fidelity simulations

Recent Advancements on Multifidelity UQX 24/69



Multifidelity sampling

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES

Standard Deviation of the Estimator

VIV ——
QY —
MC
MLMC
01 b J
w
[
=
001 b E
0.001 - ‘ ‘ ‘
10 100 1000 10000 100000

Equivalent HF runs
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Multifidelity sampling

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES — AVERAGE OF 50 REALIZATIONS

Average Standard Deviation of the Estimator
1 T

MLMC
MLMF Y| ——
MLMF QI —»—
=
2 0.1} 1
8
]
a
B
3
[ =
i 0.01 k|
@
0.001 - -
10 100 1000 10000
Equivalent HF simulations
Level MLMC MLME-YI MLME-QI
N, || NEF | NEF | r, | g2 || NHF | NEF | | g2
0 80029 5960 | 243178 | 40 | 0.97 4682 | 192090 | 40 | 0.97
1 6282 2434 12487 4 0.49 1049 13781 12 | 0.83
2 1271 262 3877 14 | 0.82 151 3657 23 | 0.92
3 212 47 966 19 | 0.84 34 754 21 | 0.86

Recent Advancements on Multifidelity UQ 26/69



Multifidelity sampling

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES — AVERAGE OF 50 REALIZATIONS

Average Standard Deviation of the Estimator
1 T

MLMC *

MLMF Y| ——
MLMF QI —»—

=

2 0.1} k|

8

>

o)

a

ko)

g \

°

=

i 0.01 k!

(2]

0.001 . L
10 100 1000 10000

Equivalent HF simulations

Level MLME-YI MLMF-QI
NF || 2 || NFF | NF |y | B
0 243178 | 40 | 0.97 192090 | 40 | 0.97
1 12487 4 0.49 13781 12 | 0.83
2 3877 14 | 0.82 3657 23 | 0.92
3 966 19 | 0.84 754 21 | 0.86
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Multifidelity sampling

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES — AVERAGE OF 50 REALIZATIONS

Average Standard Deviation of the Estimator

MLMC
MLMF Y| ——
MLMF QI —»—

=
2 0.1 f 1
8
]
[a]
° =
% \
[ =
8 0.01 E
@
0.001 ‘ .
10 100 1000 10000
Equivalent HF simulations
Level MLMC MLME-YI MLMF-QI
N, NEF | NIF NEF | NIF
0 80029 5960 | 243178 4682 | 192090
1 6282 2434 12487 1049 13781
2 1271 262 3877 151 3657
3 212 47 966 34 754

Recent Advancements on Multifidelity UQ
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Multifidelity sampling

OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is generated by
adding M unbiased terms to the MC estimator

QCV:Q+£%’ (Qi*“i)

> Qi MC estimator for the ith low-fidelity model

» 1; known expected value for the ith low-fidelity model
> a=la;..., aM]T set of weights (to be determined)

Let's define

» The covariance matrix among all the low-fidelity models: C € RM*M
» The vector of covariances between the high-fidelity @ and each low-fidelity @;: ¢ € RrRM

> ¢ =c¢/Var[Q] = [p1Var (@], ..., pyVar [QM]]T, where p; is the correlation coefficient (@, @;)

The optimal weights are obtained as a* = —C~Lc and the variance of the OCV estimator
A A A 2.
var [§%V] = var [Q] vV (a*) = var [@] (1 - Rgcy)

=var [Q] (1-¢"c7"e), 0<Rjoy <1

@ For a single low-fidelity model: R%CV~1 = p%

Recent Advancements on Multifidelity UQ 27/69



Multifidelity sampling

APPROXIMATE CONTROL VARIATE
M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE

For complex engineering models the expected values of the M low-fidelity models are unknown a priori
» Let's define the set of sample used for the high-fidelity model: z

» Let's consider N; ordered evaluations for @;: z; (we assume N; = [r;N])
> Let's partition z; in two ordered subsets zil U 712 = z; (note that in general zi1 n ziz # 0)
The generic Approximate Control Variate is defined as
T

M M
Q) =@ + 3o (Qa) — i) = Q@) + Y aidi(m) = @ +a"4,

i=1 i=1

The optimal weights and variance can be obtained as

oAV = _cov[a, Al cow [A, Q}

var [@ (o2V)] = var [¢] (1 - cov [2,8]" %c [2.4]
ar

=Var [@] (1 - Riev) -

@ For a single low-fidelity model: R‘%CV—I = e p% (this result does not depend on the partitioning of zy)

1
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Multifidelity sampling

MULTILEVEL MONTE CARLO
A RECURSIVE PARTITIONING WITH INDEPENDENT ESTIMATORS (GIVEN A PRESCRIBED BIAS)

Q @ Q

Qu

MLMC can be obtained from ACV with

L _
. v > z; =1z
4 4 i 2 1 ;
i i >zi7zi;1forL:1,..4,M71
| 3 | a; —1 forall i

: . v M .
: QY (2) = @40 (-1) (Qie) — ()

! i=1

\/ Var [Q;] /Var Q]

where

> Zil and zi2 is7;_1N and ;N and 7y = 1, it holds that r; =7; +7;_1

. . 2 2
Given the recursive nature of MLMC, we can show that RMLMC < p7
Recent Advancements on Multifidelity UQ
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J Multifidelity sampling c

MULTIFIDELITY MONTE CARLO
AN APPROXIMATED CONTROL VARIATE WITH A RECURSIVE PARTITIONING

. . I I MFMC can be obtained from ACV with

z z >zil:zi_landziz:zifori:Z,...,M
2} z 1 5
) » z; =zandz] =z
2l
2
Cov i
a%VIFMC = —7[421 @il for i=1,...,M,
Var [Q;]
and the variance of the estimator is
Var [QMFMC} = Var [Q] (1 — RIZVIFMC)
M
2 TP —Ti—1 9 g [r1—1 ri —ri—1 P,
Rypmc = 2, ———p; =1 +Z
i—1 TiTi—1 r i—2 Tili—1 P1

Given the recursive nature of MFMC, we can show that RIZVIFMC < p%
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J Multifidelity sampling €

EXAMPLES OF CONVERGENT ESTIMATORS
IS IT POSSIBLE TO OVERCOME THE LIMITATION OF THE RECURSIVE SAMPLING SCHEMES?

We proposed two sampling strategies that overcome the limitation of the recursive schemes

Qu Q Q Q@

#

(a) ACV-IS sampling strategy. (b) ACV-MF sampling strategy.

As an example, let's consider the ACV-MF estimator

Ricy_wr = [diag (FMP) o E]T [C o diag (FM™))] -t [diag (FM™) o 2] .

The matrix FIMF) ¢ RMXM encodes the particular sampling strategy and is defined as

min(ri,rj)~1 o X

FOME) _ Tmin(r ) i)
b =

, for r; — oo, FMF) _, 1y and RiCV—MF — R?)CV

otherwise
1
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Multifidelity sampling

A PARAMETRIC MODEL PROBLEM
WHAT HAPPENS FOR A LIMITED NUMBER OF LOW-FIDELITY SIMULATIONS?

We designed a parametric test problem to explore different cost and correlation scenarios (x,y ~ U(—1,1))

Q=A (cos 0x5 + sin@ys)
Q1 =4, (cos 01 x3 + sin 01 y3)
Qo = Ag (cos Oy x + sin Oy y)
We use the following definitions

> A= +/11,A; = /7, and Ay = V/3 (give unitary variance for each model)
» 6 = m/2and 6y = /6 and 67 varies uniformly in the bounds 8y < 67 < 6

> We consider a fixed cost ratio between models, i.e. a relative cost of 1 for @, 1/w for @ and 1/w? for Qg

—— OCV
—e— OCV-1
— 0CV/0CV-1

Variance reduction ratio

0.6 0.8 1.0 1.2 14 0.6 0.8 1.0 1.2 1.4
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A PARAMETRIC MODEL PROBLEM
COMPARISON OF DIFFERENT ESTIMATORS

L0 2 14
6

0.6

o 1.2 14
(a) w=10

1.0 2 14 0.6
6

12 14
o
(d) w =50

0.6

0.8 1.0 1

g 2 14
(e) w =100

(f) w = 1000
FIGURE: Variance reduction for cost ratios of [1,1/w, 1/w?] for @, @1, and Q2
Recent Advancements on Multifidelity UQ
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Multifidelity sampling

Aero-thermo-structural analysis — A more realistic engineering example
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Multifid mpling

AERO-THERMO-STRUCTURAL ANALYSIS OF A JET ENGINE NOZZLE
PROBLEM INSPIRED BY THE NORTHROP GRUMMAN UCAS X-47B

(a) X47B UCAS (b) Nozzle close-up

FIGURE: Northrop Grumman X-47B UCAS and close up of its nozzle!.
Operative conditions
» Reconnaissance mission for an high-subsonic aircraft
» Most critical condition is the top-of-climb (Required thrust is 21, 500 N) @ 40, 000 ft and Mach 0.51
Nozzle structure Two layers separated by an air gap
» Inner thermal layer: ceramic matrix composite

» Outer load layer: composite sandwich material (titanium honeycomb between two layers of
graphite-bismaleimide Gr/BMI)

Uncertain parameters 40 uncertain parameters — mix of uniform and log-normal variables
» 35 material properties variables
» 2 atmospheric conditions
» 2 inlet conditions

» 1 heat transfer coefficient

Lhttp:/ /www.northropgrumman.com/MediaResources/Pages/MediaGallery.aspx?Productld=UC-10028
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Multifidelity sampling

AERO-THERMO-STRUCTURAL ANALYSIS OF A JET ENGINE NOZZLE
COMPUTATIONAL SETUP

A multiphysics problem (forward coupling)

>
>

>

An Engine simulator provides the inlet conditions of the nozzle
The SU2 CFD solver computes the temperature and pressure profile along the walls

The Finite Element solver AERO-S computes (several metrics for) mechanical and thermal stresses in the
structure

Quantities of Interest (Qols)

>

>
>
>

Mass as a surrogate for the cost of the device
Thrust for the aerodynamics performance
A temperature failure criterion in the inner load layer (Thermal stresses)

A strain failure criterion in the thermal layer (Mechanical stresses)

NOTE: this problem naturally leads to a multifidelity setup

>

>
>
>

Several CFD choices ranging from 1D ideal solver up to 3D RANS
Geometrical approximations (Axisymmetric assumption)
Several spatial resolutions for both the CFD and FEM meshes

etc.
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Multifidelity sampling

PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
COMPUTATIONAL SETUP

» We demonstrated that all the recursive schemes (MLMC, MFMC, MLMF, MIMC etc.) are bounded by the
correlation of the first low-fidelity model

» We want to verify that for the Sequoia problem a more efficient estimator can be built, i.e.

2 2
Roev > Boev 1

CFD FEM (Thermal/Structural) Cost
1D COARSE 2.63e-04
Euler 2D COARSE COARSE (axisymmetric) 9.69e-04
Euler 2D MEDIUM MEDIUM (axisymmetric) 3.18e-03
Euler 2D FINE FINE (axisymmetric) 9.05e-03
Euler 3D COARSE COARSE 1.16e-02
Euler 3D MEDIUM MEDIUM 3.58e-02
RANS 3D COARSE COARSE 1.00

TABLE: Relative computational cost for several model fidelities for the nozzle problem. All the cost
are normalized with respect to the 3D RANS solver.
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Multifidelity sampling

PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM

COMPARISON BETWEEN OCV AND OCV-1

Variance reduction

Qol ocv OCV-1 Ratio OCV/OCV-1
Thrust 0.020595 0.050432 0.41
Thermal stresses 0.0043612 0.0075662 0.58
Mechanical stresses 6.2981e-04 0.011720 0.05

TABLE: Performance of OCV and OCV-1 for the nozzle problem and three different Qols.

vy vy vy

The next step is to include the cost to understand how effectively we can exploit this gap with the

estimators we proposes

Recent Advancements on Multifidelity UQ

A separation between OCV and OCV-1 exists for all Qols

OCV-1 attains more than one order of magnitude reduction over MC
For Thrust and Thermal stresses an additional 60% and 40% reduction can be gained with OCV

For the Mechanical stresses the additional benefit is larger than 90%
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Leveraging Active Directions for Multifidelity

CAN WE ENHANCE CORRELATION BETWEEN MODELS?
MULTIFIDELITY UQ ON THE REDUCED (SHARED) SPACE

Core Question
Q: Can we identify a shared space between models (possibly with independent/non-shared parameterization) where
the correlation is higher?
A: Active Subspace method seems well suited for this (but this idea is not limited to it)
Pivotal idea and its main features
» For each model one can search for Active Directions independently

» If the input variables of a models are standard Gaussian variables then the Active Variables are also
standard Gaussian variables

» Therefore, for each model the Qol can be represented on a (possibly reduced) space characterized by a join
standard Gaussian distribution

» We can sample along these shared Active Directions and 'map back’ to the original coordinates of each
model separately

Some Questions:
» How do we treat the inactive variables?
» What if the model input are not Gaussian variables?

» What does it happen if the Active Directions are different between models? We expect this to happen often
in practice

» Why is this even supposed to work from a physical standpoint?
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Leveraging Active Directions for Multifidelity

ACTIVE SUBSPACES IN A NUTSHELL
(ALMOST) EVERYTHING YOU NEED TO KNOW TO USE IT WITH MULTIFIDELITY — SEE CONSTANTINE (2015) FOR MORE

We consider a black-box approach, i.e. the Qol @ is obtained through a computational model f given a vector of
input parameters x

> Vector of Input parameters: x € R™ with joint distribution p(x)

Let’s introduce the m X m matrix C
" = = X
c-— / (%7) (97)" pwyax
» Since C is I) Positive semidefinite and Il) Symmetric, it exists a real eigenvalue decomposition
C= WAWT, where
» W is the m X m orthogonal matrix whose columns are the normalized eigenvectors

A =diag{A,..., Am}and Ay > - > Ay >0

Let's define two sets of variables
y= ng eR" (Active)
i = x=Wuy+Wizx Wy
z=W;x € R™=) (Inactive)

Linearity:

(X =R™) then Y = {y S iR",y:WXx,x € ]Rm} and

This is true for each model, i.e. there will always be a shared space between different models (even if they have
a different parameterization)
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Leveraging Active Directions for Multifidelity UQ

A QUICK DEMONSTRATION — GAUSSIAN INPUT
LOW-CORRELATED MODELS (CORRELATION SQUARED 0.05)

High-Fidelity / Low-Fidelity
25 s
2
f(x,y) 1.5 3
1 25
2

a(xy)
@
T

Recent Advancements on Multifidelity UQ
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A QUICK DEMONSTRATION — GAUSSIAN INPUT
IMPORTANT DIRECTIONS IN ACTIONS (CORRELATION SQUARED FROM 0.05 TO 0.9)

Independent Important Directions

T NVARAN L= T ——1
G
05 E—I— -
\ R ==
\ XY
717 ¥
> o B S = i - 0
T <& \ e AN
05 [ a 1 05 [
it TS !
1 1Y N A [
N Yy ‘
PR ius! I 1 VWY 4 I I |
A 05 0 05 1 A 05 0 05
x x
RegoTasS TG AS Responses and Correlation along the AS Scaiter Plotalong AS
3 T T T T T T 3 T T T T
=
25 & 25
2 A 2
= //
2 15f B g 15+
11 q 1+
o5yl L M - 05 -
av) >
0 1 | I L 1 f § 1 1 I 1 1
-4 3 2 1 0 1 2 3 0 05 1 15 2 25
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Leveraging Active Directions for Multifidelity UQ

A QUICK DEMONSTRATION — GAUSSIAN INPUT
NUMERICAL EXPERIMENT SETUP

We performed the following numerical experiment:
» We fix a computational budget (300 HF runs)
» We compute 1000 realizations for each estimator
» For MF estimator the cost of the total set of HF+LF runs is considered
> We report the pdf of the estimated Expected Value

NOTE 1: For this problem the expected value is known

NOTE 2: In this example the AS are searched for each estimator realization during
the pilot sample phase (this cost is not included, but they can be reused if needed...)

Recent Advancements on Multifidelity UQ 40/69



Leveraging Active Directions for Multifidelity UQ

A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE

1000 Estimator Realizations (LF cost = 0.01 HF cost)

o4 L MC(300HF)I:I_

0.35 |- -

0.25 |- -

0.15 |- _

Probability Density Function

0.05 - -1

o L+ I I L 1
0.95 1 1.05 1.1 1.15
Expected Value
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Leveraging Active Directions for Multifidelity UQ

A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE

1000 Estimator Realizations (LF cost = 0.01 HF cost)

0.45 T T T T
MC (300 HF) =1
0.4 - MC-AS (300 HF) === |
0.35 |- |
0.3

0.25
0.2
0.15

Probability Density Function

0.1

0.05

0.95 1 1.05 1.1 1.15
Expected Value
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Leveraging Active Directions for Multifidelity UQ

A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE

0.45

1000 Estimator Realizations (LF cost = 0.01 HF cost)

0.35 |-
0.3 -
0.25 -
0.2 -
0.15 -

Probability Density Function

0.05 |-

Recent Advancements on Multifidelity UQ

T
MC (300 HF) =1
MC-AS (300 HF) =1 |
MC-MF (100 HF + 20000 LF) =1

1.05 1.1 1.15
Expected Value
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Leveraging Active Directions for Multifidelity UQ

A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE

1000 Estimator Realizations (LF cost = 0.01 HF cost)

0.45 — T T T T
MC (300 HF) =1
G I MC-AS (300 HF) == |
5 035} MC-MF (100 HF + 20000 LF) [
g MC-MFAS (100 HF + 20000 LF) =1
Z 0.3 -
P
% 025 -
st
[
a 02 | -
=
2 015 -
I :
& 01 - - -
0.05 _
oL
0.95 1 1.05 1.1 1.15

Expected Value
@ Same computational cost for all the estimators!
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Leveraging Active Directions for Multifideli

WHAT ABOUT THE INACTIVE VARIABLES?
HOW DO YOU TREAT THE INACTIVE VARIABLES?

x = Way + WNaz

» Given a sample along the Active Variable y, we need to recover x
» This mapping is ill-posed (infinitely many x exist)
» One possible regularization: conditional expected value of f given y

fas 8) = [ F(Way + Wyan) pyig dz ~ f (Way + WiE [2]) [ o1y dz = F (Way)

fxy) ——
AS sampling ©
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Leveraging Active ctions for Mul

JOINT NORMALITY: IS THIS REQUIRED?
NON LINEAR TRANSFORMATION EMBEDDED IN THE BLACK-BOX APPROACH

Q: Is the assumption of joint-normality on the input space of the model required?
A: No, a normal distribution is used only for the AS mapping in order to obtain a shared space between models

Let's assume, for example x; ~ U (—1,1) and w; ~ N (0, 1), we can define (i.e. Rosenblatt, Nataf, etc.) a non
linear function x = h(w) such that

— @, where x; = h(w;) = erf(%)

From an AS perspective, only w exists (however, for each w we can obtain x)

w = Way + Wnaz =~ Wt

Responses along AS (Uniform Distribution) Scatter Plot along AS (Uniform Distribution)
3 T T T T T T 3 T T T T T
SN
25 I - 25 &
‘,.»"“ i
2 E 2 B
2 1sp B g 15fF o
1 B 1k 4
e (O oS 1
at)
0 1 1 1 1 1 1 0 1 1 1 1 1
4 -3 -2 -1 0 i/ 2 3 0 0.5 1 1.5 2 25 3

t ()
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Leveraging Active ctions for Mul

JOINT NORMALITY: IS THIS REQUIRED?
NON LINEAR TRANSFORMATION EMBEDDED IN THE BLACK-BOX APPROACH

Q: Is the assumption of joint-normality on the input space of the model required?
A: No, a normal distribution is used only for the AS mapping in order to obtain a shared space between models

Let's assume, for example x; ~ U (—1,1) and w; ~ N (0, 1), we can define (i.e. Rosenblatt, Nataf, etc.) a non
linear function x = h(w) such that

— @, where x; = h(w;) = erf(%)

From an AS perspective, only w exists (however, for each w we can obtain x)

w = Way + Wnaz =~ Wt

Responses along AS (Uniform Distribution) Scatter Plot along AS
3 T T T T T T 3 T
o
25 I - 25
‘,.»"“ i
2+ B 2
2 1sf E g 15fF
1+ s 1k
S L. 0.5 1= 2 Uniform = ]
at) = ) Normal
0 1 1 1 1 1 1 0 1 1 1 1 1
-4 -3 -2 -1 0 i/ 2 3 0 0.5 1 1.5 2 25 3

t ()
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Leveraging Active Directions for Multifidelity

DISSIMILAR PARAMETERIZATION
ADDITIONAL INPUT VARIABLE FOR THE HIGH-FIDELITY MODEL

f(x,v,2) = exp (0.7x + 0.3y) + 0.15 sin (27x) + 0.75z°, where 2z~ N(0,1/3)

1000 Estimator Realizations (Eq. Tot Cost 300 HF)
03 T T T T T

T
MC =1
MC-MFAS [ |

Probability Density Function

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12
Expected Value

FIGURE: Normalized histograms for 1000 realizations in the case of dissimilar parametrization.

In this case we used 2 active directions for the HF and 1 for the LF
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WHY IS THIS SUPPOSED TO WORK FROM A PHYSICAL POINT-OF-VIEW?
ACTIVE DIRECTIONS LET EMERGE THE UNDERLYING PHYSICS

As an example, let consider the supersonic isoentropic flow in a diverging nozzle (sonic throat)

P, =P, (1+

Ae
inl =f(M,) - —=
ar%lm f(Me) b

1
ith M) = —
wi f(Me.) M,

¥—1

__r
Mez) ’Y_l, where

(1+

> Given the shape of the nozzle (and its exit radius k), we can imagine 2 possible choices: 3D axisymmetric
and 2D planar

Ly-‘—l

N -
2

A4l

)| 2D

> The area ratio (A, /A*) is linear in the 2D case (ke /h;) and quadratic in the 3D case (hz /h?)

» Given the same longitudinal shape, the 3D nozzle lets the fluid expands more than the 2D nozzle

26

2.4

22

Exit Radius
~

1.8

1.6

1.4

3D Nozzle Exit Pressure

810*

7-10%
6-10%

510%

- 410*

3-10*
2:10*

1-10%

0-10°

2105 3:10° 4-10° 5:10° 6-10° 7105 8-10° 9:10° 1:10° 1-108

Stagnation Pressure
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Exit Radius

26

24

22

1.8

1.6

1.4

2:10° 3:10° 4-10° 5:10° 6-10% 7-10° 8:10% 9-10° 1-10° 1-108

2D Nozzle Exit Pressure

|

Stagnation Pressure

210
2105
110°
1:10%
1:10%
810%
610
4-10*
2:10%
0-10°
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Leveraging Active Directions for Multifidelity

WHY IS THIS SUPPOSED TO WORK FROM A PHYSICAL POINT-OF-VIEW?
ACTIVE DIRECTIONS LET EMERGE THE UNDERLYING PHYSICS (p2 =0.9 — 0.99)

As an example, let consider the supersonic isoentropic flow in a diverging nozzle (sonic throat)

%
-1 ==
P, =P, (1+'YTM§) 7=1, where
y+1
: Ae ; 1 2 2)]2
L=f(M)— == with f(M)= — 1+ 21y (7 —1)
argmin £ = {(Me) — 75 with f(Me) M{ — (142

» Given the shape of the nozzle (and its exit radius A.), we can imagine 2 possible choices: 3D axisymmetric
and 2D planar

> The area ratio (A, /A*) is linear in the 2D case (ke /h¢) and quadratic in the 3D case (hz /htz)
»  Given the same longitudinal shape, the 3D nozzle lets the fluid expands more than the 2D nozzle

Scatter Plot

2:10° T T T T T

2105 |- o |
1:10° |-
1-10° -
1:10° |-

2D

810 -
6:10% -
4-10% -

Original ~ ®
Rotated ~ *
I 1

2:10% |-

0.100 Il 1 1 1 1
010 1-10* 2:10* 3-10* 4-10* 510* 610 7-10* 810%

3D
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Leveraging Active Directions for Multifidelity

Non-linear elastic waves propagation — Hyperbolic CLAWs 1D
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NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

Let's consider an 'extreme’ scenario (within the previous test problem)

LF 5 nodes
HF 801 nodes

N, | N Ay
Low-fidelity 5 50 | 36 x 104

High-fidelity [[ 801 [ 600 [ 30 x 10—

Stress

TABLE: HF to LF Cost ratio ~ 2800

» We compute the AS without the gradient (we use a linear regression)
» We use 40 HF samples for our estimator

» We perform 250 repetitions
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Leveraging Active ctions for Mul

NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

Low-Fidelity

High-fidelity

Active Direction Agnostic sampling: p? = 0.89
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Leveraging Active Directions for Multifidelity

NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

9 T T T T T T T 8 T T T T T T
MF e ® sosa, HF o
8 [MF-AS = g 7 LF = o
7F 8 oL i
6 -
E) i B
T 5 - _
£ & 41 1
2 45 -
3
a3 3k J
3r T " m—
2+ i 2k i
1k i 1k - i
— wm
»l
0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 4 3 -2 -1 0 1 2 3 4
High-fidelity Active Variable

Active Direction Agnostic sampling: p2 = 0.89

Active Direction Aware sampling:
% =0.99
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Leveraging Active Directions for Multifidelity

Lid- and Buoyancy-driven cavity flow — A CFD example
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Leveraging Active Directions for Multifidelity

LID- AND BUOYANCY-DRIVEN CAVITY FLOW
TEST CASE GENERALITIES

Physical test case
» Combination of the Lid- and Buoyancy-driven test cases

» Navier-Stokes equations for a fluid with density p and kinematic viscosity v enclosed in a square cavity of
size L

Top wall sliding with velocity Uy,

» Top and bottom walls held at different temperature — net body force (buoyancy term via Boussinesq
approx.)

» Adiabatic side walls
Cavity immersed in a gravity field with components g and g,

Nominal conditions: Re = 1000 and Ra = 100000 for air Pr = 0.71 (constant)

Non-dimensional parameters

UrL
R OBL
v
B(T), — Te)L?
Gr=lg| = —5——
v
v
Pr=—
«@
Ra = PrGr

Numerical approach
» Implicit FV code on structured mesh with pressure-based SIMPLE discretization and dual-time stepping

» BC imposed via ghost cells

Recent Advancements on Multifidelity UQ
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or Multifidelit

LID- AND BUOYANCY-DRIVEN CAVITY FLOW
FLOW FIELD FOR THE NOMINAL CONDITIONS

=g taasn0
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Leveraging Active Directions for Multifidelity UQ

LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY UQ CASE

> HF: 101 x 101 spatial cells, T = 80 and Dt = 0.25 — CHF = 1
> LF: 21 x 21 spatial cells, T = 15 and Dt = 0.5 — C*F = 0.00107

4
HF ——
3 LF
2 /
J/ B
1 [
> /
g8 0 / /
2 |
= A |
8 /
£ 2
>
=
4
5
-6
06 04 -0.2 0 02 0.4 06

X

FIGURE: Vertical velocity profile at the horizontal mid-plane of the cavity for the reference
condition for both HF and LF models.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY PARAMETRIZATION

Parameter Min Max Mean
v 0.009 0.011 0.01
AT 9 11 10
& 8.1 9.9 9
&n 3.6 4.4 4
Uy 9 11 10

TABLE: Ranges for the uniform variables of the cavity problem.

Let’s have a look at the non-dimensional numbers (Pr is constant and Gr = Gr(Ra, Re) for this case)
Re = Re(v, Ur)
Ra = Ra(gy,8y, AT, v)

Low-fidelity
@
3

@
3

3.1 32 33 34 35 36 37 38 39 4
High-fidelity
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY PARAMETRIZATION

1.93

1.92

1.91

- 19 3 Model
E Variable HE LF
g 18 v -0.0860585 | -0.31282
S s AT -0.0036777 | 0.94981
: & -0.0057946 -
1.87 8n -0.0144436 -
U 0.9961617 -

1.86
TABLE: Dominant eigenvectors for the cavity
31 32 33 34 35 36 37 38 39 4 problem.

High-fidelity

1.85

FIGURE: Scatter plot corresponding to 500
realizations of the HF and LF model with samples
drawn in the physical space and 60 samples drawn
along the common active direction.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
NUMERICAL TEST FOR MULTIFIDELITY

-

&)

o

'S

Fixed number of pilot samples equal to 30 samples (in
the physical space)

AS evaluated (first order regression, no derivatives) from
the pilot samples and this sample set is discarded

Initialization of the MF algorithm with 30 samples in the
Active variables to estimate the correlation

Optimal oversampling ratio for the LF and perform the
mean estimation

Items (1-4) are repeated 300 times and the estimated
mean are reported

In mean we used an equivalent cost of 34 HF samples
per estimator realization (this number is used for MC,
300 repetitions)

Variance of the mean estimator reduced by one order of
magnitude
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300 Estimator Realizations (Eq. Tot Cost 34 HF)
0.25 T T T T

T

Mc =3
MF-AS 23
02 o |

ity Density Function
°
&
T
|

0.1 [ = |

34 3.45 35 3.55 36 3.65 37
Expected Value

FIGURE: Probability density function for the
estimators computed with 300 independent
realizations.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
ALLEVIATING THE COST OF AS ESTIMATION

» The cost of the pilot samples accounted to
30 x 14 30 x 0.001 = 30.03 HF (coming from HF

mainly in this case) 300 Estimator Realizations (Eq. Tot Cost 34 HF)
. i ; ; 2 03
» Can we re-use the HF samples without discarding them? v ! v T Fpp——
_ oas| MF-AS (HF reused)
2
g
1 Pilot samples are generated in the physical space (30 as E 02 |- i e
done before) s
& o B
2 The LF samples are discarded 2 L
3 o1f
3 The HF pilot samples are projected onto the active é
direction & oost b
4 LF samples are generated at the Active Variables 5 - L | L\ ] I
locations of the HF 352 353 354 355 3.56 357
L . L Expected Value
5 Correlation is estimated and the oversampling is
computed (always on the active variables) FIGURE: Probability density function for the
6 The MF estimator is evaluated estimators MF-AS computed with 300

independent realizations with and without
reusing the HF samples.

» |tems (1-6) are repeated 300 times and the estimated
mean are reported
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
PROJECTING ONTO THE ACTIVE VARIABLES FROM THE PILOT REALIZATIONS

4
(1]
3.9 8 &
of
38 .-'
37 8
» By reusing the HF samples, we need to handle samples 36 f
that have not been generated along the active variables k /
35
» Due to the nature of the mapping (inactive variables) i .‘
this projection will exhibit a noisy behavior : .“'
33 o8
32 s
“ Joo% HE e
» A very simple approach to improve this step is to 3.1 HF (regularized) @
2 45 4 05 0 05 1 15 2 25 3

perform a regression over the active variables
Active variable

FIGURE: High-fidelity realizations for 40 pilot
samples projected on to the active variable space
with and without regularization.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
PROJECTING ONTO THE ACTIVE VARIABLES FROM THE PILOT REALIZATIONS

1.92
1.91
19
» By reusing the HF samples, we need to handle samples
that have not been generated along the active variables Y189
» Due to the nature of the mapping (inactive variables) o~
this projection will exhibit a noisy behavior :
1.87
oo _HF-LF o
» A very simple approach to improve this step is to 186 L & HE (feguianized): LF' @
31 32 33 34 35 36 37 38 39 4

perform a regression over the active variables i

FIGURE: High-fidelity realizations for 40 pilot
samples projected on to the active variable space
with and without regularization.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
CAN I RE-USE ALSO THE LF PILOT SAMPLES?

[un

no

We can conceptually apply the same strategy for the LF
samples, however there is an additional challenge...

...we do not have a common sample set to estimate
the correlation along the active variables

In order to compute the correlation before evaluating the
additional LF samples we use the PC expansion
(analytical expression)

Once the correlation is evaluated and the LF
oversampling is defined the initial LF set might be fully
re-used

We can now perform MF-AS (re)starting from legacy
dataset

30 pilot samples extracted from a dataset of 500
evaluations (LF and HF are consistent)

300 repetitions of the estimator with full re-use of both
HF and LF

NOTE: there is a non-zero probability of using the same
evaluation multiple time (for different estimator
realizations)
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300 Estimator Realizations (Eq. Tot Cost 34 HF)

035 T T T T T T
Mc =1

03 MF-AS 1 4
5 MF-AS (HF reused)
S o025 MF-AS (all pilot reused) -
Z
=
2 02} B
2
g b
2z 0.15 - i |
g
8 oif g
=S
I

0.05 - =

L) |

34 345 35 355 36 365 87 375
Expected Value

FIGURE: Probability density function for the
estimators MF-AS computed with 300
independent realizations with and without
reusing the pilot samples.
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Aero-thermo-structural analysis — A more realistic engineering example
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
PROBLEM SETUP

» We only consider the ACV-1 estimator here, but the extension to ACV is straightforward
The high-fidelity model is 3D Euler with a COARSE mesh

The low-fidelity model is 2D Euler with either a consistent or inconsistent parametrization, i.e. the area of
the duct is forced to correspond to the one of 3D geometry

CFD FEM (Thermal/Structural) Parameterization Cost
3D Euler COARSE COARSE 1.00
2D Euler COARSE COARSE (axisymmetric) Consistent 0.201
2D Euler COARSE COARSE (axisymmetric) Inconstistent 0.135

TABLE: Relative computational cost for the models used for the Active Subspace tests for the
nozzle problem. All the costs are normalized with respect to the 3D Euler COARSE solver.

We considered three scenarios

1 High- and low-fidelity model with inconsistent parametrization evaluated for the same set of samples (40
UQ parameterss);

2 High- and low-fidelity model with consistent parametrization evaluated at an independent set of samples
(40 UQ parameters);

3 High- and low-fidelity model with inconsistent parametrization evaluated for the same set of nominal
samples (96 + 40 UQ parameters).

@ We use linear regression for all cases to compute AS...
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 1 - INCONSISTENT PARAMETERIZATION AND SAME SAMPLE SET

550 |

500

Mass

Thermal Stress

FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 1).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 2 - CONSISTENT PARAMETERIZATION AND INDEPENDENT SAME SAMPLE SET

Thermal Stress

FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 2).
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Active variable
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 3 - INCONSISTENT DIMENSIONALITY 136 VS 40

w0 B —
o .
*

b
12000
615 12000

11000
600 1

T e —
= i vle 3 ol e s
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s
(a) Mass (b) Thrust
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Physicalvariaes & Physical variables @
ctive vari Actv =
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05 08 07 08 08 1 11 (3 [ [X2 08 09 1

HF

(¢) Thermal Stresses
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HF

(d) Mechanical Stresses

11

FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 3).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 3 - INCONSISTENT DIMENSIONALITY 136 VS 40

Qols Estimator St.Dev
o2 p2s | MC  OCV-1  OCV-1 (AS)
Mass 0.822 0.999 1 0.178 0.001
Thrust 0.956 0.998 1 0.044 0.002
Thermal Stress 0.982 0.998 1 0.018 0.002
Mechanical Stress 0.985 0.986 1 0.015 0.014

TABLE: (Estimated) Standard Deviation for OCV-1 and OCV-1 (AS) (normalized w.r.t. MC) for

the Sequoia application problem in the case of inconsistent parameterization and uncertain design
input in HF (Scenario 3).

These results are estimated through the PCE along the active directions. We need to confirm the results by
running the model
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SCRAMJET ENGINES
A LITTLE BIT OF CONTEXT: OPPORTUNITIES AND CHALLENGES

Supersonic combustion ramjet (Scramjet) engines
» are propulsion systems for hypersonic flight
» aim at directly utilize atmospheric air for stable combustion while maintaining supersonic airflow
» obviates the need to carry on-board oxidizer

» overcome the losses from slowing flows to subsonic speeds (no rotating element)

Several challenges

» characterizing and predicting combustion properties for multiscale and multiphysical turbulent flows (under
extreme environments)

» low throughput time vs need for mixture and self-ignition

» stable combustion for constant thrust

Designing an optimal engine requires

»  Maximization of the combustion efficiency

»  Minimization of the pressure losses, thermal loading
» Reducing the risk of unstart and flame blow-out
>

Accomplishing these tasks under uncertain operational conditions (robustness and reliability)

From Jurzay (2018): The challenge of enterprising supersonic combustion in scramjet is [...] as difficult as lighting
a match in a hurricane.

[1]1 Urzay, J., Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight, Annual Review of Fluid Mechanics,
Vol. 50, No. 1, 2018, pp. 593627. doi:10.1146/annurev-fluid-122316-045217.

[2] Leyva, I., The relentless pursuit of hypersonic flight, Physics Today, Vol. 70, No. 11, 2017, pp. 3036. doi:10.1063/PT.3.3762.
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HYPERSONIC INTERNATIONAL FLIGHT RESEARCH AND EXPERIMENTATION (HIFIRE)

PROBLEM DESCRIPTION

» The HIFiRE project studied a cavity-based hydrocarbon-fueled dual-mode scramjet configuration
» Ground test rig, HIFIRE Direct Connect Rig (HDCR), built to replicated the isolator/combustion section

FuelSystem

Forebody! Inlet

“shroud  solator/ Combustor

(a) HIFIRE Flight 2 payload

Computational Primary Secondary
injectors

domain injectors /

Combustion chamber

25.4mm
Pa

Isolator Cavity

711mm
+

203 244 295 359401 419
H i i
+—+—+ +

Lo

(b) HDCR computational domain
FIGURE: Top: HIFIRE Flight 2 payload [1]. Bottom: HDCR schematic.

[1] Jackson, K. R., Gruber, M. R., and Buccellato, S., HIFIRE Flight 2 Overview and Status Uptate 2011, 17th AIAA International
Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2202, San Francisco, CA, 2011.

doi:10.2514/6.2011-2202.
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HIFIRE DIRECT CONNECT RIG
DEVICE FEATURES AND COMPUTATIONAL SETUP

Computational Primary Secondary
injectors

injectors

domain /

25.4mm

Isolator _ Combustion chamber
Cavity

0 203 244 295 359401 419 711mm
+ ——+ +

(b) HDCR computational domain

Given the publicly available data for HDCR we used this device as reference in our ScrajetUQ project
» Constant area isolator attached to a combustion chamber
» Primary injector are mounted upstream of flame stabilization cavities (top and bottom walls)
» Secondary injectors are mounted similarly downstream of the cavities
» Geometry symmetric about the centerline in the y direction (we model only half rig)
>

The fuel supplied is a gaseous mixture containing 36% methane and 64% ethylene by volume (similar to the
JP-7 fuel)

Computational setup
» A reduced three-step mechanism to characterize the combustion process

» Arrhenius formulations of the kinetic reaction rates (parameters are fixed at values that retain robust and
stable combustion)

» Large Eddy Simulations carried out by using RAPTOR code (Oefelein)
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RAPTOR CODE

COMPUTATIONAL FEATURES

RAPTOR

>

v vyVvVYy

Fully coupled conservation equations of mass, momentum, total-energy, and species for a chemically reacting
flow

can handles high Reynolds numbers
real gas effects
robust over wide range of Mach numbers

non-dissipative, discretely conservative, staggered finite-volume schemes

Numerical settings

>

vVvyY VVYyy

2D simulations

3 grid resolutions where cell sizes are 1/8, 1/16, and 1/32 of the injector diameter d = 3.175 mm (denoted
as d/8, d/16, and d/32)

63K, 250K and 1M grid points, respectively

adaptive time steps with approximately equal simulation physical time
warm start from a quasi-steady state nominal condition run

1.7 x 103, 1.1 x 104, and 7.3 x 10* CPU hours per run, respectively

Roughly a cost factor equal to 8 between resolution levels
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RAPTOR CODE

EXAMPLE OF FLOW FIELDS
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FIGURE: Solution fields of Mach number M (top three) and carbon monoxide mass fraction Y¢o
(bottom three) simulated at a randomly sampled input settings using the three different grids.
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SCRAMJET

QUANTITIES OF INTEREST (5)

» Combustion efficiency (7).mp), defined based on static enthalpy quantities

H(Tef, Ye) — H(Tref, Yief)
H(Tef, Ye,ideal) — H(Tref; Yref)

Tlcomb =

» Burned equivalence ratio (¢pyy,) is defined to be equal to dpurn = PG Meomb-
> Stagnation pressure loss ratio (Pggqgless) is defined as
Ps,e

P )
Ps,i

stagloss = 1-

» Maximum and average root-mean-square (RMS) pressures (max Prys and ave Pryg) are, respectively, the
maximum RMS pressure across the entire spatial domain, and the RMS pressure averaged across the spatial
domain between two injectors:

— 2
max Prms = max P(x,y)2 — [P(x,y)} :

1 — 12
avePrns == [ \[Pa)? - [Py dvay.
YV Jay

» Initial shock location (xg},oc)) is the most upstream shock location.
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SCRAMJET

UNCERTAIN PARAMETERS (11)

Parameter Range Description
Inlet boundary conditions:
Po [1.406, 1.554] x 10° Pa Stagnation pressure
Ty [1472.5, 1627.5] K Stagnation temperature
M, [2.259, 2.761] Mach number
I [0, 0.05] Turbulence intensity horizontal component
R; [0.8,1.2] Ratio of turbulence intensity vertical to horizontal components
L; [0,8] x 1073 m Turbulence length scale
Fuel inflow boundary conditions:
Iy [0, 0.05] Turbulence intensity magnitude
Ly [0,1] x 1073 m Turbulence length scale
Turbulence model parameters:
Cr [0.01, 0.06] Modified Smagorinsky constant
Pry [0.5,1.7] Turbulent Prandtl number
Sct [0.5,1.7] Turbulent Schmidt number

TABLE: Uncertain model input parameters. The uncertain distributions are assumed uniform

across the ranges shown.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

» 2 spatial resolutions
» 16 random variables

» Dataset with 200 realizations (consistent parameterization)

22 4!
0 : HE - 045 HF
- ) HE(PCE) - HF (PCE)
s : LF (PCE) 04 LF (PCE)
nal* $ {PCE) . . (PCE)
0.19 L 035
. 018 ”
2 5 03
< o7 =
0.16 025
015
02 -
0.14 . 3 . .
013 0.15
3 2 1 [) 1 2 3 4 3 2 4 0 1 2 3 4
Active variable Active variable
() Pburn () Meombp

FIGURE: Qols w.r.t. the active variables for the scramjet application problem.

Recent Advancements on Multifidelity UQ 66/69



SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

» 2 spatial resolutions
» 16 random variables

» Dataset with 200 realizations (consistent parameterization)
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FIGURE: Scatter plot for the active variables for the scramjet application problem.
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SCRAMJET DATASET

Leveraging Active Directions for Multifid,

MULTIFIDELITY APPROACH FROM DATASET

» 2 spatial resolutions

» 16 random variables

» Dataset with 200 realizations (consistent parameterization)

Estimator St.Dev
Qols 9 9
0 pig | MC  OCv-1  OCV-1 (AS)
Pourn 0.802  0.967 1 0.198 0.033
Teomb 0.933  0.986 1 0.067 0.014
scramjet application problem.

TABLE: (Estimated) Standard Deviation for MF and MF-AS (normalized w.r.t. MC) for the
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CONCLUDING REMARK
STILL AN ACTIVE RESEARCH AREA

Summary:

> Multifidelity strategies are appealing techniques for UQ

» Recursive estimators are limited by the correlation of the first low-fidelity model
» We proposed a new framework to overcome this issue
>

Enhancing the correlation seems also possible by resorting to Active Directions (which also provide greater
flexibility)

Work in progress:
» Fusion between ACV and AS
» Optimal selection/sub-selection of models in order to increase the cost effectiveness ((r — 1)/rp2)
» Beyond samples allocation: samples placement and OED

» Treatment of inactive variables
» Beyond Active Subspaces (Ridge regression)

Advancements in the surrogate-based area (not discussed here):
» Greedy multilevel/multifidelity adaptation
» Adaptive multi index collocation
» Additionally, Multiple information sources can be leveraged by learning a structure among latent variables

The Approximate Control Variate work is based on the paper:
1 A.A. Gorodetsky, G. Geraci, M.S. Eldred & J.D. Jakeman, A Generalized Framework for Approximate Control Variates. arXiv
preprint arXiv:1811.04988v2 [stat.CO]. Submitted, 2018.
2 G. Geraci, M.S. Eldred, Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification. Sandia Report
SAND2018-10817, 2018.
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