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SANDIA NATIONAL LABORATORIES
MAIN ROLE AND AREAS OF INTEREST

SANDIA HAS FIVE MAJOR
PROGRAM PORTFOLIOS

Advanced
Science &
Technology

National
Security
Programs

Nuclear
Deterrence

Global
Security
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SANDIA NATIONAL LABORATORIES
ADVANCED SCIENCE & TECHNOLOGY

ting &
tion Sciences

Engineering Sciences

High Energy

Bioscience

Nanodevices &
'A.N Microsystems

Geoscience
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SANDIA NATIONAL LABORATORIES
ALGORITHMS R&D: FROM CORE SOLVERS TO MODELING AND SIMULATION APPLICATIONS

dal
CUBIT

DAKOTA

systen, Design

Discretization

Partitioning and Mapping

n
pclmlzatlon

ancl UQ
Adapt Time Integration

•

Noniinear soive

Linear solve

I m proved design and understanding

FIGURE: Courtesy of Brian Adams
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SANDIA NATIONAL LABORATORIES
DAKOTA - EXPLORE AND DESIGN WITH CONFIDENCE

Algorithms for design exploration and simulation credibility

0- Suite of iterative mathematical and statistical methods that interface to
computational models

0- Makes sophisticated parametric exploration of simulations practical for a
computational design-analyze-test cycle

Features

0- Sensitivity: Which are the crucial factors/parameters?

0- Uncertainty: How safe, reliable, or robust is my system?

0- Optimization: What is the best performing design or control?

0- Calibration/Parameter Estimation: What models and parameters best match
data?

Credible Prediction
► Verification: Is the model implemented correctly, converging as expected?
1. Validation: How does the model compare to experimental data, including

uncertainties?

Recent Advancements on Multifidelity UQ

DAKOIA 
Explore and predict with confidence.

https://dakota.sandia.gov/
5/69
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UNCERTAINTY QUANTIFICATION
DOE AND DOD DEPLOYMENT ACTIVITIES

Stewardship (NNSAASC) Energy (ASCR, EERE, NE)
Safety in abnormal environments Wind turbines, nuclear reactors

Climate (SciDAC CSSEF ACME)
Ice sheets, CISM, CESM, ISSM, CSDMS

00111604i

Addtnl. Office of Science:
WastePD:

i  Posterior 08

CHWM: push fwd

uniform(SciDAC EFRC) 
.14 

Comp. Matls: waste forms /
hazardous matls (WastePD, CHWM) TAL.1.112 Pareto-

MHD: Tokamak disruption (TDS) .innnerm informed

0.00 1.50 100 0.50 6.00 1.50 9.00

actint 660615 (091

FIGURE: Courtesy of Mike Eldred

High-fidelity state-of-the-art modeling and simulations with HPC

► Severe simulations budget constraints
0. Significant dimensionality driven by model complexity

Recent Advancements on Multifidelity UQ
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UNCERTAINTY QUANTIFICATION
RICH SET OF MODELING CHOICES — DISCRETIZATION VS FIDELITY

Multi-fidelity: several accuracy levels available

► Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)
10- Numerical methods (high/low order, Euler/RANS/LES, etc...)
0- Numerical discretization (fine/coarse mesh...)
0- Quality of statistics (long/short time history for turbulent flow...)

Potential Flo

Potential Flow Ell

Reynolds
Averaged Nmier-
Swam (RANS) er

xHan equaHun

Hybrid
RA-NS/LES

Large Eddy
Simulation (LES) MAI

1-1 In Id SANS/LES

Relationships amongst models can be difficult to anticipate

0- A simple hierarchical sequence can correspond to strict modeling choices (e.g.
discretization levels)

0- More often, for some Qol, we can have peer models

Recent Advancements on Multifidelity UQ 7/69
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UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION - WHY SAMPLING METHODS?

UQ context at a glance:

0- High-dimensionality, non-linearity and possibly non-smooth responses

0- Rich physics and several discretization levels/models available

Natural candidate:

0- Sampling-based (MC-like) approaches because they are non-intrusive, robust and
flexible...

► Drawback: Slow convergence 0(N-112) —> many realizations to build reliable
statistics

Goal of the talk: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

0- Simplified (low-fidelity) models are inaccurate but cheap
10.- low-variance estimates

0- High-fidelity models are costly, but accurate
► low-bias estimates

Recent Advancements on Multifidelity UQ 8/69
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MONTE CARLO
GENERALITIES

Let consider a random variable Q, we want to compute its expected value E [Q] (or some high-order moment):

N
QPNIIC = v ( )

N

Recent Advancements on Multifidelity UQ 9/69
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MONTE CARLO
GENERALITIES

Let consider a random variable Q, we want to compute its expected value E [Q] (or sorne high-order moment):

N
QPNIIC = vs Q(1)

N

#Hit
Let's use MC to compute the value 7r oc  

N
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MONTE CARLO
GENERALITIES

Let consider a random variable Q, we want to compute its expected value E [Q] (or sorne high-order moment):

1 N •QPNIIC = r's Q(1)
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Let's use MC to compute the value ir oc  
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

44.11DN def N 
N E
i=i
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced
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MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:

E [(0111,N E [Q])2] = Var [4g,N] (E [QM - Q])2

► Sampling error: replacing the expected value by a (finite) sample average, i.e.

Var [0145,1] — 
VarN[Q]

From the CLT, for N oo

(0CN E [Q]) N 
\INar [Q]

N(0,1)

► Model fidelity (e.g. discretization): finite accuracy

Recent Advancements on Multifidelity UQ I ' 69
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MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:

E [(0111,N E [Q])2] = Var [4g,N] (E [Elm - Q])2

► Sampling error: replacing the expected value by a (finite) sample average, i.e.

V ar [0145,1] — 
VarN[Q]

From the CLT, for N oo

(0CN E [Q]) N 
\INar [Q]

Af(0, 1)

I. Model fidelity (e.g. discretization): finite accuracy

Accurate estimation Large number of samples evaluated for the high fidelity model
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ACCELERATING MONTE CARLO
BRINGING MULTIPLE FIDELITY MODELS INTO THE PICTURE

>, 0.5

Pivotal idea:

• High-fidelity models are costly, but accurate
• low-bias estimates

• Simplified (low-fidelity) models are inaccurate but cheap
► low-variance estimates

Single Fidelity

Hit •
Miss •

0.5

x

05

05

1

Multi Fidelity
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CONTROL VARIATE
PIVOTAL ROLE

A Control Variate MC estimator (function G with E [G] known)

= OlkfC — (61FIC E [GO

Properties:

I. Unbiased, i.e. ]E [eiC/7] = E [evc]

► Var112 (Q)
argminVar [eigiV] —> = p 

Var1/2 (G)

► where 'PI < 1
Cov(Q, G)

Pearson's p —  
Var1/2 (Q) Var1/2 (G)

Var [C] = var [Or] (1 — p2)

Recent Advancements on Multifidelity UQ
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CONTROL VARIATE
PIVOTAL ROLE

A Control Variate MC estimator (function G with E [G] known)

QN = — (67 E [GO

Properties:

► Unbiased, i.e. ]E [eiC/7] = E [Or

Var112 (Q)
11. argminVar [07] —> (3 = p

Var1/2 (G)

► where 1P1 < 1
CoAQ, G)

Pearson's p —  
Var1/2 (Q) Var1/2 (G)

Var [C] = var [Or] (1 — p2)

Q: How does the control variate approach enter in the picture?
A: By means of the (geometrical) MLMC and multifidelity strategy

0 Single resolution level
► Cheap lower fidelity (Multifidelity)

1 Applying it recursively
► Spatial discretization (Multilevel)

2 Applying it recursively across resolutions/model forms
► Spatial discretization and cheap lower fidelity (Multilevel-Multifidelity)

Recent Advancements on Multifidelity UQ 14/69
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MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity Qol, Q11, to decrease its variance

Om.HF,ArCV = '01-ZN + (e4F,N E [QV] )

Recent Advancements on Multifidelity UQ
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MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity Qol, Q11, to decrease its variance

om.HF,i,\CV = '01-ZN + a ( [Qil] )

In practical situations
► the term E [QM is unknown (low fidelity # analytic function)
► we use an additional and independent set ALF =(r — 1)NHF

rNHF
1E [QV] 1 

rMIF 

E
i=i

Finally the variance is

r 
PHL 
)

Var tomi-iFf] = Var [a] (1  
[1] Pasupathy, R., Taaffe, M., Schmeiser, B. W. & Wang, W., Control-variate estimation using estimated

control means. IIE Transactions, 44(5), 381-385, 2012

[2] Ng, L.W.T. & Willcox, K. Multifidelity Approaches for Optimization Under Uncertainty. Int. J. Numer.
Meth. Engng 100, no. 10, pp. 746772, 2014.

[3] Peherstorfer, B., Willcox, K. & Gunzburger, M., Optimal Model Management for Multifidelity Monte Carlo
Estimation. SIAM J. Sci. Comput. 38(5), A3163A3194.
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MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as
Co

rr
el

at
io

n 
sq

ua
re

d 
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GEOMETRICAL MLMC
ACCELERATING THE MONTE CARLO METHOD WITH MULTILEVEL STRATEGIES

Multilevel MC: Sampling frorn several approxirnations Qm of Q (Multigrid...)

Ingredients:

► {Mt = 0, ... ,L} With MO < < • • < MLV M

IP. Estimation of E [Qm] by means of correction w.r.t. the next lower level

ye 
Ldef QMf QM.e—f E [QM] = E [wild E E [QM, 

— 
chit = E xel

Q0 t = 0 2=1 6=0

0••• Multilevel Monte Carlo estimator

L N eeiAlL def =
t=c, iL-'=1 Me 4

Me-1
)

► The Mean Square Error is

E [COL E [Q])2] = llrar [Yd (E [QM - Q])2
¢=0

Note If Qm Q (in a mean square sense), then Var [Yt] 0

Recent Advancernents on Multifidelity UQ 17/69
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GEOMETRICAL MLMC
DESIGNING A MLMC SIMULATION: COST ESTIMATION

Let us consider the numerical cost of the estimator

L

C(eir) = E N eCe
e=o

Determining the ideal number of samples per level (i.e. minimum cost at fixed
variance)

L

CAP) = ENece
i=0 Lagrange multiplier

L

E Nillrar [Ye] = E2/2
e=o

Ne = 2 [E (var [Yk Ck )1/21
It=0

Var [Ye] 

Ce

Var [W] = EN—E 1Var (Ye) .
4=0

(, MLMC has been originally introduced for problems for which it is possible to control the highest resolution
to achieve a desired MSE

[1] Giles, M.B., Multilevel Monte Carlo path simulation. Oper. Res. 56, 607-617, 2008.

[2] Haji-Ali, A., Nobile, F., Tempone, R. Multi index Monte Carlo: When Sparsity Meets Sampling, Numerische
Mathematik, Vol. 132, Pages 767806, 2016.

Recent Advancements on Multifidelity UQ 18/69
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MULTILEVEL-MULTIFIDELITY APPROACH
COMBINATION OF DISCRETIZATION AND MODEL FORM

P- OUTER SHELL — Multi-level

LHF LHF
E [OF] = E E Mu] = E YxF

i=0 i=0
0- INNER BLOCK — Multi-fidelity (i.e. control variate on each level)

Final properties of the estimator

and

= YQ  + at (Ýle,F E [yle,F] )

LHF
AMLMF + E [yiF] )]
`TM

1=0

LHF 
1OLMF =Var [1  Var [Ill ( 1 1.• 

1+ re 
p2)

(NYF

Recent Advancements on Multifidelity UQ 19/69
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MULTILEVEL-MULTIFIDELITY
OPTIMAL ALLOCATION ACROSS DISCRETIZATION AND MODEL FORMS

I. Target accuracy for the estimator: e

Pr Cost per level is now Cr = cr CI.' (1 r e)

► the (constrained) optimization problem is
LHF 

LHF 1
argmin (G), where G=E NieiF + (E 

N 
[Yi.elF] A e (r — e 2 /2)

,re ,A .e=0 t=o ,

re — 1
I. A e(r e) = 1 p  

rp

After the first iteration the algorithm can adjust the number of samples on the HF or LF side depending on the
correlation properties discovered on flight

After the minimization (Nr = NIP = NYF r e)

re = +
p 

4 

2

1
 wp, where we = CIIF/CLiF
— 

NEF* 2 Var [Yr] Cr 1/2

= L. 

Ls_.,11F A¢l V ar [Yr]

e k=o — P2, ) \ (1 PI) criF

[1] G. Geraci, M.S. Eldred & G. laccarino, A rnultifidelity control variate approach for the rnultilevel Monte Carlo
technique. Center for Turbulence Research, Annual Research Briefs 2015, pp. 169-181.

[2] G. Geraci, M.S. Eldred & G. laccarino, A multifidelity multilevel Monte Carlo method for uncertainty
propagation in aerospace applications 19th AIAA Non-Deterministic Approaches Conference, AMA SciTech
Forum, (AIAA 2017-1951)
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Heat equation — Parabolic 1D

Recent Advancements on Multifidelity UQ 20/69



Multifidelity sampling

HEAT EQUATION
VERIFICATION TEST CASE (WE KNOW THE EXACT SOLUTION)

Heat-equation in presence of uncertain thermal diffusivity and initial condition:

x,t a2Ou(,t) t) 
ce(t) = 0, a > 0,xE[O,L]=S2clEt

at ax2
u(x,C, 0) = uo(x,t), t E [0, tF] and C E ..:7:. c Rd

u(x, C, t)laci = 0

//i) (x> t) = g(C)71(x) + gt)T2 (x)

800

600

400

200

0

200

-400

-600

0.2

—Initial condition —
Low Fidelity —
High Fidelity —

0.4 0.6 0.8

P. Low-fidelity:

ntow = {1,2,3} E Plow] = 33.15

0. High-fidelity: hhigh = niow U {9,21}

E [Qhigh] = 41.98

p. Discrepancy E [Qhigh] — E [Ciim] = 8.83
(21%)

Recent Advancements on Multifidelity UQ 21/69
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NUMERICAL RESULTS
DESIGNING A CHALLENGING TEST CASE - MC ON Nx = 1000

50

45

40

a: 35

30

25

20
0 100000 200000 300000 400000 500000 600000 700000

N

MC LF
exact LF
MC HF

_....400601104ifi tact FIF

LF HF
# modes 3 21

Nx we
=0 5 30 42

E =1 15 60 28
E =2 30 100 23
=3 60 200 23

<>, The LF cannot increase the overall accuracy because it is heavily biased...

Recent Advancements on Multifidelity UQ 22 69
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NUMERICAL RESULTS
MULTI-LEVEL MULTI-FIDELITY (COMPARISON WITH MLM(.' AND MC)

70

65

60

55

50

6: 45

40

35

30

25
10

MLMF _

100 1000 10000 100000 1e+06 1e+07

N

Expected Value

10

0.1

0.01

MLMF
MLMC

10 100 1000 10000 100000 1e+06 1e+07

N

Accuracy E
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Non-linear elastic waves propagation — Hyperbolic CLAWs 1D

Recent Advancements on Multifidelity UQ 23/69
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES

in

12

10

8

I. Rod constituted by 50 layers, two alternated materials (A and B) with constitutive laws

10"A = lqte + rp, 4= 1 and 4 = — Li (0.01, 0.02)
°..13 = IC13 c + Klic2, le,',. = 1.5 and 4 = 0.8

I. Uncertain initial static (u(x, t = 0) = 0) pre-loading state:

i exp ( (x — 0.35)(x — 0.25)  )
if

2 x 0.002 
0 < x < 1/2 ,.., U (0.5, 2)

Q(x) 
=

(x — 0.65)(x — 0.75))exp  if 1/2 < x <

2 x 0.002 
1 ", U(0.5, 6.5)

I. Spatially varying uncertain density: p(x) = + 0.5 sin (2irx), U(1.5, 2)

► Clamped rod as B.C.

2  
0

LF 21 nodes -
LF 41 nodes - - -
IF 81 nodes - - -

LF 151 nodes - - -
HF 101 nodes -
HF 201 nodes -
HF 401 nodes -
HF 1001 nodes -
initial Solution -

0.2 0.4 0.6 0.8

Nx Nt

Low-fidelity

(GODUNOV)

21

41

81

151

50

100

150

288

High-fidelity

(MUSCL—van Leer)

101

201

401

1001

200

400

900

2000

At

3.6 x 10-
1.8 x 10-3
1.2 x 10-3
6.25 x 10-4

9 x 10 
4.5 x 10-4
2 x 10-4
9 x 10-5

4

TABLE: Low- and high- fidelity simulations

Recent Advancements on Multifidelity 24/69
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES

0.1

0.01

0.001
10

Standard Deviation of the Estimator

100 1000

Equivalent HF runs
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES - AVERAGE OF 50 REALIZATIONS
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Ne NIP NI( re 4 NIIF W re f4

0 80029 5960 243178 40 0.97 4682 192090 40 0.97
1 6282 2434 12487 4 0.49 1049 13781 12 0.83
2 1271 262 3877 14 0.82 151 3657 23 0.92
3 212 47 966 19 0.84 34 754 21 0.86

Recent Advancements on Multifidelity UQ 26/69



Uncertainty Quantification Multifidelity sampling ..veraging Active Directions for Multifidelity UQ Conclusions

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES - AVERAGE OF 50 REALIZATIONS

St
an
da
rd
 D
ev
ia
ti
on
 

1

0.1

0.01

0.001

Average Standard Deviation of the Estimator

MLMC
MLMF YI
MLMF QI  

10 100 1000

Equivalent HF simulations

10000

Level MLMC MLMF-Yl MLMF-Ql
NE NI( re ,4 N.7 NliF re 4

0
I S iT;Fri

243178 40 0.97 4682 192090 40 0.97
1 2434 12487 4 0.49 1049 13781 12 0.83
2 1271 262 3877 14 0.82 1 3657 23 0.92
3 47 966 19 0.84 754 21 0.86

Recent Advancements on Multifidelity UQ 26/69



Uncertainty Quantification Multifidelity sampling ..veraging Active Directions for Multifidelity UQ Conclusions

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
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OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is generated by
adding M unbiased terms to the MC estimator

ocv = +

► Qi MC estimator for the ith low-fidelity model

▪ known expected value for the ith low-fidelity model

► a = [cei, , am] T set of weights (to be determined)

Let's define

► The covariance matrix among all the low-fidelity models: C E Rilix211

► The vector of covariances between the high-fidelity Q and each low-fidelity c E RM

► c = c/Var [Q] = [Thyar [Qi]] , . . , pmVar [Qm]fr, where pi is the correlation coefficient (Q, Qi)

The optimal weights are obtained as ce* = —C-1c and the variance of the OCV estimator

Var [OCV] = Var [0] 1,CV(,2) = Var [(-4] (1 — R6T)

= Var [el] (1 — ibTC—id) , 0< 4, G 1.

For a single low-fidelity model: 4c,_1 = pl.t
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APPROXIMATE CONTROL VARIATE
M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE

For complex engineering models the expected values of the M low-fidelity models are unknown a priori

► Let's define the set of sample used for the high-fidelity model: z

► Let's consider Ni ordered evaluations for zi (we assume Ni = LriN

Pr Let's partition zi in two ordered subsets ztuzr = zi (note that in general (-14 (6)

The generic Approximate Control Variate is defined as

= O(z) + (ezi(zb - /IA)) = 0(z) + = Q ± cATA,
i=1 i=1

The optimal weights and variance can be obtained as

aACV = COP [A, 4.]-1 Cou [4,0]

Var [0 (ceACV)] = Var (1 — COP [A, Q1T Coy IA' Al IC. [A,
var red

= Var [0] (1 — Ricv) .

(For a single low-fidelity model: RL.,v_, = Val (this result does not depend on the partitioning of z1)n),
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MULTILEVEL MONTE CARLO
A RECURSIVE PARTITIONING WITH INDEPENDENT ESTIMATORS (GIVEN A PRESCRIBED BIAS)

Q.

MLMC can be obtained from ACV with

. 4 =z
=4+, for i = 1, . . , M — 1

► cei = —1 for all i

eLmc (z) = 0+E (-1) (0i(z1) - i (4))
i=1

var [OMLMC] = Var [0] RNILMC)

414C ±  ri2 + 2 E  =  Vvar [0i] /Var [Q]
i=1 rr

where

. 4 and zF is n_,N and fiN and fp = 1, it holds that ri = fi_i

<> Given the recursive nature of MLMC, we can show that RLLme < pi

Recent Advancernents on Multifidelity UQ 29/69



Uncertainty Quantification Multifidelity sarnpling ,eraging Active Directions for Multifidelity UQ Conclusions

MULTIFIDELITY MONTE CARLO
AN APPROXIMATED CONTROL VARIATE WITH A RECURSIVE PARTITIONING

Qr

• ! • I
I :

411

4

QAr

4

MFMC can be obtained from ACV with

I. zi = zi_i and 4 = zi for i = 2, ... ,M

10. zl = z and 4 =

IVIFMC — Coy [Q, Qil for i = 1, . . . , M,
a' Var [Qi]

and the variance of the estimator is

Var [cvMFMC] = Var [0] (1 — RLFMC)

M r• — r• p, ri — 1 
+ ri-1 1

RMFMC = E ' -14 — 1  •
i=1 riri-1 7.1 i=2 riri-1 P1

tGiven the recursive nature of MFMC, we can show that 14,,,,C < pi

Recent Advancements on Multifidelity UQ 30/69



Uncertainty Quantification Multifidelity sampling ,eraging Active Directions for Multifidelity UQ Conclusions

EXAMPLES OF CONVERGENT ESTIMATORS
IS IT POSSIBLE TO OVERCOME THE LIMITATION OF THE RECURSIVE SAMPLING SCHEMES?

We proposed two sampling strategies that overcome the limitation of the recursive schemes

Q, Q2

I I •• • 0 0

i
(a) ACV-IS sampling strategy.

As an example, let's consider the ACV-MF estimator

0 202 Os

• 1.1zf
4

Qd

(b) ACV-MF sampling strategy.

RACV-MF = [diag (F(MF)) o o]T[C o (hag (F(mF))] —1 [diag (F(MF)) o .

The matrix F(MF) E RA"M encodes the particular sampling strategy and is defined as

Fr) =

min(ri ) —1

min(ri ,rj)
r• —1

if i j

otherwise
, for ri oo, F(MF) -)! 1M and RACV-MF RAM,
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A PARAMETRIC MODEL PROBLEM
WHAT HAPPENS FOR A LIMITED NUMBER OF LOW-FIDELITY SIMULATIONS?

We designed a parametric test problem to explore different cost and correlation scenarios (x, y 1.4(-1, 1))

We use the following definitions

I. A = N/il., Al = VI, and A2

I. B = 77/2 and 02 = 7r/6 and

I. We consider a fixed cost ratio

1.0

0.9

e 0.8
1 0.7

C-') 0.6

0.5

0.4

Q = A (cos B x0 + sin 19 y5)

= Al (cos 01.0 + sin ei y3)

Q2 = A2 (Cris 02 x sin 02 .Y)

= 0 (give unitary variance for each model)

01 varies uniformly in the bounds 02 < 01 <

between models, i.e. a relative cost of 1 for Q,

0.8

r-

i 0.6

0 4

7,

g 0 2

0.0

1/w for Qi and 1/w2 for Q2

—0— ocv
—0— OCV-1

— OCV/OCV-1

0.6 0.8 1.0
Bi

1.2 1.4

Recent Advancements on Multifidelity UQ 32/69



Uncertainty Quantification Multifidelity sampling Leveraging Active Directions for Multifidelity UQ Conclusions

A PARAMETRIC MODEL PROBLEM
COMPARISON OF DIFFERENT ESTIMATORS

1.50

1.25

4 1.008g 0.75
0.
0.25

0.00

7' 1 0

A 0.8
83 0.6

.8! 0.4

.1 0 2

0.0

• AIM'

W.LNIC
ACV-.
ACV MF

- ACV-KL
- 

- acva

MC
OCV

6 0.8 1.0 1.2
0,

(a) w = 10

0.6 0.8 1.0 1.2
0,

(d) w = 50

1.4

1.25 1.2

1.0
1.00

0.8
0.75

0.6

0.50
0.4

0.25 0.2

0.00.00
0.6 0.8 1.0 1.2 1.4

0,

(b) w = 15

1.0

0.8
0.8

0.6 0.6

0.9 0.4

0.2 0.2

0 0 0 0

1.4 0.6 0.8 1 1.2 1.4

(e) w = 100

0.6 0.8 1.2 1.4

(c) w = 20

0.6 0.8 1.0 1.2

(f) w = 1000

FIGURE: Variance reduction for cost ratios of [1, 1/w, 1/w2] for Q, Qi, and Q2

1.4
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Aero-thermo-structural analysis — A more realistic engineering example
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AERO-THERMO-STRUCTURAL ANALYSIS OF A JET ENGINE NOZZLE
PROBLEM INSPIRED BY THE NORTHROP GRUMMAN UCAS X-47B

(a) X97B UCAS (1)) Nozzle close-up

FIGURE: Northrop Grumman X-47B UCAS and close up of its nozzle1.

Operative conditions

► Reconnaissance mission for an high-subsonic aircraft

► Most critical condition is the top-of-climb (Required thrust is 21, 500 N) (0 40, 000 ft and Mach 0.51

Nozzle structure Two layers separated by an air gap

I. Inner thermal layer: ceramic matrix composite

► Outer load layer: composite sandwich material (titanium honeycomb between two layers of
graphite-bismaleimide Gr/BMI)

Uncertain parameters 40 uncertain parameters — mix of uniform and log-normal variables

► 35 material properties variables

► 2 atmospheric conditions

► 2 inlet conditions

P. 1 heat transfer coefficient

lhttp://www.northropgrumman.com/MediaResources/Pages/MediaGallery.aspx?Productld=UG-10028
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AERO-THERMO-STRUCTURAL ANALYSIS OF A JET ENGINE NOZZLE
COMPUTATIONAL SETUP

A multiphysics problem (forward coupling)

► An Engine simulator provides the inlet conditions of the nozzle

► The SU2 CFD solver computes the temperature and pressure profile along the walls

► The Finite Element solver AERO-S computes (several metrics for) mechanical and thermal stresses in the
structure

Quantities of Interest (Qols)

► Mass as a surrogate for the cost of the device

► Thrust for the aerodynamics performance

► A temperature failure criterion in the inner load layer (Thermal stresses)

► A strain failure criterion in the thermal layer (Mechanical stresses)

NOTE: this problem naturally leads to a multifidelity setup

► Several CFD choices ranging from 1D ideal solver up to 3D RANS

► Geometrical approximations (Axisymmetric assumption)

► Several spatial resolutions for both the CFD and FEM meshes

► etc.
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM

COMPUTATIONAL SETUP

10. We demonstrated that all the recursive schemes (MLMC, MFMC, MLMF, MIMC etc.) are bounded by the
correlation of the first low-fidelity rnodel

I. We want to verify that for the Sequoia problem a more efficient estimator can be built, i.e.

RG.C17 14cv_i

CFD FEM (Thermal/Structural) Cost
1D COARSE 2.63e-04

Euler 2D COARSE COARSE (axisymmetric) 9.69e-04
Euler 2D MEDIUM MEDIUM (axisymmetric) 3.18e-03

Euler 2D FINE FINE (axisymmetric) 9.05e-03
Euler 3D COARSE COARSE 1.16e-02
Euler 3D MEDIUM MEDIUM 3.58e-02
RANS 3D COARSE COARSE 1.00

TABLE: Relative computational cost for several model fidelities for the nozzle problem. All the cost

are normalized with respect to the 3D RANS solver.
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
COMPARISON BETWEEN OCV AND OCV-1

Variance reduction
Qol OCV OCV-1 Ratio OCV/OCV-1

Thrust 0.020595 0.050432 0.41
Thermal stresses 0.0043612 0.0075662 0.58

Mechanical stresses 6.2981e-04 0.011720 0.05

TABLE: Performance of OCV and OCV-1 for the nozzle problem and three difFerent Qols.

► A separation between OCV and OCV-1 exists for all Qols

► OCV-1 attains more than one order of magnitude reduction over MC

I. For Thrust and Thermal stresses an additional 60% and 40% reduction can be gained with OCV

► For the Mechanical stresses the additional benefit is larger than 90%

‹ , The next step is to include the cost to understand how effectively we can exploit this gap with the
estimators we proposes
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CAN WE ENHANCE CORRELATION BETWEEN MODELS?
MULTIFIDELITY UQ ON THE REDUCED (SHARED) SPACE

Core Question
Q: Can we identify a shared space between models (possibly with independent/non-shared pararneterization) where
the correlation is higher?
A: Active Subspace method seems well suited for this (but this idea is not limited to it)

Pivotal idea and its main features

I. For each model one can search for Active Directions independently

► lf the input variables of a models are standard Gaussian variables then the Active Variables are also
standard Gaussian variables

11. Therefore, for each model the Qol can be represented on a (possibly reduced) space characterized by a join
standard Gaussian distribution

► We can sample along these shared Active Directions and 'map back' to the original coordinates of each
model separately

Some Questions:

I. How do we treat the inactive variables?

► What if the model input are not Gaussian variables?

IP. What does it happen if the Active Directions are different between models? We expect this to happen often
in practice

10. Why is this even supposed to work from a physical standpoint?
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ACTIVE SUBSPACES IN A NUTSHELL
(ALMOST) EVERYTHING YOU NEED TO KNOW TO USE IT WITH MULTIFIDELITY — SEE CONSTANTINE (2015) FOR MORE

We consider a black-box approach, i.e. the Qol Q is obtained through a computational model f given a vector of
input parameters x

X —I f (a) Q

► Vector of Input parameters: x E Rm with joint distribution p(x)

► Let's introduce the m x m matrix C

C = f f)T p(a)d x

► Since C is l) Positive semidefinite and II) Symmetric, it exists a real eigenvalue decomposition

C = WAWT, where

► W is the m x m orthogonal matrix whose columns are the normalized eigenvectors

P. A = diag • • • , Xa,} and .Xj. > • • • > am, > 0

Let's define two sets of variables

y = E Rn (Active)
x = WAY Wrz WAY

z = Wja E R(m—o) (Inactive)

Linearity: x •-•••• JV(0, (X = Rm) then y = E y = WTot, x E Rm i• and y ,•••• ./V-(0, I)

This is true for each model, i.e. there will always be a shared space between different models (even if they have
a different parameterization)
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A QUICK DEMONSTRATION - GAUSSIAN INPUT
LOW-CORRELATED MODELS (CORRELATION SQUARED 0.05)
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A QUICK DEMONSTRATION - GAUSSIAN INPUT
IMPORTANT DIRECTIONS IN ACTIONS (CORRELATION SQUARED FROM 0.05 TO 0.9)
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A QUICK DEMONSTRATION — GAUSSIAN INPUT
NUMERICAL EXPERIMENT SETUP

We performed the following numerical experiment:

► We fix a computational budget (300 HF runs)
► We compute 1000 realizations for each estimator
► For MF estimator the cost of the total set of HF+LF runs is considered
► We report the pdf of the estimated Expected Value

NOTE 1: For this problem the expected value is known
NOTE 2: In this example the AS are searched for each estimator realization during
the pilot sample phase (this cost is not included, but they can be reused if needed...)
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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WHAT ABOUT THE INACTIVE VARIABLES?
HOW DO YOU TREAT THE INACTIVE VARIABLES?

x = WAY + WNAZ

► Given a sample along the Active Variable y, we need to recover x

► This mapping is ill-posed (infinitely many x exist)
► One possible regularization: conditional expected value of f given y

fAs (3') = f f (WAY + WNAZ) Pzly dz f (WAY + WIE [z]) f Pzly dz = f (WAY)

3
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JOINT NORMALITY: IS THIS REQUIRED?
NON LINEAR TRANSFORMATION EMBEDDED IN THE BLACK-BOX APPROACH

Q: Is the assumption of joint-normality on the input space of the model required?
A: No, a normal distribution is used only for the AS mapping in order to obtain a shared space between models

Let's assume, for example xi U (-1, 1) and toi ./V. (0, 1), we can define (i.e. Rosenblatt, Nataf, etc.) a non
linear function x = h(w) such that

w —>• h(w) f(R)
wi

Q, where xi = h(wi) = erf (—)

From an AS perspective only w exists (however, for each w we can obtain x)

= WAY + WNAZ WAt

Responses along AS (Uniform Distribution) Scatter Plot along AS (Uniform Distribution)
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JOINT NORMALITY: IS THIS REQUIRED?
NON LINEAR TRANSFORMATION EMBEDDED IN THE BLACK-Box APPROACH

Q: ls the assumption of joint-normality on the input space of the model required?
A: No, a normal distribution is used only for the AS mapping in order to obtain a shared space between models

Let's assume, for example xi U (-1, 1) and toj .Ai (0,1), we can define (i.e. Rosenblatt, Nataf, etc.) a non
linear function x = h(w) such that

—) h(w) f(R)
wi

Q, where xi = h(wi) = erf (—)

From an AS perspective only w exists (however, for each w we can obtain x)

w = WAY + WNAZ WAt
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DISSIMILAR PARAMETERIZATION
ADDITIONAL INPUT VARIABLE FOR THE HIGH-FIDELITY MODEL

f (x , y , z) = exp (0.7x + 0.3y) + 0.15 sin (27x) + 0.75z3, where z — N(0, 1/3)

0.3

= 0.25

0.2

g, 0.15

0

1000 Estimator Realizations (Eq. Tot Cost 300 ElF)

MC MCI

MC-MFAS =

— -

1 02 1.04 1.06 1.08

Expected Value

1.12

FIGURE: Normalized histograms for 1000 realizations in the case of dissimilar parametrization.

<> In this case we used 2 active directions for the HF and 1 for the LF
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WHY IS THIS SUPPOSED TO WORK FROM A PHYSICAL POINT-OF-VIEW?
ACTIVE DIRECTIONS LET EMERGE THE UNDERLYING PHYSICS

As an example, let consider the supersonic isoentropic flow in a diverging nozzle (sonic throat)

Pe = Pp (1 + 1 MO — 1 , where
2

+ 1

Ae 
argmin = f (Me) — — with f (Me) = 

1 2 

+ 1 (1 + 2

-y — 1 
11,
4)1

z1 I)
Me A* MQ

0. Given the shape of the nozzle (and its exit radius h0), we can imagine 2 possible choices: 3D axisymmetric
and 2D planar

► The area ratio (A./A*) is linear in the 2D case (he/ht) and quadratic in the 3D case (4/ g)
I. Given the same longitudinal shape, the 3D nozzle lets the fluid expands more than the 2D nozzle

3D Nozzle Exit Pressure
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2D Nozzle Exit Pressure
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WHY IS THIS SUPPOSED TO WORK FROM A PHYSICAL POINT-OF-VIEW?
ACTIVE DIRECTIONS LET EMERGE THE UNDERLYING PHYSICS (p2 = 0.9 —r 0.99)

As an example, let consider the supersonic isoentropic flow in a diverging nozzle (sonic throat)

Pe = PO (1 -Y 1 fre 1 — 1 , where
2

Ae 2argmin = f (X) — — with f (Me) =
1

Me [ 

2 

„ 1 (1 2 

l 

11'4)]

2( 1)
Me A*

► Given the shape of the nozzle (and its exit radius he), we can imagine 2 possible choices: 3D axisymmetric
and 2D planar

► The area ratio (Ae / A* ) is linear in the 2D case (he /ht) and quadratic in the 3D case (g/q)
10. Given the same longitudinal shape, the 3D nozzle lets the fluid expands more than the 2D nozzle

❑

Scatter Plot
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Non-linear elastic waves propagation — Hyperbolic CLAWs 1D
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NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

in

7

5

4

2

Let's consider an 'extreme' scenario (within the previous test problem)

LF 5 ncides —
HF 801 nodes —

/1-41k, A

0.2 0.4 0.6 0.8

Nx Nt I At
Low-fidelity 5 50 I 36 x 10-4

High-fidelity 801 600 30 x 10-5

TABLE: HF to LF Cost ratio 2800

► We compute the AS without the gradient (we use a linear regression)

► We use 40 HF samples for our estimator
IP- We perform 250 repetitions
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NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

8

7

6

ft 5

A 4

3

2 3 4 5

High-fidelity

6 7 8 9

Active Direction Agnostic sampling: p2 = 0.89
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NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

9

7

6

A 4

3

2

2 3 4 5

High-fidelity

6 7

Active Direction Agnostic sampling: p2 = 0.89

Active Direction Aware sampling:
2 •••

uP = .vu

7

5

8 4
3

2

-4 -3 -2 -1 0

Active Variable

2 3 4
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Lid- and Buoyancy-driven cavity flow — A CFD example
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
TEST CASE GENERALITIES

Physical test case

► Combination of the Lid- and Buoyancy-driven test cases

► Navier-Stokes equations for a fluid with density p and kinematic viscosity v enclosed in a square cavity of
size L

► Top wall sliding with velocity UL
► Top and bottom walls held at different temperature —r net body force (buoyancy term via Boussinesq

approx.)

► Adiabatic side walls

► Cavity immersed in a gravity field with components gh and gu

► Nominal conditions: Re = 1000 and Ra = 100000 for air Pr = 0.71 (constant)

Non-dimensional parameters

ULL
Re = —

Gr — lgl

Pr = —
a

[3(Th — 7.0)L3

Ra = Pr Gr

Numerical approach

► Implicit FV code on structured mesh with pressure-based SIMPLE discretiza on and dual-time stepping

► BC imposed via ghost cells
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
FLOW FIELD FOR THE NOMINAL CONDITIONS
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY UQ CASE

► HF: 101 x 101 spatial cells, T = 80 and Dt = 0.25 CHF = 1

► LF: 21 x 21 spatial cells, T = 15 and Dt = 0.5 —r CLF = 0.00107
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FIGURE: Vertical velocity profile at the horizontal mid-plane of the cavity for the reference
condition for both HF and LF models.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY PARAMETRIZATION

Parameter Min Max Mean
v 0.009 0.011 0.01
AT 9 11 10

g. 8.1 9.9 9

gh 3.6 4.4 4
Liz, 9 11 10

TABLE: Ranges for the uniform variables of the cavity problem.

Let's have a look at the non-dimensional numbers (Pr is constant and Gr = Gr(Ra, Re) for this case)

Re = Re(,,UL)

Ra = Ra(g,,,gh, AT, v)
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY PARAMETRIZATION
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MF •
MF-AS •
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.1***, At 10.4 •• "1”• ie4 .1; ',el,".ey . • le•%..• •• • •••
31 3.2 3.3 3.4 3.5 3.6

High-fidelity

3.7 3.8 3.9

FIGURE: Scatter plot corresponding to 500
realizations of the HF and LF model with samples
drawn in the physical space and 60 samples drawn
along the common active direction.

4

Variable
Model

HF LF
v -0.0860585 -0.31282

AT -0.0036777 0.94981

gu -0.0057946 -a -0.0144436 -
U1 0.9961617 -

TABLE: Dominant eigenvectors for the cavity
problem.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW

NUMERICAL TEST FOR MULTIFIDELITY

1 Fixed number of pilot sarnples equal to 30 samples (in
the physical space)

2 AS evaluated (first order regression, no derivatives) from
the pilot samples and this sample set is discarded

3 Initialization of the MF algorithm with 30 samples in the
Active variables to estimate the correlation

4 Optimal oversampling ratio for the LF and perform the
mean estimation

IP. Items (1-4) are repeated 300 times and the estimated
mean are reported

► In mean we used an equivalent cost of 34 HF samples
per estimator realization (this number is used for MC,
300 repetitions)

► Variance of the mean estimator reduced by one order of
magnitude

0.25

0.2

.15

0.1
2 0.05

300 Estimator Realizations (Eq. Tot Cost 34 HF)

MC

MF-AS

_NEL i _MN
3 4 3.45 3. 3.55 3.6 3.65 3 7

Expected Value

FIGURE: Probability density function for the

estimators computed with 300 independent

realizations.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
ALLEVIATING THE COST OF AS ESTIMATION

► The cost of the pilot samples accounted to
30 x 1 + 30 x 0.001 = 30.03 HF (coming from HF
mainly in this case)

► Can we re-use the HF samples without discarding them?

1 Pilot samples are generated in the physical space (30 as
done before)

2 The LF samples are discarded

3 The HF pilot samples are projected onto the active
direction

4 LF samples are generated at the Active Variables
locations of the HF

5 Correlation is estimated and the oversampling is
computed (always on the active variables)

6 The MF estimator is evaluated

► items (1-6) are repeated 300 times and the estimated
mean are reported
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FIGURE: Probability density function for the
estimators MF-AS computed with 300

independent realizations with and without

reusing the HF samples.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
PROJECTING ONTO THE ACTIVE VARIABLES FROM THE PILOT REALIZATIONS

10. By reusing the HF sarnples, we need to handle samples
that have not been generated along the active variables

10: Due to the nature of the mapping (inactive variables)
this projection will exhibit a noisy behavior

10: A very simple approach to improve this step is to
perform a regression over the active variables

4

3.9

3.8

3.7

3.6

3.5
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-2

IR •

. •

HF •
HF(reAularized) •

-1.5 -1 -0.5 0 0.5 1

Active variable
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FIGURE: High-fidelity realizations for 40 pilot
samples projected on to the active variable space

with and without regularization.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
PROJECTING ONTO THE ACTIVE VARIABLES FROM THE PILOT REALIZATIONS

► By reusing the HF sarnples, we need to handle samples
that have not been generated along the active variables

P. Due to the nature of the mapping (inactive variables)
this projection will exhibit a noisy behavior

10: A very simple approach to improve this step is to
perform a regression over the active variables

1.92
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Ir
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1.89 seen
1.88

1.87

"
HF - LF •

1.86
HF (regularized) - LF •

1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 43

HF

FIGURE: High-fidelity realizations for 40 pilot
samples projected on to the active variable space

with and without regularization.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
CAN I RE-USE ALSO THE LF PILOT SAMPLES?

► We can conceptually apply the same strategy for the LF
samples, however there is an additional challenge...

► ..we do not have a common sample set to estimate
the correlation along the active variables

► In order to compute the correlation before evaluating the
additional LF samples we use the PC expansion
(analytical expression)

P. Once the correlation is evaluated and the LF
oversampling is defined the initial LF set might be fully
re-used

► We can now perform MF-AS (re)starting from legacy
dataset

1 30 pilot samples extracted from a dataset of 500
evaluations (LF and HF are consistent)

2 300 repetitions of the estimator with full re-use of both
HF and LF

0. NOTE: there is a non-zero probability of using the same
evaluation multiple time (for different estimator
realizations)
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FIGURE: Probability density function for the
estimators MF-AS computed with 300

independent realizations with and without

reusing the pilot samples.
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Aero-thermo-structural analysis — A more realistic engineering example
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
PROBLEM SETUP

► We only consider the ACV-1 estimator here, but the extension to ACV is straightforward

► The high-fidelity model is 3D Euler with a COARSE mesh

► The low-fidelity model is 2D Euler with either a consistent or inconsistent parametrization, i.e. the area of
the duct is forced to correspond to the one of 3D geometry

CFD FEM (Thermal/Structural) Parameterization Cost
3D Euler COARSE COARSE 1.00
2D Euler COARSE COARSE (axisymmetric) Consistent 0.201
2D Euler COARSE COARSE (axisymmetric) lnconstistent 0.135

TABLE: Re ative computational cost for the models used for the Active Subspace tests for the
nozzle problem. All the costs are normalized with respect to the 3D Euler COARSE solver.

We considered three scenarios

1 High- and low-fidelity model with inconsistent parametrization evaluated for the same set of samples (40
UQ parameterss);

2 High- and low-fidelity model with consistent parametrization evaluated at an independent set of samples
(40 UQ parameters);

3 High- and low-fidelity model with inconsistent parametrization evaluated for the same set of nominal
samples (96 + 40 UQ parameters).

,(), We use linear regression for all cases to compute AS...
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 1 - INCONSISTENT PARAMETERIZATION AND SAME SAMPLE SET

Attiv•Varlable

(a)Mass

Pave veriable

(c)Thermal Stresses

Fir (KS

aA •

PAN. .51)15

(b) Thrust

miable

(d)Mechanical Stresses

FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 1).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 2 - CONSISTENT PARAMETERIZATION AND INDEPENDENT SAME SAMPLE SET
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FIGT_TRE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 2).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 3 - INCONSISTENT DIMENSIONALITY 136 vs 40

9000
380 385 28000 28000 30000 32000 34000 38000 38000 40000 42000 44000

5

(c)Thermal Stresses

(13) Thrust

FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 3).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 3 — INCONSISTENT DIMENSIONALITY 136 vs 40

Qols p2 p As 2 MC

Estimator St.Dev

OCV-1 OCV-1 (AS)

Mass 0.822 0.999 1 0.178 0.001
Thrust 0.956 0.998 1 0.044 0.002

Thermal Stress 0.982 0.998 1 0.018 0.002
Mechanical Stress 0.985 0.986 1 0.015 0.014

TABLE: (Estimated) Standard DeVation for OCV-1 and OCV-1 (AS) (normalized w r.t. MC) for

the Sequoia application problem in the case of inconsistent parameterization and uncertain design

input in HF (Scenario 3).

<> These results are estimated through the PCE along the active directions. We need to confirm the results by
running the model
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SCRAMJET ENGINES
A LITTLE BIT OF CONTEXT: OPPORTUNITIES AND CHALLENGES

Supersonic combustion ramjet (Scramjet) engines

► are propulsion systems for hypersonic flight

► aim at directly utilize atmospheric air for stable combustion while maintaining supersonic airflow
► obviates the need to carry on-board oxidizer
► overcome the losses from slowing flows to subsonic speeds (no rotating element)

Several challenges

► characterizing and predicting combustion properties for multiscale and multiphysical turbulent flows (under
extreme environments)

► low throughput time vs need for mixture and self-ignition
I. stable combustion for constant thrust

Designing an optimal engine requires

► Maximization of the combustion efficiency

► Minimization of the pressure losses, thermal loading

► Reducing the risk of unstart and flame blow-out
► Accomplishing these tasks under uncertain operational conditions (robustness and reliability)

From Jurzay (2018): The challenge of enterprising supersonic combustion in scramjet is b..] as difficult as lighting
a match in a hurricane.

[1] Urzay, J., Supersonic Cornbustion in Air-Breathing Propulsion Systems for Hypersonic Flight, Annual Review of Fluid Mechanics,
Vol. 50, No. 1, 2018, pp. 593627. doii10.1146/annurev-fluid-122316-045217.

[2] Leyva, l., The relentless pursuit of hypersonic flight, Physics Today, Vol. 70, No. 11, 2017, pp. 3036. doii10.1063/PT.3.3762.
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HYPERSONIC INTERNATIONAL FLIGHT RESEARCH AND EXPERIMENTATION (HIFIRE)
PROBLEM DESCRIPTION

► The HIFiRE project studied a cavity-based hydrocarbon-fueled dual-mode scramjet configuration

► Ground test rig, HIFiRE Direct Connect Rig (HDCR), built to replicated the isolator/combustion section

Cornputational

domain

Prirnary
injectors

(a) HIFIRE Flight 2 payload

S IZtd.7n 

tL:

Isolator I Cavity _7-1 

Combustion chamber

216 2;5 19 4;1 4119 711mm

(b) HDCR computational domain

FIGURE: Top: HIFIRE Flight 2 payload [1]. Bottom: HDCR schematic.

111 Jackson, K. R., Gruber, M. R., and Buccellato, S., HIFiRE Flight 2 Overview and Status Uptate 2011,17th AIAA International
Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2202, San Francisco, CA, 2011.
dok10.2514/6.2011-2202.
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HIFIRE DIRECT CONNECT RIG
DEVICE FEATURES AND COMPUTATIONAL SETUP

Computational

domain

Primary
injectors

Secondary
injectors

Isolator Combustion chamber

cavity

203 244 295 359 401 419 7 1 mm

(b) HDCR computational domain

Given the publicly available data for HDCR we used this device as reference in our ScrajetUQ project

► Constant area isolator attached to a combustion chamber

► Primary injector are mounted upstream of flame stabilization cavities (top and bottom walls)

► Secondary injectors are mounted similarly downstream of the cavities

► Geometry symmetric about the centerline in the y direction (we model only half rig)

► The fuel supplied is a gaseous mixture containing 36% methane and 64% ethylene by volume (similar to the
JP-7 fuel)

Computational setup

► A reduced three-step mechanism to characterize the combustion process

► Arrhenius formulations of the kinetic reaction rates (parameters are fixed at values that retain robust and
stable combustion)

► Large Eddy Simulations carried out by using RAPTOR code (Oefelein)
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RAPTOR CODE
COMPUTATIONAL FEATURES

RAPTOR

► Fully coupled conservation equations of mass, momentum, total-energy, and species for a chemically reacting
flow

► can handles high Reynolds numbers

► real gas efFects

► robust over wide range of Mach numbers

► non-dissipative, discretely conservative, staggered finite-volume schemes

Numerical settings

► 2D simulations

► 3 grid resolutions where cell sizes are 1/8, 1/16, and 1/32 of the injector diameter d = 3.175 mm (denoted
as d/8, d/16, and d/32)

► 63K, 250K and 1M grid points, respectively

► adaptive time steps with approximately equal simulation physical time

► warm start from a quasi-steady state nominal condition run

► 1.7 x 103, 1.1 x 104, and 7.3 x 10 CPU hours per run, respectively

► Roughly a cost factor equal to 8 between resolution levels

Recent Advancements on Multifidelity UQ 62/69



Uncertainty Quantification Multifidelity sarnpling Leveraging Active Directions for Multifidelity UQ Conclusions

RAPTOR CODE
EXAMPLE OF FLOW FIELDS

(c1/32)1

a's

rco 

0 08 0 10 0.14 0.16

FIGURE: Solution fields of Mach number M (top three) and carbon monoxide mass fraction Yu)
(bottom three) simulated at a randomly sampled input settings using the three difFerent grids.
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SC RAMJE T
QUANTITIES OF INTEREST (5)

li. Combustion efficiency (qcomb), defined based on static enthalpy quantities

11(Tref Ye) — H(Tref, Yref) 

ncomb H(Tref, Ye,ideal) H(Tref, Yref)

► Burned equivalence ratio (Oburn) is defined to be equal to tbburn 95Gneomb•

li. Stagnation pressure loss ratio (Pataglo„s) is defined as

Po ,e

Putagloss = — 0 •
81

11.• Maximum and average root-mean-square (RMS) pressures (max Prms and ave 1=',..5) are, respectively, the
maximum RMS pressure across the entire spatial domain, and the RMS pressure averaged across the spatial
domain between two injectors:

max Prms = Tyx \ P(1, y)2 — [P(x, y)]

avePrms = 
1 
— \IP(x, y)2 — [P(x, y)]

2 
dx dy.

V x,y

P. Initial shock location (xshock) is the most upstream shock location.
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SCRAMJET

UNCERTAIN PARAMETERS (11)

Parameter Range Description
inlet boundary conditions:

po [1.406, 1.554] x 106 Pa
To [1472.5, 1627.5] K

MO [2.259, 2.761]
4 [0, 0.05]
Ri [0.8, 1.2]

Li [0, 8] x 10-3 m

Fuel inflow boundary conditions:
If [0, 0.05]

Lf [0, 1] x 10-3 m

Turbulence model parameters:
CR [0.01, 0.06]
Prt [0.5, 1.7]
Set [0.5, 1.7]

Stagnation pressure
Stagnation temperature
Mach number
Turbulence intensity horizontal component
Ratio of turbulence intensity vertical to horizontal components

Turbulence length scale

Turbulence intensity magnitude

Turbulence length scale

Modified Smagorinsky constant
Turbulent Prandtl number
Turbulent Schmidt number

TABLE: Uncertain model input parameters. The uncertain distributions are assumed uniform

across the ranges shown.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

► 2 spatial resolutions

le 16 random variables

► Dataset with 200 realizations (consistent parameterization)
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FIGURE: Qols w.r.t. the active variables for the scramjet application problem.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

► 2 spatial resolutions

le 16 random variables

► Dataset with 200 realizations (consistent parameterization)
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FIGURE: Scatter plot for the active variables for the scramjet application problem.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

► 2 spatial resolutions

lo• 16 random variables

► Dataset with 200 realizations (consistent parameterization)

Qols
Estimator St.Dev

p2
p,,,,,, 
2 MC OCV-1 OCV-1 (AS)

ob,n 0.802 0.967 1 0.198 0.033
ncomb 0.933 0.986 1 0.067 0.014

TABLE: (Estimated) Standard Deviation for MF and MF-AS (normalized w.r.t MC) for the
scramjet application problem.
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C ONCLUDING REMARK
STILL AN ACTIVE RESEARCH AREA

Summary:

► M ultifidelity strategies are appealing techniques for UQ
► Recursive estimators are limited by the correlation of the first low-fidelity model

► We proposed a new framework to overcome this issue
► Enhancing the correlation seems also possible by resorting to Active Directions (which also provide greater

flexibility)

Work in progress:

► Fusion between ACV and AS

► Optimal selection/sub-selection of models in order to increase the cost effectiveness ((r — 1)/rp2)
► Beyond samples allocation: samples placement and OED

► Treatment of inactive variables
► Beyond Active Subspaces (Ridge regression)

Advancements in the surrogate-based area (not discussed here):

► Greedy multilevel/multifidelity adaptation
► Adaptive multi index collocation
► Additionally, Multiple information sources can be leveraged by learning a structure among latent variables

The Approximate Control Variate work is based on the paper:

1 A.A. Gorodetsky, G. Geraci, M.S. Eldred & J.D. Jakeman, A Generalized Framework for Approximate Control Variates. arXiv
preprint arXiv:1811.04988v2 [stat.00]. Subrnitted, 2018.

2 G. Geraci, M.S. Eldred, Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification. Sandia Report
SAND2016-10817, 2018.
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