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I Background

The context
Total installed capacity of PV is growing fast in the world

0 Large growth expected in distribution systems

The problem
° Because the grid is slow to evolve, we encounter technical

challenges with voltage/frequency regulation, protection, etc.

Unless mitigated, these challenges will make it increasingly
difficult and costly to continue integrating renewable energy

Advanced inverters are a big part of the
solution

Actively support voltage and frequency by modulating output

Have high tolerance to grid disturbances

Interact with the system via communications

•
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...Faster than a tap changer

...More powerful than a rotating

machine

...Able to leap deep voltage sags in a

single bound
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I Grid-Support Functions

• Functional definitions
describe how functions
are implemented

• Autonomous: Inverter
response to local voltage
and frequency conditions

Commanded: Remote
control (e.g., on/off) and
configure autonomous
behavior
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4 I Importance of DER Certification

o Standardized certification to verify DER
functionality and interoperability are
critical

o This process ensures DER equipment will
operate and communicate as anticipated
in the field by inspecting "corner cases" that
could lead to unexpected device behavior

o Vendors can be certain their equipment will
function as designed

o Provides grid operators confidence the
equipment is reliable

o The American interconnection standard,
IEEE Std. 1547, was updated in 2018 with
new grid-support functionality and
interoperability requirements
o IEEE Std. 1547.1 is nearly updated to include the

conformance testing requirements for 1547. This
includes hundreds of test cases for each DER

o
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5 SIRFN Certification Testing of DER

The Smart Grid International
Research Facility Network
(SIRFN) is conducting
interoperability certification
experiments with DER

The multi-lab team is assessing
multiple residential-scale PV
inverters using the IEEE 1547.1
standard to provide feedback to
the standards development
organization where there is
ambiguity or errors
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I System Validation Platform

DER vendors, NRTLs, and research
labs need a software solution to
autonomously conduct test
procedures

The System Validation Platform (SVP)
is co-developed by Sandia, SunSpec
Alliance, and SIRFN for automated DER
interconnection and interoperability
testing.

The SVP communicates to grid
simulators, equipment under test,
battery/PV simulators, data acquisition
systems, and additional test equipment
(loads, switches, HIL environments, etc.)
to run the interoperable grid-support
function experiments, generate data sets,
and plot results.

SunSpec SVP

ICommunications

Grid Simulator

Power

Communications Communications

Power

Equipment Under
Test

AC and DC Measurements

nulinData Acquisition Syste



System Validation Platform

SVP is a fully scriptable
automated certification
interoperability platform

Abstraction layers for each
equipment type connects the
testing logic to
communication drivers.

This means the same test logic
can be executed at the
laboratories, even through the
physical equipment is different at
the labs.

See: http://sunspec.org/sunspec-svp/
http://sunspec.org/download-svp/
https://github.com/sunspec/svp_directories
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Example Results with Physical DER Equipment
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I Alternative Option: C-HIL

A controller hardware-in-the-loop (C-HIL)
alternative has been developed
• Converts components of large-scale, high-voltage
DER testing to a less expensive, safer benchtop
testing system.

Adds value for DER vendors, certification
labs, universities, and standards
development organizations (SDOs)
• Allows quick design iterations of the

communication system to provide interoperability
to a range of equipment and standards

• Executes certification tests to verify controller
operation prior to hardware integration

• Can be used by SDOs to rapidly draft
interconnection and interoperability codes and
standards
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Controller
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EUT
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Communications

ARM
(SCADA,

SunSpec
Server)

SunSpec
Client

HIL SCADA GUI

Additional
ASGC HIL

Connect units

C-HIL Setup

Details: J. Johnson, R. Ablinger, R. Bruendlinger, B. Fox, J. Flicker, "Interconnection Standard Grid-Support Function Evaluations using an Automated Hardware-in-the-Loop Testbed,"
2, pp. 565-571, Mar 2018. DOI: 10.1109/JPHOTOV.2018.2794884
J. Johnson, R. Ablinger, R. Bruendlinger, B. Fox, J. Flicker, "Design and Evaluation of SunSpec-Compliant Smart Grid Controller with an Automated Hardware-in-the-Loop Testbed," Technology and Economics of Smart Grids
and Sustainable Energy, vol. 2, no. 16, Dec. 2017. DOI: 10.1007/s40866-017-0032-7

IEC 61850
SCADA
system

SCADA/
EMS Bus

Austrian Institute
of Technology has
commercialized
the converter for
C-HIL

IEEE Journal of Photovoltaics, vol. 8, no.



10 Details of the ASGC

Zoran please add 2-3 slides here.



I Example C-HIL Test Results
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and Economics of Smart Grids and Sustainable Energy, vol. 2, no. 16, Dec. 2017. DOI: 10.1007/s40866-017-0032-7



1 2 I Comparison of C-HIL and Physical DER Implementation
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I Conclusion

Nations across the globe are facing similar challenges
when integrating high penetrations of renewable energy.
• Interoperable, grid-support inverters/converters are a
large portion of the solution.

• To deploy these technologies at scale, a common testing
methodology (certification standard) is required so the
communication and power behavior is as-expected in
fielded equipment.

A collection of laboratories around the world are
developing a software platform that enables
autonomous certification testing of DER to:

Accelerate the DER vendor development process

• Generate certification protocols that fully evaluate the
products, while minimizing the number of experiments

• Evaluate interoperability test procedures and
communication products

o Educate the power industry of the capabilities of advanced
DER

IP!
/NW

One possibility: C-HIL systems
for power engineering students!
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