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Background

The context

° Total installed capacity of PV is growing fast in the world

o Large growth expected in distribution systems

The problem

° Because the grid 1s slow to evolve, we encounter technical
challenges with voltage/frequency regulation, protection, etc.

> Unless mitigated, these challenges will make it increasingly
difficult and costly to continue integrating renewable energy

Advanced inverters are a big part of the

solution
° Actively support voltage and frequency by modulating output
> Have high tolerance to grid disturbances

o Interact with the system via communications
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...Faster than a tap changer

...More powerful than a rotating
machine

...Able to leap deep voltage sags in a
single bound

Courtessy of B. Lydic, Fronius
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Grid-Support Functions

* Functional definitions
describe how functions
are implemented YAV 4. . T

* Autonomous: Inverter
response to local voltage
and frequency conditions

* Commanded: Remote
control (e.g., on/off) and
configure autonomous
behavior

DER grid-support functions in IEC 61850-90-7 and FRT.
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Importance of DER Certification

o Standardized certification to verify DER
functionality and interoperability are
critical

o 'This process ensures DER equipment will
operate and communicate as anticipated
in the field by inspecting “corner cases” that
could lead to unexpected device behavior

o Vendors can be certain their equipment will
function as designed

o Provides grid operators confidence the
equipment is reliable

o The American interconnection standard,
IEEE Std. 1547, was updated in 2018 with
new grid-support functionality and
interoperability requirements
o IEEE Std. 1547.1 is neatly updated to include the

conformance testing requirements for 1547. This
includes hundreds of test cases for each DER
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SIRFN Certification Testing of DER

The Smart Grid International
Research Facility Network
(SIRFEN) 1s conducting
interoperability certification
experiments with DER

The multi-lab team is assessing
multiple residential-scale PV
inverters using the IEEE 1547.1
standard to provide feedback to
the standards development
organization where there is
ambiguity or errors
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System Validation Platform

DER vendors, NRTLs, and research
labs need a software solution to
autonomously conduct test
procedures

The System Validation Platform (SVP)
is co-developed by Sandia, SunSpec
Alliance, and SIRFN for automated DER
interconnection and interoperability
testing.

The SVP communicates to grid
simulators, equipment under test,
battery/PV simulators, data acquisition
systems, and additional test equipment
(loads, switches, HIL. environments, etc.)
to run the interoperable grid-support
function experiments, generate data sets,
and plot results.

Communications

Grid Simulator

Communications

AC and DC Measurements

Data Acquisition System

Communications

PV Simulator




System Validation Platform

SVP is a fully scriptable
automated certification
interoperability platform

Abstraction layers for each
equipment type connects the
testing logic to
communication drivers.

° This means the same test logic
can be executed at the
laboratories, even through the

physical equipment is different at
the labs.

See:  http://sunspec.org/sunspec-svp/
http://sunspec.org/download-svp/

https://github.com/sunspec/svp_directories
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Example Results
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Alternative Option: C-HIL

A controller hardware—in—the—loop (C—HIL) , Communications
alternative has been developed AIT SGC HIL Connect
> Converts components of large-scale, high-voltage | Typhoon HIL scc —— Siseee |
DER testing to a less expensive, safer benchtop Controller [kenys) (Scaon
testll’lg System J L | (DSP w RTOS) Server)
- ©L]# ol e
Adds value for DER vendors, certification wem A enasim m— IEC 61850
. . - o SCADA
labs, universities, and standards | ren -  system
development organizations (SDOs) L erid
> Allows quick design iterations of the —
communication system to provide interoperability oty C-HIL Setup
to a range of equipment and standards Connect units

> Executes certification tests to verify controller
operation prior to hardware integration

> Can be used by SDOs to rapidly draft
interconnection and interoperability codes and
standards

Austrian Institute
of Technology has
commercialized
the converter for
C-HIL

Details: J. Johnson, R. Ablinger, R. Bruendlinger, B. Fox, J. Flicker, “Interconnection Standard Grid-Support Function Evaluations using an Automated Hardware-in-the-Loop Testbed,” IEEE Journal of Photovoltaics, vol. 8, no.
2, pp. 565-571, Mar 2018. DOI: 10.1109/JPHOTOV.2018.2794884

J. Johnson, R. Ablinger, R. Bruendlinger, B. Fox, J. Flicker, “Design and Evaluation of SunSpec-Compliant Smart Grid Controller with an Automated Hardware-in-the-Loop Testbed,” Technology and Economics of Smart Grids
and Sustainable Energy, vol. 2, no. 16, Dec. 2017. DOI: 10.1007/s40866-017-0032-7




10 I Details of the ASGC

Zoran please add 2-3 slides here.




Example C-HIL Test Results
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For emergency protection situations > Stepped target power level up and > Voltage regulation function
Issued 5 disconnect and 5 connect down in 10% increments, 3 times ® Programmed 11 target PFs and set
commands PV irradiance to 10 250 450, 600,
o BUT tracks target power level well, 750, 900, and 1000 W / -
Disconnect is quick (< 1 sec), connect except at MPP where the efficiency of o BUT maximized P. while
requires ~5 sec for synchronization and the device is seen. maintaining PF,
~5 sec for MPPT. ° Generally quite accurate behavior.

J. Johnson, R. Ablinger, R. Bruendlinger, B. Fox, J. Flicker, “Design and Evaluation of SunSpec-Compliant Smart Grid Controller with an Automated Hardware-in-the-Loop Testbed,” Technology
and Economics of Smart Grids and Sustainable Energy, vol. 2, no. 16, Dec. 2017. DOI: 10.1007/s40866-017-0032-7



12 I Comparison of C-HIL and Physical DER Implementation
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- R. Briindlinger, J. Stockl, Z. Miletic, R. Ablinger, F. Leimgruber, J. Johnson, J. Shi, “Pre-certification of Grid-Code Compliance for Solar Inverters with an Automated Controller-Hardware-In-The-Loop Test Environment,” 8th Solar Integration
Workshop, Stockholm, Sweden, 16-17 Oct. 2018.

- J. Stockl, Z. Miletic, R. Briindlinger, J. Schulz, R. Ablinger, W. Tremmel, J. Johnson, “Pre-Evaluation of Grid Code Compliance for Power Electronics Inverter Systems in Low-Voltage Smart Grids,” 20th European Conference on Power
Electronics and Applications (EPE'18 ECCE Europe), Riga, Latvia, 17-21 Sept 2018.




Conclusion

Nations across the globe are facing similar challenges
when integrating high penetrations of renewable energy.

o Interoperable, grid-support inverters/converters are a
large portion of the solution.

° To deploy these technologies at scale, a common testing
methodology (certification standard) is required so the
communication and power behavior is as-expected in
tielded equipment.

A collection of laboratories around the world are
developing a software platform that enables
autonomous certification testing of DER to:

> Accelerate the DER vendor development process

° Generate certification protocols that fully evaluate the
products, while minimizing the number of experiments

° Evaluate interoperability test procedures and
communication products

> Educate the power industry of the capabilities of advanced
DER

One possibility: C-HIL systems
for power engineering students!
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