
Overview and planned updates
for the RSTT software

PRESENTED BY

Brian Young // Geophysics (8861) // 03 Apr 2019
-

Sandia
National
Laboratories

ENERGY Nesa;

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology a Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-2764PE



2 Introduction

Software package for rapidly computing Regional Seismic Travel Times (RsTT)

Rapid enough to incorporate into real-time event location systems

Tri-lab (Sandia, Los Alamos, Lawrence Livermore -ational Laboratories)

Software originally developed by Sandy Ballard (recently retired)

I am new Sandia POC

Originally developed in 2007

Latest release v3.0.5 in July 2016

Undergoing development and updates (discussed in later slides)

Core library written in C++

Interfaces in C, FORTRAN, Java

\ OTF,: Originally called "Seismic Location Baseline Model."

Some legacy code is still uses "SLBM" instead of "RSTT"



3 Design
Seismic Location Base Model Software

Design Document Version 3.0

http.//www.sandia.gov/rstt/downloads/SLBM Design.pdf

Tessellated grid (Vp, Vs)

• Grid with which travel times are computed

O Layers:

o Water

• Sedimentl

• Sediment2

o Sediment3

• Upper crust

• Middle crust

• Pn, Sn

o Pg, Lg

o Lower Crust

• Mantle (gradient)

Model is stored in GeoTess format

o http://www.sandia.gov/geotess/ 

Figure 1 — Orthographic projection of the Earth showing a portion of the SLBM tessellation grid.
Colors are contours of the Moho depth.

GeoTess

A model parameterization and
software support system that
implements the construction,

population, storage and interrogation
of data stored in 3D Earth models.



4 Design

Pn/Sn travel time (crustal events)

o Downwards crustal leg

o Travel across Moho

o Upwards crustal leg

o Mantle gradient correction

Pg/Lg

Smallest of two travel times

• Headwave method

O Source --> top of middle crust

o Along middle crust

O Middle crust --> receiver

o TauP method (typically local distances)

o Assume 1D velocity equal to that beneath receiver

o Compute via TauP

0

Mod& cross section and representative Pn ray path

Surface

-c 50 Moho46_

100
o

Xin

.v
Path approximated by Zhao correction(y)

. I 
250

Distance (krn)
500

ABKT



5 I Documentation
SLBM 3.0
Re ional Seismic Travel Time

Main Page Namespaces Files

Class List Class Hierarchy Class Members

slbm Sibminterface

slbm::Slbminterface Class Reference
Public Member Functions i Static Public Member Functions l Protected Member Functions I Protected Attributes l

Static Protected Attributes I Private Attributes I List of all members

The primary interface to the SLBM library, providing access to all supported functionality. More...

#include < slbmInterf a ce . h>

Inherited by sIbm::SIbmInterfaceToall.

Public Member Functions

SibmInterface ()

Default constructor. Instantiates an SIbmInterface object based on an ellipsoidal earth. More...

SibmInterface (const double &earthRadius)

Parameterized constructor. Instantiates an SIbmInterface object that is only partly based on an ellipsoidal earth. More...

virtual —SIbminterface ()

Destructor. More...

string getVersion ()

Retrieve the SLBM Version number. More...

void loadVelocityModel (const string &modelPath)

Load the velocity model into memory from the specified file or directory. This method automatically determines the format of the model. More...

void saveVelocityModel (const string &modelFileName, const int &format=4)

Save the velocity model currently in memory to the specified file. More...

int getBufferSize () const

Retums the size of a DataBuffer object required to store this SLBMlnterface objects model data. More...

void setInterpolatorType (const string &interpolatorType)

Specify the interpolation type to use, either linear' or 'natural neighbor'. More... 

...... s

)lications that loop over many calls to createGreatCircle() will see a performance improvement if clear() is not called within the loop. However, for problems

e number of sources and or receivers, if memory becomes an issue, applications could call clear() within the loop to save memory.

::SIbmInterface::clearActiveNodes ( )

.:SIbmInterface::clearGreatCircles ( )

rrent greatCircle object and sets ttHminus, ttHplus, ttZplus and ttHZplus equal to NA_VALUE.

t::Slbminterface::clearNodeHitCount ( )

node hit count by setting the hit count of every node to zero.

::SIbmInterface::createGreatCircle ( const string & phase,

const double & sourceLat,

const double & sourceLon,

const double & sourceDepth,

const double & receiverLat,

const double & receiverLon,

const double & receiverDepth

Instantiate a new GreatCircle object between two locations.

Parameters

phase the phase that this GreatCircle is to support. Recognized phases are Pn, Sn, Pg and Lg.

sourceLat the geographic latitude of the source in radians.

sourceLon the longitude of source in radians.

sourceDepth the depth of the source in km.

receiverLat the geographic latitude of the receiver in radians.

receiverLon the longitude of the receiver in radians.

ei
protected



6 Installation

D ownlo ad

0 http://www.sandia.gov/rstt/ 

make'

Set paths

SLBM_ROOT=/path/to/rstt

LD_LIBRARY_PATH+4SLBM_ROOT/lib

PATH+4SLBM_ROOT/bin

See SLBM_Installation_Guide . pdf
in doc

$ make

Building SLBM_Root on Linux
gcc (Ubuntu 7.3.0-27ubuntul-18.04) 7.3.0
Copyright (0 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Building GeoTessCPP on Linux with -m64
gcc (Ubuntu 7.3.0-27ubuntul-18.04) 7.3.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

mkdir lib
gcc -DLinux -m64 -03 -fPIC -Iinclude -o src/ArrayReuse.o -c src/ArrayReuse.cc
gcc -DLinux -m64 -03 -fPIC -Iinclude -o src/CPPUtils.o -c src/CPPUtils.cc
gcc -DLinux -m64 -03 -fPIC -Iinclude -o src/CpuTimer.o -c src/CpuTimer.cc
gcc -DLinux -m64 -03 -fPIC -Iinclude -o src/DataType.o -c src/DataType.cc
gcc -DLinux -m64 -03 -fPIC -Iinclude -o src/EnumType.o -c src/EnumType.cc
gcc -DLinux -m64 -03 -fPIC -Iinclude -o src/GeoTessDataArray.o -c src/GeoTessDataArray.cc
gcc -DLinux -m64 -03 -fPIC -Iinclude -o src/GeoTessData.o -c src/GeoTessData.cc



Interfaces:
7 C

153 // create a GreatCircle object at the requested location.
154 // Note that source and receiver latitudes and longitudes are converted
155 // from degrees to radians.
156 check_err(slbm_shell createGreatCircle(phase,
157 &srclat, &srclon, &srcDepthKm,
158 &rcvlat, &rcvlon, &rcvDepthKm));
159
160 check_err(slbm_shell_getDistance(&distance));
161 distance *= RAD_TO_DEG;
162
163 printf("Distance = %9.4f deg\n",distance);
164 // retrieve the travel time, in seconds
165 check_err(slbm_shell_getTravelTime(&tt));
166
167 printf("Travel time = %9.4f sec\n",tt );
168
169 // retrieve the travel time uncertainty, in seconds
170 check_err(slbm_shell_getTTUncertainty(&tt_uncertainty));
171
172 printf("TT uncertainty = %9.4f sec\n",tt_uncertainty);
173
174 // retrieve slowness
175 check_err(slbm_shell_getSlowness(&slow));
176 slow *= DEG_TO_RAD; // convert from sec/radian to sec/degrees
177
178 printf("Slowness = %9.4f sec/deg\n",slow);
179
180 // retrieve the travel time uncertainty, in seconds
181 check_err(slbm_shell_getSHuncertainty(&sh_uncertainty));
182 sh_uncertainty *= DEG_TO_RAD; // convert from sec/radian to sec/degrees
183
184 printf("SH uncertainty = %9.4f sec/deg\n",sh_uncertainty);
185
186 // retrieve dtt_dlat
187 check_err(slbm_shell_get_dtt_dlat(&dtt_dlat));
188 dtt_dlat *= DEG_TO_RAD; // convert from sec/radian to sec/degrees
189
190 printf("dtt/dlat = %9.4f sec/deg\n",dtt_dlat);
191
192 // retrieve dtt_dlon
193 check_err(slbm_shell_get_dtt_dlor(&dtt_dlon));
194 dtt_dlon *= DEG_TO_RAD; // convert from sec/radian to sec/degrees
195
196 printf("dtt/dlon = %9.4f sec/deg\n",dtt_dlon);
197



Interfaces:
8 C++

152 // create a GreatCircle object at the requested location.
153 // Note that source and receiver latitudes and longitudes are converted
154 // from degrees to radians.
155 slbm.createGreatCircle(phase,
156 srclatDegrees*DEG_TO_RAD, srclonDegrees*DEG_TO_RAD, srcDepthKm,
157 rcvlatDegrees*DEG_TO_RAD, rcvlonDegrees*DEG_TO_RAD, rcvDepthKm);
158
159 cout « slbm.toString(99);
160
161 slbm.getDistance(distance);
162 distance *. RAD_TO_DEG;
163
164 cout << "Distance = " « setw(9) « distance « " deg" « endl;
165 // retrieve the travel time, in seconds
166 slbm.getTravelTime(tt);
167
168 cout << "Travel time " « setw(9) « tt « " sec" « endl;
169
170 // retrieve the travel time uncertainty, in seconds
171 slbm.getTravelTimeuncertainty(tt_uncertainty);
172
173 cout « "TT uncertainty = " « set(9) « tt_uncertainty « " sec" « endl;
174
175 // retrieve slowness
176 slbm.getSlowness(slow);
177 slow *= DEG_TO_RAD; // convert from sec/radian to sec/degrees
178
179 cout « "Slowness = " « setw(9) « slow « " sec/deg" « endl;
180
181 // retrieve the travel time uncertainty, in seconds
182 slbm.getSlownessUncertainty(sh_uncertainty);
183 sh_uncertainty *= DEG_TO_RAD; // convert from sec/radian to sec/degrees
184
185 cout « "SH uncertainty = " « setw(9) « sh_uncertainty « " sec/deg" « endl;
186
187 // retrieve dtt_dlat
188 slbm.get_dtt_dlat(dtt_dlat);
189 dtt_dlat *= DEG_TO_RAD; // convert from sec/radian to sec/degrees
190
191 cout « "dtt/dlat = " « setw(9) « dtt_dlat « " sec/deg" « endl;
192
193 // retrieve dtt_dlon
194 slbm.get_dtt_dlon(dtt_dlon);
195 dtt_dlon *= DEG_TO_RAD; // convert from sec/radian to sec/degrees
196



Interfaces:
9 FORTRAN

99 ! create a GreatCircle object at the requested location.
100 ! Note that source and receiver lat, lon are converted from degrees to radians
101 call slbm_create_great_circle( iphase, &
102 slat*DEG_TO_RAD, slon*DEG_TO_RAD, sdepth, &
103 rlat*DEG_TO_RAD, rlon*DEG_TO_RAD, rdepth, &
104 err )
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134 call slbm_get_tt_uncertainty(tt_uncertainty, err)
135 if (err .ne. 0) then
136 distance = error_value
137 tt = error_value
138 tt_uncertainty = error_value
139 slow = error_value
140 else
141 call slbm_get_slowness(slow, err)
142 if (err .ne. 0) then
143 distance = error value

if (err .ne. 0) then
! an error occurred creating the great circle.
! Respond by setting all regression values for this record
! to -999 and do not retrieve values for tt, slowness, etc.
! Presumably the same error happened when the regression data were generated.
distance = error_value
tt = error_value
tt_uncertainty = error_value
slow = error_value

else
! make calls to retrieve distance, tt, tt_uncertainty and slowness.
! if any of the function calls return a non-zero error code
! set all the values to -999 and move on.
call slbm_get_distance(distance, err)
if (err .ne. 0) then

distance = error_value
tt = error_value
tt_uncertainty = error_value
slow = error_value

else
distance = distance * RAD_TO_DEG
call slbm_get_travel_time(tt, err)
if (err .ne. 0) then

distance = error_value
tt = error_value
tt_uncertainty = error_value
slow = error_value

else



Interfaces:
10 Java

267 // create a GreatCircle object at the requested location.
268 // Note that source and receiver latitudes and longitudes are converted
269 // from degrees to radians.
270 slbm.createGreatCircle(phase,
271 toRadians(srcLat),
272 toRadians(srcLon),
273 srcDepth,
274 toRadians(rcvLat),
275 toRadians(rcvLon),
276 rcvDepth);
277
278 distance = Math.toDegrees(slbm.getDistance());
279
280 // retrieve the travel time, in seconds.
281 tt = slbm.,,etTravelTime();
282
283 tt_uncertainty = slbm.getTravelTimeUncertainty();
284
285 slow = Math.toRadians(slbm.getSlowness());
286
287 }
288 catch (SLBMException ex)
289
290 // slbm threw an exception.
291
292 // Print the reason to screen
293 // cout « ex.emessage « endl;
294
295 // set computed travel time to invalid value and keep going.
296 // Presumably the previously computed value was invalid also.
297 distance = tt = tt_uncertainty = slow = -999.;
298 }
299
300 // increment number of records read from file.
301 ++nrecords;
302
303 // if computed travel time does not agree with previousl
304 // computed value, print information to the screen
305 if (abs(distance-distance0) > tolerance
306 11 abs(tt-tt0) > tolerance
307 11 abs(tt_uncertainty tt_uncertainty0) > tolerance
308 11 abs(slow-slow0) > 'tolerance)
309
310 ++ndifferent;
311



11 I Upcoming software modifications

Various bug fixes, codebase updates

Path-specific travel-time uncertainty

Variable model resolution

Akt4
411%

Pg

-120'

Total 55

-110'

-130*
-110'

-100'

50'

45°

40

35' 5.0

4-5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-120* -100'


