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2 Most machine learning techniques require specific types of data.

Machi ne Learning
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But the world doesn't come in the form of vectors and
3 preprocessing data is a lot of work.

Significant Effort

Feature Engineering Feature Space Machine Learning



It would be nice if we could find a family of algorithms that let's us
4 c u t out the expensive feature engineering portion of our work.

Significant Effort

re Engineering Machine Learning



It would be nice if we could find a family of algorithms that let's us
5 cut out the expensive feature engineering portion of our work.
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Compression-Based Analytics provides capabilities that can be
6 used this way.

Com pression
Analytics



I'm going to show you how compression analytics works, where it
7 worl<s, and how we might mal<e them worl< better

HOW compression analytics work
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I'm going to show you how compression analytics works, where it
8 worl<s, and how we might mal<e them worl< better

WHERE compression analytics work



I'm going to show you how compression analytics works, where it
9 worl<s, and how we might mal<e them worl< better

How to make compression analytics work BETTER



10 1 HOW compression analytics work

Compression
Analytics

Compression analytics work by approximating the amount of shared
information in data.



Compression algorithms approximate the amount of information
in data

A String of 10K ̀a's 
Much Data

Almost no Information

lal*10000

10K Truly Random Characters
Much Data

Much Information

`TNYSTCACW1 IMLZX
EWAGG...'



12 Compression is an upper bound on the amount of information.

A String of 10K ̀a's 
Much Data

Almost no Information

Length_compressed(
lal*10000)

86 Bits

10K Truly Random Characters
Much Data

Much Information

Length_compressed(
`TNYSTCACWIIMLZXEWA
GG...')

68,418 Bits



We can compress two items together to approximate the
13 amount of shared information.

A B

A and B are Completely Different

NCDz(A, B)

AB

A and B Overlap

— Z (AB) — minfAA), AB)}

maxfZ (A), Z (B)}

Li, Ming, et al. "The similarity metric." IEEE transactions on Information
Theory 50.12 (2004): 3250-3264.



PPM/Arithmetic Coding is straight forward and a flexible
14 implementation lends itself to analytics R&D

This is a question.

P roba bi I ities (P PM) .4 Arithmetic Coding 010101000110100001101001 01110011



15 Distances Among Items
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16 Ordering and Outlier Detection
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17 Categorization

Model Application r Model Building
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18 1 WHERE compression analytics work

We have successfully applied compression to a variety of different
data types and problems.
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Text
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20 Authorship and Deception Detection

Truthful vs
deceptive

NCD = 
c(xy) — min[c(x), c(y)]

max[c(x), c(y)]

1

Authorship (12) I

I

1



21 XML Representation of Graphs

"Normal"

"Random"

"Incorrect"

<gexf xmins="http://www.gexf.net/1.2draft" version="1.2".
<graph mode="static" defaultedgetype="undirected".
<attributes class="node".

<attribute id="0" title="label" type="string"
</attributes..

<nodes.
<node id="1" label="root:

<attvalues.
<attvalue for="0" value="root: toolq"/,

</attvalues.
</node.
<node id="2" label="name:

<attvalues.
<attyalue for="0" value="name: ascisv"/..

</attvaluese
</node.
<node id="3" label="age: "

<attvalues.
<attvalue for="0" value="age: ahglw"/.

</attvalues.
</node.
<node id="4" label="gender: "

<attvalues.
<attvalue for="0" value="gender: bjwzt"/.

</attvalues.
</node>
<node id="5" label="education: "

<attvalues.
<attvalue for="0" value="education: zsool"/.

</attvaluese
</node>

</nodes.

<edges.
<edge id="6" source="3" target="1" type="undirected" label="1.0" weight="1.0" /.
<edge id="7" source="2" target="1" type="undirected" label="1.0" weight="1.0" /.
<edge id="6" source="4" target="1" type="undirected" label="1.0" weight="1.0" /.
<edge id="9" source="5" target="4" type="undirected" label="1.0" weight="1.0" /.

</edges.
</graph.
</gexf



22 XML Representation of Graphs

• n = 10

• k= 10
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Binary



25 Voice
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26 Changepoint Detection and Visualization
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Networl< Traffic



28 Analysis of DNS Traffic
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29 1 How to make compression analytics work BETTER

Results

There are interesting remaining problems in advancing the state
the art in this field.
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We don't care about compression, so we can modify the algorithms.



31 Unbalanced Training Sets
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Compression algorithms are slow.



33 LZJD is fast and has good performance

"This is a question."

"This is another question."

{("), (' a'), (' q'), ('.'), ('T'), ('e'), ('h'),
('i'), ('io'), ('is'), ('n'), ('s'), ('st'), (10}

{("), (' a'), (' q'), ('T'), ('e'), ('h'),
('he'), ('i'), ('io'), ('is'), ('n'), ('n.'),
('o'), , ('s'), ('st'), ('t'), ('u')}

Raff, Edward, and Charles Nicholas. "An Alternative to NCD for Large Sequences, Lempel-Ziv Jaccard
Distance." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2017.



34 Streaming LZJD is faster when computing sliding windows.

"This is another question."

I
R'T'), ('h'), ('i'), ('s'), ("), ('i'), ('is'),
("), (' a'), ('n'), ('o'), ('t'), ('h'),
('he'), ('r'), ("), (' MI ('u'), (10,
('s'), ('st'), ('i'), ('io'), ('n')]
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You don't have to specify the features, but you can't specify the
featu res.



36 NCD with Controls



37 Non Sequential Analysis

This is a question.

<p>This is HTML</p>
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