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2 I Most machine learning techniques require specific types of data.

Feature Space Machine Learning Results
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But the world doesn’t come in the form of vectors and
301 preprocessing data is a lot of work.
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It would be nice if we could find a family of algorithms that let’s us
4 I cut out the expensive feature engineering portion of our work.
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6

Compression-Based Analytics provides capabilities that can be

used this way.
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I’m going to show you how compression analytics works, where it
7 1 works, and how we might make them work better

HOW compression analytics work
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I’m going to show you how compression analytics works, where it
9 I works, and how we might make them work better

How to make compression analytics work BETTER
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Compression Results

Analytics -
Bad |Good

Compression analytics work by approximating the amount of shared

information in data.




in data

Compression algorithms approximate the amount of information

A String of 10K ‘a’s 10K Truly Random Characters
Much Data Much Data
Almost no Information Much Information

“TNYSTCACWIIMLZX

2™ EWAGG...’




12 I Compression is an upper bound on the amount of information.

A String of 10K ‘a’s
Much Data
Almost no Information

Length_compressed(
'a™*10000)

86 Bits

10K Truly Random Characters
Much Data
Much Information

Length_compressed(
‘“TNYSTCACWIIMLZXEWA
GG...”)

68,418 Bits



We can compress two items together to approximate the
13 1 amount of shared information.

A B

A and B are Completely Different A and B Overlap

AB

Z(AB) — min{Z(4), Z(B)}
max{Z(A),Z(B)}

NCD,(A,B) =

Li, Ming, et al. "The similarity metric." IEEE transactions on Information
Theory 50.12 (2004): 3250-3264.




PPM/Arithmetic Coding is straight forward and a flexible
14 1 implementation lends itself to analytics R&D

This is a question.

|

Probabilities PPM) ¢~  Arithmetic Coding |:>u1u1u1mm1u1muu11umm 01110011




15 ‘ Distances Among Items
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Ordering

and Outlier Detection
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17 1 Categorization
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Compression

Analytics -
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We have successfully applied compression to a variety of different

data types and problems.
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20| Authorship and Deception Detection
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21 I XML Representation of Graphs

“Normal”
<gext xmlns="http://www.gexf.net/1.2draft" version="1.2">
=graph mode="static" defaultedgetype="undirected"s
<attributes class="node"=>
<attribute id="@" title="label" type="string" /=
<fattributess>
=nodess>
<node id="1" label="root: " >
<attvalues=
<attvalue for="0" value="root: toolg"/=
<fattvalues>
=/node=
<=node id="2" label="name: " =
<attvaluess
<attvalue for="@" value="name: asgsv"/>
<fattvalues>
=/node=
<node id="3" label="age: " =
o ]) <attvalues>
Ra n Om =attvalue for="B" wvalue="age: ahglw"/=
=/attvalues>
</nodes>
<node id="4" label="gender: " >
=attvalues>
<attvalue for="@" wvalue="gender: bjwzt"/=
=/attvalues=
=/node>
<node id="5" label="education: " =
<attvalues>
<attvalue for="@" value="education: zsool"/>
=fattvalues>
=fnode>
</nodes=
=gdges=
<edge B" undirected" label="1.8" weight="1.8" /=
<edge ™ undirected" label="1.8" weight="1.8" />
<edge id="B" type="undirected" label="1.8" weight="1.8" />
<edge id="9" type="undirected" label="1.8" weight="1.8" />
o ) </edges=>
Incorrect I
</gexf=




22 I XML Representation of Graphs

°n=10
k=10 -
°A={a,b,c,d, e} i

0.25

0.20

count

The random string, with k = 10 introduces variance
to the NCD scores, but we can still identify a cutoff
in the distribution of high similarity NCD scores
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Precision
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26 I Changepoint Detection and Visualization
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Network Traffic




28 I Analysis of DNS Traffic
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Compression

Analytics

There are interesting remaining problems in advancing the state of

the art in this field.
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We don’t care about compression, so we can modify the algorithms.
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Accuracy
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Compression algorithms are slow.




LZ]D is fast and has good performance

“Thic i i p (), (@), (q), (), (T), (e), (W)
This is a question. m— (i), (io), (i), (), (5, (st), (u)

D B
. . . . - e |O| ’ IiSI , lnl , In.l ’
This is another question. ( O) (). (8, (st), (), (U}

Raff, Edward, and Charles Nicholas. "An Alternative to NCD for Large Sequences, Lempel-Ziv Jaccard
Distance.” Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2017.




34 I Streaming LZ]D is faster when computing sliding windows.

“This is another question.”
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You don’t have to specify the features, but you can’t specify the
features.




36 1 NCD with Controls




37 1 Non Sequential Analysis

This is a question.

3 |
<p>This is HTML</p> |
!
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