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31 OUTLINE

* |Introduction to sea ice

 Sea ice response to Arctic change
+ Sea ice model components

* Overview of sea ice modeling projects
MPM sea ice model

Sensitivity analysis, parameter estimation
Discrete element sea ice model

Tipping points, machine learning, and sea ice
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SEA ICE

Climatology: 1981-2010 (nsidc.org)

September.

Frozen surface of the ocean at high
latitudes

Covers ~7% of Earth surface and ~12% of
ocean surface

Important in global climate

« Reflects solar radiation

* Insulates ocean from atmosphere

» Influences ocean circulation

Accurate modeling of sea ice is important

for both global climate and shorter-term
forecasting for navigation

September
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ARCTIC SEA ICE CHANGES

Satellite passive microwave sea
ice concentration data available
since 1979

Decline in extent is seen both in S
all seasons

Fastest reductions in minimum
sea ice extent

Average Monthly Arctic Sea Ice Extent
March 1979 - 2018
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s I ARCTIC SEA ICE CHANGES

-+ Satellite passive microwave sea
ice concentration data available
since 1979

« Decline in extent is seen both in S
all seasons

» Fastest reductions in minimum
sea ice extent

Average Monthly Arctic Sea Ice Extent
March 1979 - 2018

» Reconstructions from proxies,
Kinnard et. al 2011

Arctic sea ice extent over the last 1,450 years
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71 ARCTIC SEA ICE CHANGES

Thickness

1999-2018
MYice area trend (%/decade)

.Am-'l-'.'l.‘i'] 47 3 gy 2 k

Bealifort _ﬁa Jlﬁgnada

-50.0 0 50.0
Fi -ﬂ - i
1.‘ ) . ‘ b) 00 02 o 8 Jan -1 fields
5000 -4EH

b) 4.5

4,0+ =58-76 Submarine

= 93-97 Submarine 4000
35 03-07 ICESat |
=117 CryoSat-2

£301 _ o |
- £
P £ 3000
E 2.5 Y
% 3 ‘
sk | )
= 2.0 g

15 2000

' ‘ MY fraction

1.0 | 0.0 — 1.0

0.5+ H—H —+ -‘ 109955 2002

‘ | ‘ \ QuikSCAT
0.0 . ;

" Chukechi Beaufort Canada  North  Nansen  Eastern
Cap Sea Basin Paole Basin Arctic

Kwok (2018) Environmental Research Letters




s I IMPACTS OF SEA ICE LOSS

Direct Arctic impacts

* Increased maritime activity in
Arctic

* Geopolitical conflict concerns

* Increased wave activity and
coastal erosion

» Habitat changes

Downstream impacts

*Impacts to mid-latitude weather, potential increases in winter storms
and drought (Francis and Skific 2015, Cvijanovic et al. 2018, Cohen et
al. 2018)

- Disruption of Atlantic ocean circulation (Sévellec et al 2017)




91 SEA ICE MODELING

September.

-

Important physical processes:

* Mechanical deformation due to surface winds and ocean currents
* Changes in thickness including lead and ridge formation

» Annual cycle of growth and melt due to radiative forcing




SEA ICE MODEL COMPONENTS

10

Dynamics
* 2-D momentum equation solve for velocity

+ Typically continuum using viscous-plastic
rheology (Hibler 1979)

« Alternatives: anisotropic constitutive
models, discrete element method (non-
continuum)

Thermodynamics

- Energy equation solved in column
determines temperature and thickness

+ Balance of longwave and shortwave fluxes
determines top layer temperature and
melt/growth of ice

Ridging
- Convergent velocity leads to ridging
« Conserves volume and redistributes ice
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11 1 MODEL LIMITATIONS

Dynamics

At high resolutions (10 km) isotropic continuum
models not good approximation of dynamics

« As temperatures are increasing, sea ice may be
better represented as a discrete set of floes
rather than as a continuous ice cover

Numerical Methods

« Artificial diffusion in transport can lead to
errors in thickness and smearing of ice edge

« Eulerian methods are less efficient for
multiple tracers

Performance

* Not designed to run on next generation
architectures

Other

* Missing physical processes, e.g. wave ice
interactions




12 1 MATERIAL-POINT METHOD SEA ICE MODEL UNM
Satelllte Deformatlon Data

Objective: Develop new sea ice model using
MPM as the discretization method
with an anisotropic rheology.

Motivation:

» Better represent sea ice dynamics, including lead
formation

» Enable more accurate advection with sharper ice
edge

;1‘ 97015 - 97021
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Collaborators: Deborah Sulsky, Howard Schreyer
(UNM), Ed Love (SNL), Giang Nguyen
(U. of Adelaide), Han Tran (German
Viethamese University), Lynn

Munday (SNL) ; S Y ({\ ng’ms J97o§:




3 | MATERIAL-POINT METHOD (MPM)

- Domain divided into material points and
background grid

« Lagrangian material points carry mass,
momentum, and internal variables

Advantages

* Mass conservation

automatic

« Advection handled

naturally with \ T

Lagrangian points

+ Large deformations .z
without mesh tangling

Sulsky, Chen, Schreyer, CMAME 1994
Sulsky et al., JGR, 2007

I Computational Cycle

1. Map material-point
values to nodes

HEEE VaVa
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ELASTIC DECOHESIVE RHEOLOGY (EDC)

Leads modeled as displacement
discontinuities [u]

Intact ice modeled as elastic

Predicts initiation and
orientation of leads

Once failure begins behavior is
anisotropic
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15 1 RADARSAT GEOPHYSICAL PROCESSOR SYSTEM (RGPS)

* Developed by Polar Remote
Sensing Group at JPL

« Extracts sea ice motion data
from SAR imagery using area
and feature based tracking

* Points tracked can be
interpreted as nodes of a grid

+ Grid quantities such as
divergence, shear, and vorticity
can be derived

Kwok (1998) in Analysis of SAR Data of the Polar Oceans




16 | RADARSAT GEOPHYSICAL PROCESSOR SYSTEM (RGPS)

* Developed by Polar Remote
Sensing Group at JPL

« Extracts sea ice motion data
from SAR imagery using area
and feature based tracking

* Points tracked can be
interpreted as nodes of a grid

+ Grid quantities such as
divergence, shear, and vorticity
can be derived

Kwok (1998) in Analysis of SAR Data of the Polar Oceans




171 DECOHESIVE KINEMATICS USING RGPS

« Want a procedure to extract
information on cracks or leads from
RGPS data

* Assume all deformation in cell due
to discontinuity

1 S
c= ([ @n)

 Given strain or deformation
gradient from RGPS cell data,
calculate best fit jump and normal

Peterson, Sulsky (2011) in Remote Sensing of the Changing Oceans

|
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-200

-200 .

BEAUFORT SEA CALCULATION

» Simulate 15 days in Feb/Mar 2004
* 10 km resolution

« Compare with RGPS satellite data
provided by R. Kwok, JPL

 |nitialize with cracks from data
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191 BEAUFORT SEA NET DEFORMATION RESULTS

Vorticity Shear Divergence

MPM Vorticity MPM Shear MPM Divergence
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20 I BEAUFORT SEA CRACK OPENING MAGNITUDE
MPM RGPS

MPM Decohesion Opening RGPS Opening Magnitude
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21 I MODEL SENSITIVITIES & COMPARISON WITH CICE

Objective: Arctic basin scale simulations
comparisons

Motivation:

» Better represent sea ice dynamics, including lead
formation

» Gain understanding of uncertain parameters in
dynamic and thermodynamic sea ice models

» Compare with widely used model, CICE
(https://github.com/CICE-Consortium/CICE/wiki)

Collaborators: Pavel Bochev, Biliana Paskaleva

(SNL), Deborah Sulsky, Howard

Schreyer (UNM), Elizabeth Hunke
(LANL)




2 I PAN-ARCTIC SIMULATIONS WITH PARAMETER SENSITIVITIES

* One year run starting from uniform ice
conditions

* Prescribed ocean and atmospheric
forcing

- 10 parameters, 6 response functions

« Use DAKOTA (Design Analysis Kit for
Optimization and Terascale

Applications)
* MPM Sea ice with EDC rheology Response Functions
- CICE with isotropic EVP rheology * Total ice area (km)
- Total ice extent (km?)
« 50 Latin hypercube samples - Total ice volume (m3)

* RMS ice speed (m/s)

K. Peterson, P. Bochev, B. Paskaleva (2010) SAND 2010-6218.
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24 I SENSITIVITY ANALYSIS FOR RHEOLOGY PARAMETERS

+ Initial implementation of EDC in CICE

* Monte Carlo analysis using Latin Hypercube sampling

« 50 samples of Jan/Feb 1997 run of CICE with EDC

 Vary seven parameters, consider seven response functions

 Linear regression model to evaluate sensitivity of response

functions to parameters

Standardized regression coefficients between -1 and 1, provide
measure of variable importance

Standardized Regression Coefficients

Velocity Divergence Vorticity Shear

Parameter Extent Volume RMS Speed Error Correlation Correlation Correlation
E 0.0678 0.0652 -0.331 -0.403 -0.394 -0.0994 -0.319
<& -0.0775 0.0706 -0.0393 0.00642 -0.136 -0.0132 -0.263
&d f -0.883 -0.931 -0.563 -0.102 0.192 -0.301 0.0267
E7; 0.194 0.00283 -0.601 0.411 -0.378 -0.833 0.204
fg 0.104 -0.0598 0.00651 0.0591 -0.0958 -0.0388 0.0399
sm -0.0648 0.129 -0.140 0.0463 -0.00968 -0.137 -0.174
uo Factor -0.104 -0.377 -0.197 -0.267 -0.0861 -0.115 -0.131

K. Peterson, P. Bochev (2013) SAND 2013-5484.




25 I ANALYSIS OF MOST INFLUENTIAL PARAMETERS

Error Measure

« 50 samples of Jan/Feb 2004 run of CICE with EDC

* Vary two parameters

» Using the following cost function, evaluate best fit parameters for EDC
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26 I DEFORMATION COMPARISONS — FEBRUARY 17-19 2004

CICE-EVP CICE-EDC

Divergence

Vorticity




27 1 VELOCITY COMPARISON

EDC February 2004 EVP February 2004

—= $SM/l and Buoy Data
—>CICE EDC — CICE EVP
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Comparison with optimally interpolated two-day ice motion derived from
passive microwave instruments and buoy data
http://rkwok.jpl.nasa.gov/icemotion/ index.html




22 1 SUMMARY

MPM with EDC very promising

MPM Decohesion Opening

« At high resolutions, model captures linear =
deformation features well

+  Development continuing at UNM
»  Coupling with MIT ocean model

« Extensions to EDC model: Han, Sulsky, :
Schreyer (2015) Numerical and
Analytical Methods in Geomechanics

200
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« Opportunities
« Improvements crack closure and freezing models

« Relate open water fraction from ice thickness distribution to
cracks more directly

* More comparisons with data and parameter optimization
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29 I DISCRETE ELEMENT MODEL FOR SEA ICE ‘igaf\omos

Objective: Develop new Lagrangian particle sea
ice model for use in coupled climate
simulations

Motivation:

» Better represent sea ice dynamics at high resolution

* Incorporate programming model suitable for next generation
architectures

Collaborators: Adrian Turner, Pl, Andrew Roberts, Min Wang
(LANL); Dan Bolintineanu, Dan Ibanez, Paul
Kuberry, Kara Peterson (SNL); Travis Davis

. DEMSI
() spAC

) v j Scientific Discovery through Advanced Computing D i scre fe E I eme nf M Od e' fo r S eqg ’ Ce




308 DISCRETE ELEMENT METHOD

- DEM for sea ice dynamics
enables capture of

 Anisotropic, heterogenous
nature of sea ice deformation

 Explicit fracture and break-up
of pack

* Previous DEM sea ice modeling
efforts focused on regional
scale, short-term simulations

* Our objective is to develop a
computationally efficient global
climate scale sea ice model
using DEM

"
o 2

464"(1,"5 .
‘.3 Ozt}s\ [ 4

Hopkins and Thorndike (2006)

Herman (2012)
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DEMSI

Dynamics: LAMMPS (https://lammps.sandia.gov)

» Particle based molecular dynamics code

* Includes support for DEM and history dependent contact models
«  Computationally efficient with massive parallelization

Thermodynamics: CICE consortium lcepack library

(https://github.com/CICE-Consortium/lcepack)

« State-of-the-art sea-ice thermodynamics package

» Vertical thermodynamics, salinity, shortwave radiation, snow, melt
ponds, ice thickness distribution, biogeochemistry

DEMSI: Combines power of LAMMPS and Icepack

» (Circular elements to start for efficiency

- Each element represents a region of sea ice, and has its own ice
thickness distribution




32 1 PRINCIPLE CHALLENGES

1. Contact model: How should elements interact to
represent sea ice physics?

o Bonded elements - viscous-elastic glue, Mohr-Coulomb
fracture law

o Unbonded elements - no strength in tension
o Adapt Hopkins (2003), Wilchinsky et al. (2010)

2. Element distortion: How to manage element
creation, destruction, and distortion?

o Periodically remap elements
o Merge elements that get too small

3. Coupling: How to couple particles to Eulerian mesh
conservatively?

o Moving least squares interpolation with optimization-
based property preservation

4. Computational performance: How to make the
model fast enough for global climate applications?

o LAMMPS already highly-scalable for MPI
o Incorporate Kokkos programming model for GPU, etc.




33‘ CONTACT MODEL TESTING

Cantilever

Impact
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*1 CONTACT MODEL TESTING

« Flato (1993) test case

500 x 500 km domain

Constant in time swirling
atmospheric wind field

Linear drag for atmospheric and
ocean forcing

PIC solution after 5 days

DEMSI solution through 5 days




33 1 PERFORMANCE
MPI-only Performance

—o— 15k particles
»— 62.5k particles
—4— 250k particles

* Global climate simulations are
computationally expensive

« Future codes will need to run on DOE
next generation computers with
heterogeneous architectures

- DEMSI using Kokkos programming model
for acceleration L z g %

Number of processors

1.0

o
[E]

Wall time seconds/1000 time steps

Kokkos

*  C++ library

* Shared-memory programming
model

* Enables writing algorithms once
for many architectures

« Uses multi-dimensional arrays
with architecture-dependent
layouts

Multi-Core Many-Core APU CPU + GPU

https://github.com/kokkos




36 8 NEXT STEPS

« Continue to improve sea ice contact model
* Regional and basin-scale testing

« Test options for element creation, destruction,
and deformation

« Performance testing on GPUs




371 ARCTIC TIPPING POINTS

September Ice Extent
(RCP4.5)

Objective: Gain understanding of the
important feedbacks between
Arctic physical and biological |
components and stability of the :
Arctic system. "

' P v W > k" B e W

Stroeve et al., (2012) GRL

Motivation:

» Quantify system feedbacks that lead to sea ice loss using
coupled Earth system models (E35SM) and data driven E3SM
(machine learning-based) models.

Collaborators: Ray Bambha, Diana Bull, Jennifer Frederick, Jasper
Hardesty, Anastasia llgen, John Jakeman, Amy Powell, Matt
Peterson, Erika Roesler, Cosmin Safta, David Stracuzzi, Irina
Tezaur, Mike Parks (SNL)



33 I DATA DRIVEN MODEL Sea Surface

Temperature

* Develop data-driven, predictive
models for sea ice concentration in
the summer season

 Using historical data from 1979-
present for ice, ocean and Sea Ice
.y Concentration
atmosphere quantities

* Investigate whether predictive
models provide new insights into
coupled simulation

» Sea ice concentration https://nsidc.org/data/G02202/versions/2, Meier, et al.
(2013)

« Reanalysis data (air temp, surface pressure, wind, downward longwave)
https://www.esrl.niaa.gov/psd/data/gridded/data.ncep.reanalysis2.html,
Kanamitsu, et al., (2002)

+ Sea surface temperature ftp/ncdc.noaa.gov/pub/data/cmb/ersst/v4, Huang, et
al. (2014).
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COUPLED MODELING

- Employ the DOE Energy Exascale Earth
System Model (E3SM) to investigate
system feedbacks that may lead to
tipping events.

 Enrich high-fidelity simulations (~1
degree global) with an ensemble of ultra-
low and medium resolution simulations
to tractably capture uncertainty.

* Investigate stability of Arctic sea ice in

ensemble members.

Ultra-Low
Resolution
Atmosphere Mesh

Earth System Model
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CONCLUSIONS

Arctic is changing rapidly

Accurate and computationally efficient
sea ice models are important for future
predictions of the global Earth system

Much work remains in understanding
* Sea ice dynamics

* |Interactions with ocean and
atmosphere

Improvements in material models,
numerical methods, and computational
performance can have a large impact on
sea ice predictions




