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2 Overview

Sandia National Laboratories Overview

Engineering Sciences Center

Computational Simulation Group

Computational Solid Mechanics & Structural Dynamics

Research Topics:
Inverse problems
Blast-Induced Traumatic Brain Injuries
Very large problems in structural dynamics
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SANDIA HAS FACILITIES
ACROSS THE NATION

Albuquerque, New Mexico 

' Livermore, California

Activity locations
• Kauai, Hawaii

• Waste Isolation
Pilot Plant,
Carlsbad, New Mexico

• Pantex Plant,
Amarillo, Texas

• Tonopah, Nevada



PURPOSE STATEMENT
5 DEFINES WHAT WE DO

Sandia develops
advanced technologies
to ensure global peace



Sandia's Current Nuclear Weapons Activities

A
capabilities are required for
Design, Qualification, Production, Surveillance,
Experimentation / Computation

Major Environmental Test Facilities
and Diagnostics

Light Initiated High Explosive

Annular Core Research Reactor
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Climate & Environment
Measurement & Modeling, Carbon Management, Water

& Environment, and Biofuels

ar Energy & Fuel Cycle
Commercial Nuclear Power & Fuel,

Nuclear Energy Safety & Security, DOE
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Global and Homeland Security ■

Global
Security

Homeland
Security Program

Cyber and
Infrastructure Security

Homeland Defense
and Force Protection
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Our Research Framework
Strong research foundations play a differentiating role in our mission
delivery
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Engineering Sciences as The Capability Steward

Integrated theory, computational simulation, and experimental
discovery/validation across length and time scales is critical to
develop the technical basis for complex engineered systems.

Engineering
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Engineering Sciences Core Technical Areas

Solid Mechanics

' I

BOO p.m

Aerosciences

Shock Physics and

Energetics

Fluid Mechanics

Thermal & Fire Sciences

Structural Dynamics
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13 Computational Simulation Group

Enclosure
Block

Translation

Computational Thermal
And Fluid Mechanics

Computational Simulation
Infrastructure

Computational Solid Mechanics
And Structural Dynamics

•

Simulation Modeling Sciences
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14 Computational Solid Mechanics

Solid Mechanics — Quasi-static, implicit & explicit transient dynamic

Shared capabilities

• large deformations, large-strain nonlinear material behavior

• implicit-explicit solution switching, multi-sequence analyses

• continuum & structural finite elements, particle methods

• parallel scalable frictional contact

• geometric and temporal multi-scale methods

• coupled thermal-mechanical modeling, with failure

Implicit Solid Mechanics

• preloads, encapsulation & cure, incompressible material behavior

Explicit Solid Mechanics

• energy-dependent material models

• fracture & failure modeling (cohesive zones, XFEM, remeshing)

• empirical blast pressure loads (CONWEP)

• coupled to CTH shock-hydro (Zapotec),Alegra EM

lmplicit4explicit switching

pressure & temperature loading
snap-thru & disassembly

2D XFEM Fracture Simulation



15 Computational Structural Dynamics

Structural Dynamics — Implicit Dynamics & Modal Response

Parallel Scalable Domain Decomposition Solver with many constraints

Shared mechanics capabilities

• small deformations, small-strain linear material behavior

• solid & structural elements, constraint elements

• non-linear pre-load transfer from Sierra/SM

Time domain, statics & transients

• joint models with dissipation

• material property inversion

• stochastic material (elastic) properties

Frequency domain (Frequency Response Functions)

• Helmholtz solver for Direct FRF

• Modal FRF

Acoustics — linear

• absorbing boundaries

• acoustic pressure source inversion

• monolithic coupling with structural response

■



16 Inverse Problems: Observing the Unobservable

Inverse problems arise when we have partial information and indirect
observations of a system and need to infer (hidden) quantities of interest of the
system.

Can we non-destructively interrogate a black-box system to "see what is inside"?

Typical quantities of interest: Mt
11

• Material properties
• Loads 
• Boundary conditions
• Residual stresses
• Size/shape/location of inclusions (e.g. composite materials)

Applications include:
• Imaging: Medical ultrasound, seismic exploration (oil, gas)
• Calibration of material models and properties
• Force reconstruction
• Optimal experimental design, sensor locations
• Shape reconstruction

•



17 Inverse Methods: Seismic imaging •
Goal: locate buried inclusion and surrounding material properties

Buried inclusion model

_Bulk_Modulus
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Inclusion identified in 30 iterations of
inverse optimization!



18 Blast-Induced Traumatic Brain Injuries (bTBI)

Unique neuropathological injury in bTBI •
interfacial injury

Skull

Gray matte

White matt

Blood vesse

CSF



Computational model: hybrid finite element model and shock
physics code



Computational model: hybrid finite element model and shock
20 physics code •
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21 Very Large Problems in Structural Dynamics

How large of a matrix system A.x=b can we solve?
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High Performance Computing/parallel processor computing

•

I-beam model

Strong scaling: how the solution time varies with the number of processors for a
fixed total problem size

Weak scaling: how the solution time varies with the number of processors for a
fixed problem size per processor



22 Some scaling results of Sierra/SD
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23 How do you know the number of processors needed?

Mesh Number

NumProc
1

2
4
8
16
36
72
144
288
576
1152
2304
4608
9216
18432

4 9 10 11 12 13 14 15 16 17 18
Salinas Complete Not Run emory)

Table 2. Matrix of Successful Sierra/SD Runs

Consider: speed, memory usage, and availability!

•



24 The End. Questions?

Interested in Sandia National Labs?

Summer internships: sandia.jobs

Career opportunities: sandia.jobs

There are many opportunities (not just at Sandia) to use your engineering and
science skills to national service!


