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2 Motivation

Manufacturing

www.targray.com

esostructure

Hutzenlaub (2012)

Battery Performance

stackexchange.co

Processing
 ►

Lithiation-Induced Fracture

LiCo02 STXM, Farid El Gabaly Marquez (Sandia)

Mechanical Abuse Electrochemistry / Mesostructure

NMC/graphite pouch, H. Wang (ORNL) Cannarella/Arnold (2015)

Coupled electrochemical-mechanical effects at mesoscale connect battery manufacturing and performance

2/27/2018



3 Outline

Computational representation of

imaged electrode mesostructures

I •

NMC cathode effective property

prediction and upscaling
2/27/2018

Representation and role of

conductive binder morphology

Electrochemical-mechanical

discharge sims. of NMC half-cells

Discrete element method

mesostructure generation

Future directions in electrode

mesoscale modeling

•



4 1 Mesoscale geometry from CT data using CDFEM

3D Image Data

ri (X-ray CT)

Detailed 3D reconstruction and image processing necessary to get usable mesostruct a
3/12/2019 Roberts et al JES 2014, Roberts et al JEECS 2016



5 I What about the conductive binder?

Resolving conductive binder in 3D imaging difficult
Binder often neglected, assuming non-active void space
is electrolyte

0 Limited imaging results can hint at binder location

Amorphous binder is significantly nanoporous

47% Zielke (2015); 45% Grillet (2016)

5% ionic conductivity of pure electrolyte

Graphite; Jaiser et al. (2017) LCO; Komini Babu et al (2015)
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MI How are electrode-scale properties affected by the inclusion of binder? How does the morphology matter?

10-5
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6 Binder bridge morphology approaches

Level-set methods
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Two level-set morphologies visually bracket the range of stochastic morphologies
Trennbacki (2017), Mistry (2018)



7 I Why does the morphology matter?
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8 I Effective electrode property calculations

Calculate effective transport properties for upscaling
o Particle specific surface area

O Electrical conductivity

o Tortuosity

NMC image data from Kbner (2013)
O 90, 92, 94, 96 wt% NMC (remainder 1:1 CB:PVDF)

O 0, 300, 600 & 2000 bar calendering

O 100Ium x 100 larn x 60 lam domain (20 realizations eac

O Binder bridge (porous) morphology approach
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Effective properties are an important first step for upscaling mesoscale data
3/12/2019 UNCLASSIFIED UNLIMITED RELEASE Trembacki, in preparation



9 I Porous binder and morphology considerations
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Limiting cases of both morphology methods show similar (but not identical) behavior; nanoporosity is important!
3/12/2019 UNCLASSIFIED UNLIMITED RELEASE Trernbacki J ES (2018)



10 I Effective electrode property calculation results —Transport

7
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Bruggeman relationships must be re-calibrated to fit simulated data
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I11 Discrete Element Method (DEM) mesostructure

• fixed
dimension

• periodic
boundary

initial microstructure

porosity: 90%
height: 525 um

• width: 100 um

fixed
dimension

• periodic
boundary

uniaxial compression

• periodic boundary

compression
(drying)

94% AM electrode
• —1k AM particles (10

lurn)
• —1M CBD coarse

grained particles (0.5 1..ina)

final

• expand CBD 2x

• create FEM mesh

compression

(calendering

•

•

•

intermediate 

microstructure

porosity: 50%
height: 100 um

width: 100 um

compressed

microstructure

porosity: 30%

height: 66 um

width: 100 um

Uniaxial compression with granular and Brownian forces enable study of AM consolidation and CBD aggregation
3/12/2019 UNCLASSIFIED UNLIMITED RELEASE



12 1 CDFEM mesh of DEM-generated mesostructures

.
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13 I Comparison of image- and DEM-based mesostructures
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14 Coupled electrochemical-mechanical half-cell discharge simulations

Particle Interface:
• Butler-Volmer reaction

• OCV from Smekens (2015)

Particles:

• Species — Li ti

• Chemica

• Stress pc

• Electrical — O

• Mechanics - F
• Li-induc(

Current collector: I(t)

Separator: V1 = 0

Mathematical formulation builds off of Mendoza (2016) LCO studies

•

Electrolyte:
• Species — Li' transport

• Nernst-Planck fluxes

• Electroneutrality for PF6-
• Current conservation

Conductive binder:

• Species — Porous Li+ transport

• Electrical

• Solid: Porous Ohm's law

• Strain-dependent

electrical conductivity
• Liquid: Ionic conservation

& electroneutrality

• Mechanics — Elastic

Predictions of discharge curves, effects of mechanics, rat- ffects, and spatial variations in performance
3/12/2019 UNCLASSIFIED UNLIMITED RELEASE Ferraro, in preparation



15 Demonstration of NMC half-cell discharge simulation at C/2

e = 0.00

Lix - Lix_mean VM Stress [GPa]
3e-02 4
1e-02 : 3

24,, Oe+00 2
-1e-02 1
-3e-02 0

MI

Current []
10.0
7.5

),.. 5.0
2.5
0.0

IIMI

Overpotential [mV]
100
75
50
25
0

4.8

13-, 4.4

ccl 4 . 1
E

3.8

3.4

-

0 0.5 1 1.5 2
Time Mr]

0.2
0 0.5 1 1.5 2

Time Mr]

oupled electrochemical-meTanical simulation yields detailed insight, predicts electrode-scale response
3/12/2019 UNCLASSIFIED UNLIMITED RELEASE Ferraro, in preparation



16 What can you learn from coupled half-cell simulations?
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17 I Upscaling effective properties for pouch-level modeling

Functional forms as function of porosity integrated into
VIBE/OAS and compared to simulation

10 cell pouch with 80 µm electrodes

Indented with 13 mm diameter spherical indenter

o Modeled mechanics of indentation (porosity change)
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Pouch simulation with effective properties shows similar-scale capacity decrease; demonstrates mesoscale integration
2/27/2018 Allu, in preparation



18 Summary

We have developed a unique image-to-mesh capability to enable rapid analysis of as-manufactured parts

We can augment imaging with physics-based mesostructure generation

We have applied this technique to lithium-ion battery cathode mesostructures and have:
o Created and characterized the impact of conductive binder morphology

o Calculated and correlated effective properties
o Predicted coupled electrochemical-mechanicals effects during charge/discharge

We can upscale mesoscale predictions to impact cell/pouch-level simulations

Publications available upon request

Data
, V. Wood Group — ETH Zurich
, S. Thiele Group — U. Freiburg
, L. Zhu Group — IUPUI

Funding
o Sandia's Laboratory Directed Research and Development (LDRD) program — 2013-2016, 2018-2021
, Computer Aided Engineering for Batteries (CAEBAT) program, DOE/EERE/VTO — 2015-2019

Mesoscale modeling is a powerful tool for predicting electrode behavior under extreme environments
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