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SECURE: Science and Engineering of Cybersecurity b
Uncertainty quantification and Rigorous Experimenta
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The Idea: Follow the principles of Computational
Science and Engineering (CSE)

The Goal: Bring rigor into cyber experimentation

The Challenge: Cyber systems are different than
those In traditfional CSE applications.

UQ Team: Develop and deliver approaches which
allow uncertainty quantification to be performed on
Emulytics efficiently.




What does success look likez

Run experiments to answer “what if” questions at scale with confidence,
characterizing and propagating uncertainties.
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What does success look like? {.:
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STEPS Year 1
ﬁ. Demonstrate that we can sample Emulytics models reproducibly ocross
platforms

o Establish interface to Emulytics models for running ensembles
o Sampling strategies
o Characterization of input distributions

2. Validate a specific Emulytics problem (e.g. a particular network and

\ threat) /

Develop methods that can perform the forward UQ problem
more efficiently

o Sampling of discrete variables, experimental design
o Dimension reduction
o Multi-fidelity approaches

S

4. Demonstrate a full UQ workflow that is generalized over multiple
threats and networks at scale.
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The UQ team is tightly interconnected with
other tfeams

Uncertainty Quantification needs: Emulytics Optimization

Low and High Fidelity Emulytics Models (Cyber
and Cyber physical)

Threat Models and threat representation

ldentification of worst case scenarios to compare
with UQ studies, provide bounding analyses and
baseline scenarios

Uncertainty Quantification provides: Emulytics Optimization

Experimental Design

v
Analysis capabilities (UQ and sensitivity analysis for v v
threat models and for consequence analysis)
v

Assessment of convergence of coarser grained
models

Uncertain scenarios for stochastic adversarial v
programs
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Research Thrust: Propagating Uncertainties {Q:
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e Discreteness and discontinuities

« Dimensionality Reduction
« Multifidelity Modeling
« Optimal Experimental Design

Uncertainty in input variables u

Emulytics
Model

s(u)

Forward UQ: propagate uncertainties on inputs to uncertainty on predictions
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Statistics or
intervals on
output s(u)
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Dakota {.‘
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Toolkit of uncertainty quantification, sensifivity analysis, calibration,
and optimization algorithms

Flexible intferface to simulation codes: one interface; many
methods

Continual advanced algorithm R&D to tackle computational
challenges:

o Treats non-smooth, discontinuous, multi-modal responses

o Focus on methods that are as efficient and accurate as possible
assuming simulations are very costly.

Scalable parallel computing from desktop to HPC

Started under LDRD in 1995, continued investment from NW
Advanced Simulation and Computing program



Emulation Workflow
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Inputs

System Specification

Devices
Configuration
Topology
Connectivity
Physical
Processes

P> DAKOTA|.

Threat Scenario:

Actual malware
Specify threat effect
(e.g., kill RTU1)

Red Team

Emulation Plaiform:
VMs, HITL, Simulation

) T N

Outputs

-

Lots of options...

Packets

Host data
Network data
Physical
Processes




Example of early Dakota studies
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Response Qols

Input
Parameters Number of
responses
Data Rate,
Packet Size handled
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Simple model to examine HTTP traffic
between client and server and
demonstrate multi-fidelity methods
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Parameter study performed
where we take out a single RTU at
a fime by changing the value of
the IP address of the RTU affected
by the CRASH malware




£
. B -
Discreteness and discontinuities ‘.‘
- U ‘ I
- Want efficient ways of sampling large numbers of discrete
variables when we can't enumerate all combinations

> Confinuous relaxation approaches
> Sampling with PCE using polynomials for discrete variables

o Importance Sampling for discrete variables

E(r(x)) = fr(x)%h(x)dx

o o o How do we identify
samplesin alarge
combinatorial space
which are of interest?

Number of cores
o —_ N w 5.9 (6,1 o~ ~N (o] o)

10 100 1000
Server Link Capacity (Mbps)
I
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which design is best?
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Experimental Design

Var 2 Var 3 Var 4 Var 5§ Var é Var 7 Var 8 Var 9 Var 10 Var 11 Var 12 Var 13 Var 14

Var 1

D-optimal

2

Supersaturated

LHS



Experimental Design

« Want to identfify best points at which to sample M
variables, where the number of samples we can afford
may be less than N: N <M

g /
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« Want to handle mixed discrete and contfinuous
variables

« Comparison of D-optimal, supersaturated, and LHS
designs showed that traditional metrics don’'t work.

o For example, the determinant of the information matrix
| (XX) | is singular. The determinant = 0 for all three cases.

* Plan to investigate other measures of dependency
between factors and orthogonality between columns.



Efficiency Improvements for UQ

« Dimension Reduction

o Determine a reduced or compressed
representation of the Emulytic model’s )
iNnputs and/or outputs. %

o Reduced space technigues involve a linear
or nonlinear mapping between the full
space to areduced space of meta
variables. Example: Principal components
analysis (XPCA), active subspace

« Multifidelity approaches

o Take a large number of low fidelity runs and a small number of
high fidelity runs to achieve statistics on high fidelity responses

o Relies on variance reduction: must have correlation between
the low and high fidelity model

o Active work on continuous problems—> translate to discrete

XPCA: eXtending PCA for Combinations of Discrete and Continuous Data, Kincher-Winoto, Kolda, and Anderson-Bergman,
SAND2018-8213C. Also at: arXiv:1808.07510 13
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UQ Support of Validation for Emulytics Models {Q‘

« Validation:
- Fundamental question: “ls this Emulytics model acceptable for
this application?g”
- What level of network aggregation is acceptablee

- Which quantities of interest should be used to make meaningful
comparisonse

- What are the validation metricse

- Compare Qol distributions from Emulytics with Physical System
- Compare Qol sensitivities from Emulytics with Physical System

- For small systems, Emulyfics tools can be validated through direct
comparison with experiments on actual networks.

- As complexity increases, we will verify convergence in the sense
that uncertainties and discrepancies decrease as more data
and fidelity is added to the Emulytics model.
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Publication Plan

Publication Milestone Date

International Conference on Uncertainty 19Q3
Quantification in Computational Sciences and
Engineering

12th USENIX Workshop on Cyber Security 19Q4
Experimentation and Test (CSET)

Multifidelity approaches for network Emulytics 20Q4
models:
SIAM/ASA Journal on Uncertainty Quantification

Experimental Design/Dimension reduction for 21Q4
Emulytics models: Journal of Network and Computer
Applications




Communication Plan

Venue Year

International Conference on Uncertainty 19Q3
Quantification in Computational Sciences and

Engineering

12th USENIX Workshop on Cyber Security 19Q4
Experimentation and Test (CSET)

SIAM Conference on Uncertainty Quantification 20Q2
13th USENIX Workshop on Cyber Security 20Q4
Experimentation and Test (CSET)

SIAM Computational Science and Engineering 21Q2
14th USENIX Workshop on Cyber Security 21Q4
Experimentation and Test (CSET)




Software Plan %.g

Software Package New Science & Technology

Dakota Multi fidelity UQ methods handling discrete
variables and Emulytics models
Dimension Reduction

SECUREtk.ug Experimental Design and Sampling Methods
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Structural / Model Uncertainties

o Structural uncertainties can manifest
either as an ensemble of possible
network structures. We will start with @
fixed network structure but with some
probability about degradation of
various nodes and edges.

- Model form uncertainty: how do we
pose a discrepancy or error
term/function that represents the
difference:

- Between the emulytics model and physical,
observed data

- Between emulytics models A and B

- Between emulytics model A and
mathematical program B (or discrete event
simulation or ...)




