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2 Outline
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Configurations
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Upcoming horizontal dry cask simulator (HDCS) tests
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INTRODUCTION



4 Nuclear Fuel Cycle
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What Are Spent Fuel and Dry Storage Casks?
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, 1 Commercial Spent Nuclear Fuel Inventory in US
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7 How Storage Casks Work
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39-PWR canister

Canister holds spent fuel assemblies
Fuel rods individually sealed (welded)

Canister also sealed (welded or bolted)

Fuel gives off heat from radioactive decay

Stainless steel cylinder with regularly spaced compartments

Backfilled with inert helium
No chemical interaction

Good thermal properties

Passively cooled storage
Decay heat conducted, convected, and thermally radiated to
canister wall

Heat externally removed by natural air flow

Air not in contact with spent fuel

Overpack provides shielding from radioactivity
Typically made from reinforced concrete
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8 Dry Cask Simulator Testing

Sandia Dry Cask Simulator (DCS)

Collect data for model validation
Simplified geometry based on real-world systems

Co-funded by Department of Energy and Nuclear
Regulatory Commission

Office of Nuclear Energy (DOE)

Office of Nuclear Material Safety and Safeguards (NRC)

Wide range of parameters
Decay heat and internal pressures

Different storage configurations (above and below ground)

Currently reconfiguring for horizontal configuration

Better confidence in predictive modeling to
understand fuel behavior



Vertical Dry Cask Simulator Testing



10 1 Overview of Dry Cask Simulator (DCS) Testing

Aboveground Storage
Source: www.nrc.gov/reading-rm/doc-collections/fact-
sheets/storage-spent-fuel-fs.html
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Belowground Storage
Source: ww.holtecinternational.com/productsandservices/
wasteandfuelmanagement/hi-storm/
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Purpose: Validate assumptions in CFD
calculations for spent fuel cask thermal
design analyses

Used to determine steady-state cladding
temperatures in dry casks

Needed to evaluate cladding integrity throughout
storage cycle

Measure temperature profiles for a wide
range of decay power and cask pressures

Simplified geometry with well-controlled boundary
conditions

Provide measure of mass flow rates and
temperatures throughout system

Use existing prototypic BWR Incoloy-clad test
assembly
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11 1 Assembly Hardware

Upper tie plate

Nose piece and
debris catcher

BWR channel, water tubes
and spacers

Most common 9x9 BWR in US

Prototypic 9x9 BWR hardware
Full length, prototypic 9x9 BWR components
Electric heater rods with lncoloy cladding
74 fuel rods

8 of these are partial length

Partial length rods 2/3 the length of assembly

2 water rods

7 spacers

BWR fuel

assembly Basket

Canister



1, Vertical Dry Cask Simulator Configurations

Aboveground Configuration

Air inlets at bottom

Air outlets at top

Belowground Configuration
Modification to aboveground
configuration

0 Additional annular flow path
0 Inlet near top of assembly

Cross-Wind Configuration
Study impact of sustained cross-
winds on belowground systems

Custom wind machine installed
in-vessel



13 Internal Dimensional Analyses
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Internal flow and convection nearly prototypic
Prototypic geometry for fuel and basket

Downcomer scaling insensitive to wide range of
decay heats

External cooling flows matched using elevated decay
heat
a Known scaling distortion
• Higher surface-area-to-volume ratio than prototypic

Downcomer dimensionless groups

"Canister"

Downcomer

Parameter

Aboveground

DCS

Low Power

DCS

High Power
Cask

Power (kW) 0.5 5.0 36.9

Repown 170 190 250

RaH* 3.1E+11 5.9E+11 4.6E+11

NuH 200 230 200



14 1 External Dimensional Analyses
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External cooling flows evaluated
against prototypic

External dimensionless groups

Parameter

Aboveground

DCS

Low Power

DCS

High Power
Cask

Power (kW) 0.5 5.0 36.9

ReEX 3,700 7,100 5,700

RaDH* 2.7E+08 2.7E+09 2.3E+08

(DH, Cooling / HPV) x RaDH* 1.1E+07 1.1E+08 4.8E+06

NUDH 16 26 14



15 1 Aboveground Steady State Values
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16 CFD Modeling Based on Best Practices

Best practice guidelines for dry cask applications
NUREG-2152

Computational fluid dynamics (CFD) modeling
' Pressure based solver
0 2nd order upwind discretization for all conservation equations
0 Discrete Ordinates (DO) for radiation heat transfer

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)
Link for momentum and continuity equations

Full buoyancy effect in momentum
No Boussinesq approximation

3-D mesh with symmetric mid-plane
Fuel represented as porous media

Effective conductivities (combines conduction and radiation)

Effective friction factor (homogenizes bundle, spacers, and tie plates)

Good summary of porous media in NUREG-2208

Internal laminar flow

External turbulent (Low-Re k-E) Air Flow
Low-Re k-E

Fuel
Porous Media

He Flow
Laminar



17 Aboveground Fuel Comparisons (5 kW, 800 Oa)
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18 I Aboveground Apparatus Components (5 kW, 800 kPa)
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19 Aboveground External Air Mass Flow Rate

Conditions

Model
1 2 3

Power

(kW)

Pressure

(Oa)

(1111Model mExp.) / mExp.

(-)
0.5 100 0.012 -0.187 -0.023

0.5 800 -0.156 0.138 -0.010

5 100 -0.019 -0.068 0.005

5 800 -0.054 -0.042 -0.026

Maximum experimental uncertainty UArii / illExp. = ±0.08

Root mean square (RMS) across all values is 0.086
For 0.5 kW only, RMS = 0.115

For 5.0 kW only, RMS = 0.042



20 Belowground Steady State Values
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21 1 Cross-Wind Testing
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Wind machine installed inside test enclosure
Three air-driven blowers

Specially fabricated duct with flow straightening

Cross winds of up to 5.4 m/s (12 mph)
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Horizontal Dry Casl< Simulator Testing



24 Overview of Horizontal Dry Cask Simulator (HDCS) Testing

Concrete
vault enclosure

OD = 1.70 m

Heat shields
Insulation

Canister

Basket

Assembly

ault ID =
2.032 m

NUHOMS HSM Model 80
with 61BT canister

BR = 0.84

Inlet
vent

.7
Sheet metal

-y,ault enclosure

OD = TL
0.2713 m

Vault ID 1-
0.325 r• 

HDCS
BR = 0.84

Repeat testing for horizontal
storage configuration
Wide range of test parameters

Decay heats, gas backfills, and internal
pressures

Collect validation data
Temperatures and air flow rates

Depictions of horizontal storage modules

Source: http://us.areva.com/home/liblocal/docs/Catalog/AREVA-
TN/ANP U 299 V5 17 ENG NUHOMS HSM.pdf



25 Assembly Modifications
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Channel box

 Basket cell

Canister

Fuel assembly
set screw

Basket stabilizer

Aluminum bridge plate

DCS presently deconstructed

Convert to horizontal
0 Outer shell and inner shells removed

Pressure vessel opened

Basket removed

Maintain concentricity and enhance
heat conduction

Add stabilizers
Between channel box and basket

Between basket and canister wall
Full length to limit convective cells

Keep from damaging existing TC's

Reassemble and move



26 Facility Transition

After performing in-vessel modifications

Move H DCS from inside vessel to the 3rd floor

GENTLY rotate assembly to horizontal
configuration

Construct "vault" enclosure
Inlet and outlets

Install additional instrumentation

Reconnect to DAQ
Power control

Instrumentation

Conduct testing



„ Dimensional Analyses

Internal scaling within fuel maintained by
matching prototypic geometry
Known scaling distortions

Power: Higher surface-area-to-volume

Internal heat transfer: Reduced conductivity between structures I

External dimensionless groups may appear
dissimilar at first inspection, but...

Reynolds: Irregular regime for 270 < ReD < 5,000

Modified Rayleigh: 3-D wake separation (turbulence) for
RaD* > 3.5x109

Parameter

Horizontal

HDCS

Low Power

HDCS

High Power
Cask

Power (kW) 0.5 5.0 24

ReD 280 730 2,000

RaD 1.3E+09 1.3E+10 1.4E+13

NuDH 30 50 170

1



28 Summary

Vertical testing of the dry cask simulator (DCS) complete for all configurations
Over 40 unique data sets collected

14 each for two primary configurations

Aboveground and belowground

13 additional data sets for cross-wind testing

Test results documented in NUREG/CR-7250

Model validation efforts are ongoing

NRC modeling and uncertainty quantification will be reported in NUREG (Late 2019)

Additional comparisons (NRC, PNNL, CIEMAT, and ENUSA) to be published as SAND report (May 2019)

Horizontal dry cask simulator (HDCS) under construction
Testing planned to start by mid-March 2019

28 tests scheduled
3 gas backfills (Helium, air, argon)

4 different decay heats (0.5, 1.0, 2.5, 5.0 kW)

3 pressures (100, 200, 800 kPa)


