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, | Outline

* Introduction to the back end of the nuclear fuel cycle
> What are dry storage casks?
> How do they work?

* Vertical dry cask simulator (DCS) tests

° OQverview
= Hardware
= Configurations
= Dimensional Analyses

> Aboveground
> Belowground
> Cross-wind

* Upcoming horizontal dry cask simulator (HDCS) tests
o Qverview
> Hardware and facility modifications
> Dimensional analyses

* Summary



INTRODUCTION




’ | Nuclear Fuel Cycle
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* Reprocessing of spent nuclear fuel including MOX i= not practiced in the US.
Mote: The NRC has no regulatory rale in méning uranium.

Focus of this
presentation




s | What Are Spent Fuel and Dry Storage Casks!?
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Commercial Spent Nuclear Fuel Inventory in US

140000
120000
~ 100000
-
e
I L R e e
Z‘ S T = ——-I_---——-——-——"——-——-—————————-
S 60000 : A 1 Yucca Mtn. limit
S = by current NWPA
f—] 1 , -
= 40000 :
20000 T
O |
1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060
Year
Total Inventory Pool Inventory - Dry Storage Inventory

Data from J. Carter, D. Vinson, and J. Wilson, Commercial Spent Nuclear Fuel and High-Level Radioactive Waste Inventory Report
(U.S. DOE Office of Spent Fuel and Waste Management FCRD-NFST-2013-000263 Rev. 4 SRNL-STI-2016-00360, 2016) 176 p.



, | How Storage Casks Work

* Canister holds spent fuel assemblies
Hot Air > Fuel rods individually sealed (welded)
Canister also sealed (welded or bolted)
Fuel gives off heat from radioactive decay
Stainless steel cylinder with regularly spaced compartments

@
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Backfilled with inert helium

= No chemical interaction

Decay
= Good thermal properties
Heat
* Passively cooled storage
Overpack > Decay heat conducted, convected, and thermally radiated to
canister wall

~ o= (Cool Air In > Heat externally removed by natural air flow
| > Air not in contact with spent fuel

* Overpack provides shielding from radioactivity
TV Cross-section of > Typically made from reinforced concrete

Section A-A S [ [ 39-PWR canister




s | Dry Cask Simulator Testing

* Sandia Dry Cask Simulator (DCS)

> Collect data for model validation
= Simplified geometry based on real-world systems

o Co-funded by Department of Energy and Nuclear

Regulatory Commission

= Office of Nuclear Energy (DOE)
= Office of Nuclear Material Safety and Safeguards (NRC)

> Wide range of parameters
= Decay heat and internal pressures L
= Different storage configurations (above and below ground) WA
= Currently reconfiguring for horizontal configuration b

> Better confidence in predictive modeling to
understand fuel behavior




Vertical Dry Cask Simulator Testing




o | Overview of Dry Cask Simulator (DCS) Testing

700 . . .
650 * Purpose: Validate assumptions in CFD
+ ] 660 calculations for spent fuel cask thermal
4 - design analyses
35 600 > Used to determine steady-state cladding
580 temperatures in dry casks
3 zjg > Needed to evaluate cladding integrity throughout
25 - storage cycle
E =
= 500 = . .
vl LO s ° Measure temperature profiles for a wide

=

| 60 range of decay power and cask pressures

jzg > Simplified geometry with well-controlled boundary

- conditions

Aboveground Storage

Source: www.nrc.gov/reading-rm/doc-collections/fact-
sheets/storage-spent-fuel-fs.html 1
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J' 380 o Provide measure of mass flow rates and

360 temperatures throughout system
340
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* Use existing prototypic BWR Incoloy-clad test

: 0 0.15 .3 0.45 assembly
ol » (m)
Belowground Storage DCS Temp. Contours

Source: ww.holtecinternational.com/productsandservices/

wasteandfuelmanagement/hi-storm/ (Test Data for 5 kW, 1 bar)



+ | Assembly Hardware

Uppertieplate . ° Most common 9x9 BWR in US

Prototypic 9x9 BWR hardware

> Full length, prototypic 9x9 BWR components
> Electric heater rods with Incoloy cladding

o 74 fuel rods

= 8 of these are partial length
= Partial length rods 2/3 the length of assembly

2 water rods

* 7 spacers

BWR fuel
assembly

Nose piece and BWR channel, water tubes
debris catcher and spacers




12 | Vertical Dry Cask Simulator Configurations
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» Aboveground Configuration * Belowground Configuration * Cross-Wind Configuration

B A inlets at battom ° Modification to aboveground > Study impact of sustained cross-

. configuration winds on belowground systems
 RIF LS &t Top > Additional annular flow path o Custom wind machine installed

° Inlet near top of assembly in-vessel



s | Internal Dimensional Analyses

* Internal flow and convection nearly prototypic
> Prototypic geometry for fuel and basket

* Downcomer scaling insensitive to wide range of
decay heats

0 External cooling flows matched using elevated decay
eat

0000 000 . : .
000 YY) = Known scaling distortion

000 (XX X ) = Higher surface-area-to-volume ratio than prototypic

0000006000 o > Downcomer dimensionless groups
000000000 ‘

0000000060 4 Aboveground
D 4 DCS DCS
: Cask
Parameter | Low Power | High Power

Channel " “Canister” Power (kW) 0.5 5.0 36.9
Box Repoun 170 190 250
“Basket” Downcomer R 3.1E+11|  5.9E+11|  4.6E+11
Nu,, 200 230 200




« | External Dimensional Analyses

External
cooling
flow path

QO0000000)

* External cooling flows evaluated

against prototypic

> External dimensionless groups

Aboveground
DCS DCS
Parameter Low Power | High Power Cask
Power (kW) 0.5 5.0 36.9
Reg, 3,700 7,100 5,700
Rap,” 2.7E+08 2.7E+09| 2.3E+08
(Dyi cooling/ Hpv) X Rapy” 1.1E+07 1.1E+08| 4.8E+06
Nup, 16 26 14




i | Aboveground Steady State Values
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16 | CFD Modeling Based on Best Practices

Best practice guidelines for dry cask applications
° NUREG-2152

Computational fluid dynamics (CFD) modeling

> Pressure based solver

> 2nd order upwind discretization for all conservation equations
> Discrete Ordinates (DO) for radiation heat transfer

> Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)

= Link for momentum and continuity equations

Fuel
Porous Media

Full buoyancy effect in momentum
> No Boussinesq approximation

3-D mesh with symmetric mid-plane

> Fuel represented as porous media
= Effective conductivities (combines conduction and radiation)
= Effective friction factor (homogenizes bundle, spacers, and tie plates)
= Good summary of porous media in NUREG-2208

Internal laminar flow

External turbulent (Low-Re k-€) Air Elow

Low-Re k-g

He Flow
Laminar



- | Aboveground Fuel Comparisons (5 kVV, 800 kPa)
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Axial Level (m)

18 | Aboveground Apparatus Components
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Aboveground External Air Mass Flow Rate

Model
Conditions ! 3 3
Power | Pressure (Myogel = Mexp.) / Mgy,
(kW) | (kPa) ()
0.5 100 0.012 | -0.187 | -0.023
0.5 3800 -0.156 0.138 | -0.010
5 100 -0.019 | -0.068 0.005
5 3800 -0.054 | -0.042 | -0.026

* Maximum experimental uncertainty U, / mg,,

* Root mean square (RMS) across all values is 0.086
° For 0.5 kW only, RMS =0.115
° For 5.0 kW only, RMS = 0.042

=+0.08
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20 | Belowground Steady State Values
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* Similar performance to
aboveground configuration

.



. | Cross-Wind Testing
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* Wind machine installed inside test enclosure
> Three air-driven blowers
o Specially fabricated duct with flow straightening

> Cross winds of up to 5.4 m/s (12 mph)
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, | Reduction of External Air Flow Rate

Cross-Wind (mph)
0O 15 3 45 6 75 9 105 12

L1 pve? * Belowground configuration
1 . .

0 Pressure (k0s) * Moderate, sustained cross winds have
< 03 o 450 significant impact on external air mass
N B flow rate

w > Reductions of up to 50%

0.5 > Thermal impact limited for DCS

0.4 > Potentially more significant effect for

LT 200 kPa prototypic systems

1“ Power (kW)

0.9 —=— 5.0
£ 08 Ifg Cross Cooling
= Wind  Air (m)

& U ) |
0.6 >
0.5 —
>
0.4 >
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Cross-Wind (m/s) I
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Horizontal Dry Cask Simulator Testing



|

Heatshields Shest metal * Repeat testing for horizontal
_Outlet—___ _\Q/— vaultenclosure  storage configuration

vent > Wide range of test parameters
Canister —_ .D = Decay heats, gas backfills, and internal

( | \& pressures :

Basket = | | ° Collect validation data l

Assembly/‘OD = Al = Temperatures and air flow rates
0.3

7 vent R FTET
NUHOMS HSM Model 80 HDCS
with 61BT canister BR=0.84
BR =0.84

Source: http://us.areva.com/home/liblocal/docs/Catalog /AREVA-
TN/ANP U 299 V5 17 ENG NUHOMS HSM.pdf

) = 1.708 0.273 r
/ault ID : | , VaultID= ! Depictions of horizontal storage modules




s | Assembly Modifications
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DCS presently deconstructed

Convert to horizontal

o Quter shell and inner shells removed
> Pressure vessel opened

> Basket removed

Maintain concentricity and enhance
heat conduction
o Add stabilizers
= Between channel box and basket
= Between basket and canister wall
= Full length to limit convective cells
o Keep from damaging existing TC’s

Reassemble and move



» | Facility Transition

»— CYBL
Vessel

* After performing in-vessel modifications
* Move HDCS from inside vessel to the 3™ floor

* GENTLY rotate assembly to horizontal
configuration

* Construct “vault” enclosure
° |Inlet and outlets

* Install additional instrumentation

* Reconnect to DAQ
o Power control
° |nstrumentation

* Conduct testing




» | Dimensional Analyses

* Internal scaling within fuel maintained by
matching prototypic geometry
> Known scaling distortions

= Power: Higher surface-area-to-volume
= Internal heat transfer: Reduced conductivity between structures

* External dimensionless groups may appear
dissimilar at first inspection, but...
> Reynolds: Irregular regime for 270 < Re, < 5,000

> Modified Rayleigh: 3-D wake separation (turbulence) for
Ra,” > 3.5x10°

Horizontal
HDCS HDCS Cask
Parameter Low Power High Power
Power (kW) 0.5 5.0 24
Re, 280 730 2,000
Ray® 1.3E+09 1.3E+10| 1.4E+13
Nu,, 30 50 170




s | Summary

* Vertical testing of the dry cask simulator (DCS) complete for all configurations

> Over 40 unique data sets collected
= 14 each for two primary configurations
- Aboveground and belowground
= 13 additional data sets for cross-wind testing
= Test results documented in NUREG/CR-7250
> Model validation efforts are ongoing

= NRC modeling and uncertainty quantification will be reported in NUREG (Late 2019)
= Additional comparisons (NRC, PNNL, CIEMAT, and ENUSA) to be published as SAND report (May 2019)

* Horizontal dry cask simulator (HDCS) under construction
> Testing planned to start by mid-March 2019
o 28 tests scheduled
= 3 gas backfills (Helium, air, argon)
= 4 different decay heats (0.5, 1.0, 2.5, 5.0 kW)
= 3 pressures (100, 200, 800 kPa)



