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ENERGY Project Overview

• Sandia National Laboratories Team

— Applied Systems Analysis and Research: Kris Kuhlman

— Geomechanics: Scott Broome, PI; Joshua Feldman; Jason Heath

— Geochemistry: Matthew Paul
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• Laboratory studies were conducted on representative core samples in the
vicinity of the Barnwell and P-Tunnel sites to characterize mechanical,
momentum, and mass transport properties.

— The mechanical properties Barnwell core samples have been performed.

— The mechanical properties of P-Tunnel core are in progress.

— Momentum and mass transport properties of the core have been performed.
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ENERGY Project Deliverables

• Core Data Sets

— SAND2019-0786 Diffusive Properties of UNESE Core Samples via
Continuously Monitored Mass Spectroscopy

— FY17 Interim Report, DOE/NV/25946 3411, Appendices 5 and 12.
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• Technical Advance

— Diffusivity Measurements via Continuously Monitored Mass Spectrometry
(#14899)
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U.S. DEPARTMENT OF

ENERGY Dispersion in Barometric Pumping

Nilson et al. (1991) provided a conceptual model for how tracer
gases may reach the surface despite large depths.

1. The barometer drops. Subsurface gases are drawn towards
the surface, predominately through fractures.

2. While the subsurface pressure approaches equilibrium,
tracers diffuse from the fractures into the matrix.

3. The barometer rises. Fresh atmospheric gases are pressed
into the fractures, but little is pressed into the matrix.

4. While the subsurface pressure approaches equilibrium,
tracers diffuses from the matrix back into the fractures.

5. The cycle is repeated, ratcheting the subsurface tracer front
towards the surface.

Efficiency depends upon:

• Frequency and magnitude of surface oscillations

• Fracture permeability, aperture, and spacing

• Tracer diffusivity and matrix capacity
Nilson, R.N. et al. 1991. "Atmospheric pumping: A mechanism causing vertical transport of
contaminated gases through fractured permeable media". J Geophy. Res. 96: 21933-48
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Fig. 11. Schematic of fresh air invading a fractured permeable medium
during an increase in barometric pressure. invasion depth d is
accommodated by a slight compression of gas within rnatrix blocks,
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U.S. DEPARTMENT OF

ENERGY Taylor-Aris Dispersion

Fundamentals of longitudinal dispersion

• Viscous shearing results in a parabolic velocity profile

• Lateral diffusivity blunts the contaminant front r

• Asymptotic behavior is Gaussian as per CLT

Taylor-Aris dispersion is additive with but inversely
proportional to molecular diffusivity.

Similar behavior at low frequency pulsatile flow:

• The peak centroid position oscillates, however

• The contaminant front broadens with each cycle

Similar mechanism for dual-porosity system:

• Fracture/matrix permeability results in greater shearing

• Matrix diffusivity dominates lateral transport

Taylor, G. I. 1953. "Dispersion of soluble matter in solvent flowing slowly through a tube." Proc. R. Soc.
Lond. A 219: 186-203.
Bhaumik, S.K., Kannan, A., and A. DasGupta 2015. "Taylor-Aris dispersion induced by axial variation in
velocity profile in patterned microchannels." Chem. Eng. Sci. 96: 251-9.
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U.S. DEPARTMENT OF

ENERGY Gas Diffusion in Porous Media

In all pores, the solid phase is an obstruction:

• Areal porosity (0)

— Bedded material may have anisotropy

• Gas phase saturation (SO

— Fraction and connectivity of the gas-filled pores

• Tortuosity (t)

— Advective flow distribution (ft)

— Frequency of perturbation (w)

In practice, the effective diffusivity, Zi, is the pore
diffusivity, Di, times the obstruction factor, Q:

Zi = Di • Q (0, Sfl, T(ft, co))
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Pot, Valerie and P. Baveye 2017. "Research on unsaturated porous media." Cornell.
http://grainflowresearch.mae.cornell.edu/UnsaturatedPorousMedia/UnsaturatedPoro
usMedia.html (accessed January 22, 2019)
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ENERGY Gas Diffusion in a Pore

Gas diffusion is the result of intermolecular collisions:

• Gas-gas collisions are unaffected by pore walls:
— Elastic collisions (Maxwell-Stefan diffusion)

• Gas-solid collisions can be:

— Rebound diffusively (Knudsen diffusion)

— Surface capture (adsorption + surface diffusion)

• The Dusty-Gas Model includes these interactions:

N —
li  lyjJi 

= + +nDiK nDis  nDij
j#1

• For dilute tracers, the flux is approximately Fickian:

Ji —DiVci

N
1 1 1 Yj— = + —+
Di DiK Dis

j#1 DLJ
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Shindo, Y., T. Hakuta T., H. Yoshitome, and H. Inoue 1983. "Gas
diffusion in microporous media in Knudsen's regime." J. Chem.
Eng. Japan 16:120-6
Mason, E.A. and A.P. Malinauskas 1983. Gas Transport in Porous
Media: The Dusty-Gas Model. New York: Elsevier.
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ENERGY Experimental Methods

• Historical options include:

— Closed Tube (Loschmidt 1870)

— Evaporation Tube (Stefan 1873)

— Diffusion Bridge

• Non-isobaric (Graham 1833)

• Isobaric (Wicke-Kallenbach 1941)

— Two-bulb (Ney-Armistead 1947)

• Technical challenges:

— Must accommodate porous media

— Noble gases require mass spectrometry

— Open systems may result in sample dry-out

Marrero, T.R. and E.A. Mason 1972. "Gaseous diffusion coefficients." J. Phys. Chem. Ref. 1:3-118.1
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FIG. 2. Graph of logior° C28)-as a, function of the time.
The slope of the Ieast squares solution, together with the
geometrical constants gives the diffusion coefficient.

Ney, E. P. and Armistead, F. C. 1947. "The self-diffusion coefficient of
uranium hexafluoride." Phys. Rev. 71:14-9.
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• Ney and Armistead measured the self-diffusion
coefficient of 235 U F6 in 238 U F6 for the Manhattan
project using mass spectrometry.

• The method consists of two gas chambers
connected by a restrictive capillary. The small
cross sectional area versus chamber volume
slows the diffusion rate to be measurable.

• Using known and closed volumes, only one
chamber must be monitored.

c(t) = c(oo) — (c(0) — c(00))e-Yt

A (1 + 1_1), )

L171 V2)
Y =
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ENERGY through Porous Media

When adapted for porous media:

• Accumulation dominants at early times

- Only the asymptotic data is used

• The equilibrium fraction is unknown

— Both chambers are sampled to interpolate

• Sampling is either

— Labor intensive with microsyringes

— Challenging automation of microfluidics
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Byers, M.F. et al. 2018. "Evaluation of carbon tetrafluoride as a xenon surrogate for
underground gas transport." J. Radioanal. Nucl. Chem. 318:465-70.
Paul, M.J. et al. 2018. "Adsorptive transport of noble gas tracers in porous media." lnt. J. Mod.
Phys.: Conf. Ser. 48:1860124-34.
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ENERGY with Continuous Mass Spectrom

A new approach was necessary to reduce labor
and improve reliability

Relaxing the strict closed system requirement:

• Continuous sampling is supported

— 1 per second versus 4 per hour

• Microfluidic design is simplified

— No active components

— No microsyringe operations

• A new analytical solution is necessary

— Sampling rate is low but not insignificant

— Diffusivity is approximated as being constant
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Ney-Armistead Method

ENERGY with Continuous Mass Spectromet
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• Flow to the mass spectrometer is
limited by Knudsen flow:

P
= c

RT

• Flow across porous media sample is
in quasi-steady state:

14; Ve

19 17.2 + Vu

• At constant temperature, the system
pressure decays exponentially:

ccc 
P(t) = P(0)e v1-Ev2- = P(0)e—kctt

Paul, M.J. and S. T. Broome 2019. Diffusive Properties of UNESE Core Samples via
Continuously Monitored Mass Spectroscopy. SAND2019-0786.
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ENERGY with Continuous Mass S ectromet
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• Tracer-species flux across the sample:

Advection Diffusion
P A P

yiAip = kctVe ji = 
Zi T, yi/a)RT 

• Solving for the mole fraction:

A 1
--

[yi,f(t)1 [11 L Ve e—ki,At
yi,,t(t) Yi'" [1] Yi'A Ve A 1

k — + — —
Vu, I L

Ve A 1 1
= 17,4"

+Zi
Paul, M.J. and S. T. Broome 2019. Diffusive Properties of UNESE Core Samples via
Continuously Monitored Mass Spectroscopy. SAND2019-0786.
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• Slow pressure decay — rapid concentration decay

• Curvature proportional to diffusivity
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• Larger pressure decay — slower concentration decay

• Less curvature results in greater uncertainty
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• Electronic noise evident
— Random fluctuations mitigated by large data set
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• Pressure decay comparable to concentration decay

• Little to no curvature
— Inversion of 40Ar and SF6 suggest Taylor-Aris dispersion
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ENERGY Compiled UNESE Core Results

Testing species independent
obstruction factor
hypothesis:

Ve

1 ki4 11.4 Vu
Qi = DiN2 A ( 1 _L 1

L )

• Q(Ar) = Q(Xe) = Q(SF6)
Obstruction factor is
independent

• Q(Ar) < Q(Xe) < Q(SF6)
Deviation consistent with
Taylor dispersion

• Uncertainty is higher in
tighter media, obscuring
any surface effects
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ENERGY Conclusions

• The obstruction factor dominates in the lithologies considered here

• At the low end, some deviations have been observed, however:

• There is considerably more numerical uncertainty at the low end,

• Taylor dispersion may be occurring in microfractures, and/or

• Surface diffusion may be occurring in micropores.
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• The capability developed here is:

• Applicable to a broad range of gases and vapors, including stable isotopes

• Suitable for partially saturated media

Office qf Defense Nuclear NonprOferation R&D



U.S. DEPARTMENT OF

ENERGY Technical Challenges and Future Work

Technical Challenges:

• Very tight media have extended runtimes that may not be practical
— There is a limit where the matrix diffusivity becomes insignificant to radionuclide transport

• The steady-state diffusivity may not be identical to the transient diffusive flux

— E.g. cul-de sac contribute to oscillatory flow not to steady-state transport

Future Work/Deliverables:

• Acquire Hg-intrusion porosimetry data to estimate

— Capillary pressure curve

— Estimate relative permeability and validate models on relevant lithologies

— Correlate pore size distribution to diffusivity

• Iterate on the continuous mass spectrometry design to:

— Modify system geometry shorten sample runtime

— Reduce Taylor dispersion effects

— Compare isotope specific diffusivities
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