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Two types of Machine Learning research at Sandia

Applied ML Research

o Collaborate with other engineers
= Mechanical Engineering

= Chemical Engineering
o Understand their problem space
o Apply latest machine learning research from academia and industry
“Pure” ML Research:
o Develop novel ML algorithms
o Understand theoretical foundations
o Improve U.S. capability in ML




The progress of science and technology...

15t Paradigm — Empirical science [1000’s of years ago]
o Experimentation and observation

2"d paradigm — Theoretical science [100’s of years ago]
o Laws and equations

3rd paradigm — Computational science [10’s of years ago]
o Numerical implementation of laws and equations

4th paradigm — Big data driven science [today]
o Real-time assessments based on machine learning of paradigms 1-3
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Deep Learning is an evolution of Artificial Neural Networks

1940s-60s — Cybernetics
o 1943 — Math model of a neuron
o 1958 — Perceptron learning
1980s-90s — Connectionism
o 1986 — Backpropagation learning
o 1989 — Convolutional Neural Networks
Limitations
o Networks are too hard to train
o Not enough computing power
o Not enough memory for large datasets
o Exploding/vanishing gradients
2006 — Deep learning
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Why Machine Learning!?

Some problems are difficult to solve with a directly-coded algorithm
o Do not generalize well
o Write rules-based programs for each specific task
Machine learning (ML) is good at:
o Recognizing patterns
o Anomaly detection Volatilty of virtual curencies. Source: CryptoCompare

o Prediction




https://phys.org/news/2013-10-scale.html

Modeling an imperfect world

DIGITALTWINS



9 I Introducing Digital Twins

* Today, we lot test and make a statistical argument.
* With a Computed Tomography (CT) machine, we can scan:
o After manufacture of a part
o After each step of assembly
o After every transport (field or vehicle)
o In different environmental conditions
o During motion to determine robustness (CT movie)

* Improves many processes

o Quality assurance of existing parts

@) CICVCI usce Of kIlOWIl faulty pal‘tS https://www.leithcars.com/2017-ford-mustang-raleigh.html

o Better engineering with additional data




o | Simulations using digital twins are predictive

O

Each component is manually labeled

O

High fidelity simulations predict performance of specific units

Unit #50

CT Scanning Segmentation and Defect Simulation of Individual
Process Identification

Performance




11 | CT Segmentation is hard for humans

CT scans must be labeled by component for simulations

https://en.wikipedia.org/wiki/

mage_segmentation

Labeling by hand does not scale

Deep learning algorithms
o Find each component of the shared charge by material
o Find any defects

o Prepare for numerical simulations



Using ML to save time and effort while improving accuracy

CT SEGMENTATION
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s | Segmentation is a classic computer vision problem

Image segmentation is well studied
o Small files
o Large training sets

Volumetric segmentation is different
o Big data
o Class imbalance (lots of background)
o Small training sets with “bad” human labels
o Humans can’t label billions of voxels

Medical researchers are leading this work toward deep learning solutions

https://www.cityscapes-dataset.com/

Cityscape
(~1e5 pixels)

Rattlesnake Tail
(~1e9 voxels)



1 | Mitigating Challenges

CT scans are large
o Used chunks of the volume

o Optimized our model for GPU memory
usage on GPU cluster

Class Imbalance
o Adjusted loss function that guides training
Artifacts and noise

o Selected Convolutional Neural Network
(CNN) architecture with strength in shape
recognition




15 | Deep learning is big data and large networks

“Deep learning is the first class of algorithms that is scalable... performance
just keeps getting better as you feed them more data”

Andrew Ng, Founder of Google Brain

U-net, a big advance in biomedical
segmentation
Olaf Ronneberger, Philipp Fischer, Thomas Brox , “U-Net:

Convolutional Networks for Biomedical Image Segmentation”, in
Medical Image Computing and Computer-Assisted Intervention
(MICCALI), Springer, LNCS, Vol.9351: 234--241, 2015

V-net follows as a natural extension
E Milletari, N. Navab, and S. A. Ahmadi, “V-net: Fully

convolutional neural networks for volumetric medical image
segmentation,” in 2016 Fourth International Conference on 3D

Vision (3DV), Oct 2016, pp.565-571

V-Net architecture for segmenting volumetric data (2016)

We started with a V-Net and made improvements as necessary
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: | Deep learning model is robust to other domains

Sllce of 3D Image Human Iabel
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Volumetric battery segmentation achieves high accuracy
compared to human labels

Sllce of 3D Image | Human label ML prediction
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Averaged 99.7% accuracy over held out test set




http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_3d801aa532c1ce.html

Using dropout to estimate segmentation confidence

UNCERTAINTY QUANTIFICATION

e
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» | Softmax uncertainty as a baseline

99




21 | Standard neural network models do not provide error bars

Softmax output is not always enough to determine model uncertainty
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We can use dropout at inference time to approximate uncertainty

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning." international conference on machine
learning. 2016.
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Credible uncertainty in ML

A model trained on pandas
should not classify gibbons with
certainty

We can approximate uncertainty
with small modifications to deep

learning model

o G@Gal, Yarin, and Zoubin Ghahramani.
"Dropout as a Bayesian approximation:
Representing model uncertainty in deep
learning." international conference on
machine learning. 2016.

o Dropout during inference
o Sampling inference

can be obtained

Uncertainty map
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Understanding explosive fragment flight

FRAGMENT CHARACTERIZATION
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https://www.nytimes.com/2018/04/17/us/southwest-airlines-explosion.htmi

Case Study: Southwest Airlines Engine Explosion

Southwest flight 1380, April 17t, 2018

o Engine failure after takeoff from New York
LaGuardia

o Metal fragments from explosion punctured
fuselage

o 1 fatality, several injuries

How can we understand fragment flight to
prevent future safety incidents?

Trailing
edge

et et
P B o
| Convex side I

I Origin area I

https://en.wikipedia.org/wiki/Southwest_Airlines_Flight 1380

Containment Shield

Lower Aft corner of the
* inboard fan cow




s | Problem Statement

Multi-camera stereo system with synchronized
videos

Fragments from experiment fly across field-of-view

Using machine learning & computer vision
technigues, can we answer:

o How do fragments form?

o Where are the fragments located in 3d space?
o What are their velocities?

o What are their masses?

Stereo camera
system

http://www.1vision.co.il/Stereo-3D

Fragment experiment



26 I Simulated experiments

Simulate an experimental setup with
a stereo camera system

o Verifiable against known ground
truth

o Avoid confusers and noisy data

Allow any positioning of cameras,
informing experiment design

Can quickly and cheaply simulate a
ton of experiments

Bird’s eye view of simulation
environment



27 | Fragment characterization method

*  Simulate fragment experiments
* Use deep learning to segment fragment locations
= Track fragments
= Stereo matching between fragments
“ Characterize each fragment
o Positions
o Velocity

o 3D reconstruction

Simulated experiment




» | Generative Adversarial Networks: a game theoretic
approach to machine learning

Generative Adversarial Networks (GANSs) pit two competing neural networks against each other

o The generator, tries to mimic real results

o The discriminator, tries to identify mimicked results from real results

Training set

Condition




29 | Pix2Pix and Generative Adversarial Networks

Pix2pix model
o Condition is an image instead of a label
= E.g. color segmentation of a scene
o GAN has to learn how to fill in segmentations convincingly

o Training goal is to fool the discriminator

Input labels

Wang, et. Al. “High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANS”.

Synthesized i

CVPR 2018

mage
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30 I Algorithmic tracking

* ldea: frame the tracking problem as a graph
optimization problem

o Nodes are detection locations for all frames
from pix2pix

o Edges are all possible tracks from fragments
in one frame to fragments in next frame

= 3-way matching algorithm
o Given edges between 3 successive frames

o Find the edges that make physical sense:
= Approximately constant velocity
* Fragment shapes are similar

Fragment correlation




31 I Tracking

= CSRT algorithm:

o User specifies first bounding box (or
automatic segmentation algorithm)

o Algorithm learns a filter from atfine
transformations of the image patch

o Filter correlated with next frame, max
response is the detected location

* Future research: improve tracking by
incorporating 3-way matching

CSRT algorithm applied to simulated video




= | Given fragment geometries, can we predict flight?

Estimate a physics calculation incredibly quickly using machine learning (GPUs)

Exascale and future platforms double as training data generation of previously
unseen physics

Pressure Temperature Velocity (x) Velocity (y) Density
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1 | Conditional GAN mimics flow field solutions

Does well qualitatively, not

Simulation Vanilla GAN Physics loss + GAN

so well quantitatively
Adding physics to loss:

O More accurately
represents shockwave

o Better around the edges
of the object
Types of physics +
qualitative loss combination
remain to be studied




Quantities of interest are close L

Quantities of interest (Added to loss function):

o Drag
o Lift
o Torque
Exciting but preliminary _
o Experiment involves only rectangles m 1.87%
o Results for 2D only. 3D in progress. _ 5.63%
o Fixed at Mach 5 _ 2.29%

Time speed up
o 2 min 30 s (HPC codes) -> ~250 ms (ML)

o >100x faster




s | Full 3D is showing the same early promise as 2D

“  Preliminary results

“ Have not enabled physics
loss or force loss yet

Not calculating 1 lift force
and 2 torques yet

120 |
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_ Avg Relative Error
R

Lift (2) 29%

Torque (Z) 13%




s | Machine learning applied to structural dynamics

A simple three degree-of-freedom (3DOF) system was devised to study the applicability of
the LSTM to problems with intermittent contact.

The system was excited with a random vibration input at one end while the other end was
kept fixed. A small gap between M, and M, enabled intermittent contact to occur.
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37 | LSTM can predict system responses

The LSTM was then used to predict the system response to a new time history (of similar
statistics) by feeding it only a portion of the output.
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iz | Next steps: Multiphysics analysis via machine learning

Can multiple machine learning models communicate effectively to predict complex system dynamics?




39 | Machine Learning augments all Sandia missions

Machine Learning - give a computer or algorithm learning capabilities
We work with teams across the Labs
o Physics modeling
o Material discovery and design
o Object recognition
o 3D reconstruction
o Natural language translation

o Image/Volume Segmentation

o0 Many more



Reach out to us

Sandia Interdisciplinary Machine LLearning Research Team

simlr(@sandia.gov

P
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BONUS SLIDES



Sandia Interdisciplinary Machine Learning Research (SIMLR) Team

What can ML do for you?

https://www.neuraldesigner.com/



A general introduction to the field

MACHINE LEARNING
& COMPUTERVISION



Why Machine Learning!?

Bitcoin USD (BTC-USD) %
CCC - CryptoCompare. Currency in USD

6,137.53 -585.68 (-8.7113%)
As of 7:36PM BST. Market open.

@® Indicators  ® Comparison BEj DateRange 1D 5D 1M 3M 6M YTD 1Y 2Y 5Y Max ™ interval 1IDv W Linev (> Draw & Sefngs |t Share & Rese
| BTC-USD 6396.71 Recently Viewed
9,500.00 Symbol Last Price
6,137.53
BTC-U... -585.68
9,000.00 (-8.7113%)

8.500.00 Cryptocurrencies

Symbol Last Price
8,000.00 6,137.53
BTC-U... -585.68
(-8.7113%)
7,500.00 ETH-U... 352.02
-25.92 (-6.86%)
0.323
700000  XRP-Ueo ;e (-14.57%)
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B e (-13.24%)
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0.1997
. XLM-U... -0.0283
| | ‘I ‘l ‘ ‘ | ‘| | ‘| I +‘ || } . o
sttt ]
14 May 14 Jun 14 Tul 14 Aug Trending Tickers

https://finance.yahoo.com/quote/BTC-USD




Introduction to Machine Learning

= Typical computer algorithms:
o have an input,
o do some computation,
o and produce some output

Algorithm:

Square root




Introduction to Machine Learning

“ Machine learning algorithms:
o have lots of inputs,
o do some computation,
o and produce a function

Algorithm:
Xi, Xpr Xg, - Support Vector
e Machine

Input data:




Introduction to Machine Learning

The input to an ML algorithm is a dataset
o X’s: inputs to the function you want to learn
o Y’s: desired outputs to the function

The ML output is a “trained
classifier/regressor”

o Given an unseen input, it will (hopefully) produce
the correct output

o Types:
= Binary
= Classification
= Regression
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Neural Networks

= Layers are functions with “trainable” parameters

®)

e.g.y=mx+b

= Layering linear functions models non-linear functions

B tanh(W,7X)

input

Y -

hidden

e

hidden

activations output

activations




Training Neural Networks

= Training step:

o Send an input, x, through the network

o Compare the output, y, to the known output

o Update layer parameters

“ Repeat!

B tanh(W,7X)

input

Y -

hidden

e

hidden

activations output

activations




Convolutional neural networks

= |nstead of a linear function (i.e. a matrix
multiply) use convolutional layers

= Convolutions exploit spatial locality in
pixels

= Early layers in the network learn simple
features

= Later layers learn more abstract
features




Convolutional neural networks

= |nstead of a linear function (i.e. a matrix
multiply) use convolutional layers

= Convolutions exploit spatial locality in
pixels

= Early layers in the network learn simple
features

= Later layers learn more abstract
features




Convolutional neural networks

= |nstead of a linear function (i.e. a matrix
multiply) use convolutional layers

= Convolutions exploit spatial locality in
pixels

= Early layers in the network learn simple
features

= Later layers learn more abstract
features
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Deep Learning

= Big neural networks *  Methods:

= Multiple layers capture “deep” statistical o Supervised
information in data o Unsupervised

“ Generally require more intensive computing o Semi-supervised
resources

“ Include:

o Convolutional neural networks

o Recurrent neural networks

https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlic-2014-image-classification-
c2b3565a64e7




5 | Simple description of GANs

generator

out

i Gd -

discriminator

guess

v

discriminator

guess

X



Computer Vision

Research field that seeks answers from
digital images:
o What are the objects in a photograph? |
o How do objects move in videos?

Traditional techniques:

o Hand-engineered features
= Edge detection
= Corner detection

o Panoramic stitching
o Stereo reconstruction
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Computer Vision & Deep Learning

Convolutional neural networks:
o Replace manual feature engineering

The emergence of deep learning has radically changed the field of computer vision |
o Dramatically increase accuracy |

o Solve more difficult problems than traditional CV can answer

ILSVRC Top S Error omn ImageNet

S

Top=5 Error Rate (%)
i

i
@] S—

B o
Deep leanaing:
B Humas

2010 2011, 2002, 2003 2004 e 2005 2016
ter-2017-volume-4-number-1/real-time-situ-intelligent-video-analytics 57




CycleGAN translates images between domains

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint.

Learns two functions:
F(x) = Horse to zebra
G(x) = Zebra to horse

Cycles back to starting
point to learn without
paired examples

F(G(x)) = x

https://github.com/junyanz/pytorch-Cycle GAN-and-pix2pix

Generative adversarial networks are powerful new models that are widely applicable




| Batteries to Foam — Leveraging existing datasets via
CycleGAN

Battery Domain

Foam Domain




Domain Adaptation could reduce supervised labeling cost

Repurpose labels from one domain (battery) to

another domain (glass micro balloon foam)

o CycleGAN transforms foam CTs into the
“style” of battery labels Battery

o Semi-supervised
Hand labeled small slices from 7 CT scans of

foam

Used 2 labels to select stopping point

Inferred over remaining 5 volumes

Post-process (fill in gaps) with standard CV Glass Micro
methods Balloon Foam

Average 94.8% accuracy when compared
with human labeled slices




