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3 About Sandia National Laboratories

Federally Funded Research and

Development Center

Nuclear Weapons

Defense Systems & Assessments

Energy

Global Security



4 Two types of Machine Learning research at Sandia

Applied ML Research

o Collaborate with other engineers

Mechanical Engineering

Chemical Engineering

o Understand their problem space

o Apply latest machine learning research from academia and industry

"Pure" ML Research:

o Develop novel ML algorithms

o Understand theoretical foundations

o Improve U.S. capability in ML
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The progress of science and technology...

1st Paradigm — Empirical science [1000's of years ago]

o Experimentation and observation

2nd Paradigm — Theoretical science [100's of years ago]

o Laws and equations

3rd Paradigm — Computational science [10's of years ago]

o Numerical implementation of laws and equations

4th Paradigm — Big data driven science [today]

o Real-time assessments based on machine learning of paradigms 1-3

https://en.wikipedia.org/wiki/Antikythera_mechanism

https://towardsdatascience.com/deep-learning-tips-and-tricks-1ef708ec5f53

http://www.dtic.mil/dtic/tr/fulltext/u2/1010508.pdf
https://www.slideshare.net/Delft Software Days/dsd-int-2014-data-science-symposium-4th-paradigm-a-research-perspective-prof-arnold-bregt-wageningen-ur-amsterdam-institute-for-advanced-metropolitan-solutions



6 Deep Learning is an evolution of Artificial Neural Networks

1940s-60s — Cybernetics

o 1943 — Math model of a neuron

o 1958 — Perceptron learning

1980s-90s — Connectionism

o 1986 — Backpropagation learning

o 1989 — Convolutional Neural Networks

Limitations

o Networks are too hard to train

o Not enough computing power

o Not enough memory for large datasets

o Exploding/vanishing gradients

2006 — Deep learning

https://www.deeplearningbook.org/

Attribution: Egm4313.s12 at English Wikipedia under license https://creativecommons.org/licenses/by-sa/3.0/deed.en

input layer hidden layer 1 hidden layer 2 output layer

https://medium.com/@ksusorokina/image-classification-with-convolutional-neural-networks-496815db12a8



7 Why Machine Learning?

Some problems are difficult to solve with a directly-coded algorithm

o Do not generalize well

o Write rules-based programs for each specific task

Machine learning (ML) is good at:

o Recognizing patterns

o Anomaly detection

o Prediction

https://www.cryptocompare.com/coins/guides/5-things-you-need-to-know-about-bitcoin-volatility/



https://phys.org/news/2013-10-scale.html

Modeling an imperfect world

DIGITAL TWINS
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9 I Introducing Digital Twins

Today, we lot test and make a statistical argument.

With a Computed Tomography (CT) machine, we can scan:

o After manufacture of a part

o After each step of assembly

o After every transport (field or vehicle)

o In different environmental conditions

o During motion to determine robustness (CT movie)

Improves many processes

o Quality assurance of existing parts

o Clever use of known faulty parts

o Better engineering with additional data

•

https://www.leithcars.com/2017-ford-mustang-raleigh.html



10 1 Simulations using digital twins are predictive

Each component is manually labeled

High fidelity simulations predict performance of specific units

Unit #44

Unit #50

CT Scanning

Process

Segmentation and Defect

Identification

Simulation of Individual

Performance
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11 CT Segmentation is hard for humans

CT scans must be labeled by component for simulations

https://en.wikipedia.org/wiki/Image_segmentation

Labeling by hand does not scale

Deep learning algorithms

o Find each component of the shared charge by material

o Find any defects

o Prepare for numerical simulations



Using ML to save time and effort while improving accuracy

CT SEGMENTATION
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13 Segmentation is a classic computer vision problem

Image segmentation is well studied

o Small files

o Large training sets

Volumetric segmentation is different

o Big data

o Class imbalance (lots of background)

o Small training sets with "bad" human labels

o Humans can't label billions of voxels

https://www.cityscapes-dataset.com/

Cityscape
(-1e5 pixels)

Medical researchers are leading this work toward deep learning solutions

Rattlesnake Tail
(-1e9 voxels)



14 M itig at i n g Challenges

CT scans are large

o Used chunks of the volume

o Optimized our model for GPU memory

usage on GPU cluster

Class Imbalance

o Adjusted loss function that guides training

Artifacts and noise

o Selected Convolutional Neural Network
(CNN) architecture with strength in shape
recognition



15 Deep learning is big data and large networks

"Deep learning is the first class of algorithms that is scalable... performance
just keeps getting better as you feed them more data"

Andrew Ng, Founder of Google Brain

U-net, a big advance in biomedical
segmentation
Olaf Ronneberger, Philipp Fischer, Thomas Brox , "U-Net:
Convolutional Networks for Biomedical Image Segmentation", in
Medical Image Computing and Computer-Assisted Intervention
(MICCAI), Springer, LNCS, Vol.9351: 234--241, 2015

V-net follows as a natural extension
F. Milletari, N. Navab, and S. A. Ahmadi, "V-net: Fully
convolutional neural networks for volumetric medical image
segmentation," in 2016 Fourth International Conference on 3D
Vision (3DV), Oct 2016, pp.565-571
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V-Net architecture for segmenting volumetric data (2016)

We started with a V-Net and made improvements as necessary
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Deep Learning produces human quality segmentation
CT Fi

1

2

3



17 Deep learning model is robust to other domains

Slice of 3D Image Human label



18 Volumetric battery segmentation achieves high accuracy
compared to human labels

Slice of 3D Image Human label

Averaged 99.7% accuracy over held out test set

ML prediction



http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_3d801aa532c1ce.html

Using dropout to estimate segmentation confidence

UNCERTAINTY QUANTIFICATION

19



20 Softmax uncertainty as a baseline



21 Standard neural network models do not provide error bars
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Softmax output is not always enough to determine model uncertainty
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We can use dropout at inference time to approximate uncertainty
Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning." international conference on machine

learning. 2016.



22 Credible uncertainty in ML can be obtained

A model trained on pandas
should not classify gibbons with
certainty

We can approximate uncertainty
with small modifications to deep
learning model
o Gal, Yarin, and Zoubin Ghahramani.

"Dropout as a Bayesian approximation:
Representing model uncertainty in deep
learning." international conference on
machine learning. 2016.

o Dropout during inference

o Sampling inference

https://wNw.telegraph.co.uk/news/2016/09/15/pandas-arent
loving-oxygen-thieves-lets-just-e/

CT image Uncertainty map



Understanding explosive fragment flight

FRAGMENT CHARACTERIZATION

23



24 Case Study: Southwest Airlines Engine Explosion

Southwest flight 1380, April 17th, 2018

o Engine failure after takeoff from New York

LaGuardia

o Metal fragments from explosion punctured

fuselage

o 1 fatality, several injuries

How can we understand fragment flight to

prevent future safety incidents?

4ftakonamiimmun

Leading
edge

Origin area

Concave side

Convex side

Trailing
edge

https://www.nytimes.com/2018/04/17/us/southwest-airlines-explosion.html
https://en.wikipedia.org/wiki/Southwest_Airlines_Flight_1380

Lower Aft corner of the
• inboard fan cowl

Engine Control
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25 Problem Statement

Multi-camera stereo system with synchronized

videos

Fragments from experiment fly across field-of-view

Using machine learning & computer vision

techniques, can we answer:

o How do fragments form?

o Where are the fragments located in 3d space?

o What are their velocities?

o What are their masses?

Fragment experiment
Stereo camera

system

http://www.1 vision .co. i I/Stereo-3D



26 Simulated experiments

Simulate an experimental setup with

a stereo camera system

o Verifiable against known ground
truth

o Avoid confusers and noisy data

Allow any positioning of cameras,
informing experiment design

Can quickly and cheaply simulate a
ton of experiments

Bird's eye view of simulation
environment



27 Fragment characterization method

Simulate fragment experiments

Use deep learning to segment fragment locations

Track fragments

Stereo matching between fragments

Characterize each fragment

o Positions

o Velocity

o 3D reconstruction

Simulated experiment



28 Generative Adversarial Networks: a game theoretic
approach to machine learning

Generative Adversarial Networks (GANs) pit two competing neural networks against each other

o The generator, tries to mimic real results

o The discriminator, tries to identify mimicked results from real results

Condition

8

Tr-alibiing set Discriminator

Fake ¡Image

https://deepieerning4j.org/generative-adversarial-network

_Real

_Fake



29 Pix2Pix and Generative Adversarial Networks

Pix2pix model

o Condition is an image instead of a label

E.g. color segmentation of a scene

o GAN has to learn how to fill in segmentations convincingly

o Training goal is to fool the discriminator

Input labels Synthesized image

Wang, et. Al. "High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANS". CVPR 2018



30 Algorithmic tracking

Idea: frame the tracking problem as a graph
optimization problem

o Nodes are detection locations for all frames
from pix2pix

o Edges are all possible tracks from fragments
in one frame to fragments in next frame

3-way matching algorithm

o Given edges between 3 successive frames

o Find the edges that make physical sense:
Approximately constant velocity

Fragment shapes are similar

Fragment correlation



31  Tracking

CSRT algorithm:

o User specifies first bounding box (or
automatic segmentation algorithm)

o Algorithm learns a filter from affine
transformations of the image patch

o Filter correlated with next frame, max
response is the detected location

Future research: improve tracking by
incorporating 3-way matching

CSRT algorithm applied to simulated video



32 Given fragment geometries, can we predict flight?

Estimate a physics calculation incredibly quickly using machine learning (GPUs)

Exascale and future platforms double as training data generation of previously

unseen physics

Pressure
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I
33 Conditional GAN mimics flow field solutions

Does well qualitatively, not
so well quantitatively

Adding physics to loss:

o More accurately
represents shockwave

o Better around the edges
of the object

Types of physics +
qualitative loss combination
remain to be studied

Simulation Vanilla GAN

0

1

Physics Ioss + GAN

p

1



I Quantities of interest are close

Quantities of interest (Added to loss function):

o Drag

o Lift

o Torque

Exciting but preliminary

o Experiment involves only rectangles

o Results for 2D only. 3D in progress.

o Fixed at Mach 5

Time speed up

o 2 min 30 s (HPC codes) -> —250 ms (ML)

o >100x faster

Avg Relative Error

Drag 1.87%

5.63%Lift

Torque 2.29%



35 Full 3D is showing the same early promise as 2D

Preliminary results

Have not enabled physics

loss or force loss yet

Not calculating 1 lift force

and 2 torques yet
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36 Machine learning applied to structural dynamics

A simple three degree-of-freedom (3DOF) system was devised to study the applicability of
the LSTM to problems with intermittent contact.

The system was excited with a random vibration input at one end while the other end was
kept fixed. A small gap between M2 and M3 enabled intermittent contact to occur.

K2

MilA ,_ •F1xED
TRAINING DATA
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37 LSTM can predict system responses

The LSTM was then used to predict the system response to a new time history (of similar
statistics) by feeding it only a portion of the output.
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38 Next steps: Multiphysics analysis via machine learning •

4:4

PR E EFICIKIN
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Can multiple machine learning models communicate effectively to predict complex system dynamics?



39 Machine Learning augments all Sandia missions

Machine Learning - give a computer or algorithm learning capabilities

We work with teams across the Labs

o Physics modeling

o Material discovery and design

o Object recognition

o 3D reconstruction

o Natural language translation

o Image/Volume Segmentation

o Many more



Reach out to us

Sandia Interdisciplinary Machine Learning Research Team

simlr@sandia.gov
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Sandia lnterdisciplinary Machine Learning Research (SIMLR) Team

What can ML do for you?

Yil

Y2

YE1

https://www.neuraldesigner.com/ 42



A general introduction to the field

MACHINE LEARNING
& COMPUTERVISION

43



I Why Machine Learning?
Bitcoin USD (BTC-USD)
CCC - CryploCompare. Currency in USD
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https://finance.yahoo.com/quote/BTC-USD 4 4



Introduction to Machine Learning

Typical computer algorithms:

o have an input,

o do some computation,

o and produce some output

-0
Algorithm:
Square root

•

1
I



Introduction to Machine Learning

Machine learning algorithms:

o have lots of inputs,

o do some computation,

o and produce a function

Algorithm:
Support Vector

Machine

•

1
I



Introduction to Machine Learning

The input to an ML algorithm is a dataset

o X's: inputs to the function you want to learn

o Y's: desired outputs to the function

The ML output is a "trained
classifier/regressor"

o Given an unseen input, it will (hopefully) produce
the correct output

o Types:
Binary

Classification

Regression
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Neural Networks

Layers are functions with "trainable" parameters

o e.g. y=mx + b

Layering linear functions models non-linear functions

e
o
o
o
input

-0.tanh(W1Ti)  .

o
o
o
e
o
o

 .tanh(W2Th1)

hidden
activations

o
o
o
o
o

tanh(W3Th2)

hidden
activations

o
o
o

output



Training Neural Networks

Training step:

o Send an input, x, through the network

o Compare the output, y, to the known output

o Update layer parameters

Repeat!

e
o
o
o
input

-0.tanh(W1Ti-')  .

o
o
o
e
o
o

 .tanh(W2Th1)

hidden
activations

o
o
o
o
o

tanh(W3Th2)

hidden
activations

o
o
o

output



Convolutional neural networks

Instead of a linear function (i.e. a matrix
multiply) use convolutional layers

Convolutions exploit spatial locality in

pixels

Early layers in the network learn simple

features

Later layers learn more abstract
features

O00
O00
O00

O00000
O00000
O00000
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Convolutional neural networks

Instead of a linear function (i.e. a matrix
multiply) use convolutional layers

Convolutions exploit spatial locality in

pixels

Early layers in the network learn simple
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Later layers learn more abstract
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Convolutional neural networks

Instead of a linear function (i.e. a matrix
multiply) use convolutional layers

Convolutions exploit spatial locality in

pixels

Early layers in the network learn simple

features

Later layers learn more abstract
features
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Deep Learning

Big neural networks

Multiple layers capture "deep" statistical
information in data

Generally require more intensive computing

resources

Include:

o Convolutional neural networks

o Recurrent neural networks

Methods:

o Supervised

o Unsupervised

o Semi-supervised

■

https://medium.com/coinmonks/paper-review-of-googlenet-inception-vl-winner-of-ilsvIc-2014-image-classification-
c2b3565a64e7 54



55 Simple description of GANs

INPUT

1
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generator

out
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OUIPUT

INPUT
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TARGET

in unknown
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in unknown
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1
sl x

https://affinelayer.com/pix2pix/



Computer Vision

Research field that seeks answers from
digital images:
o What are the objects in a photograph?
o How do objects move in videos?

Traditional techniques:
o Hand-engineered features

Edge detection

Corner detection

o Panoramic stitching

o Stereo reconstruction

https://www.learnopencv.com/histogram-of-
oriented-gradients/
https://docs.opencv.org/3.4.3/da/d22/tutorial_py_c
anny.html
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Computer Vision & Deep Learning

The emergence of deep learning has radically changed the field of computer vision

Convolutional neural networks:

o Replace manual feature engineering

o Dramatically increase accuracy

o Solve more difficult problems than traditional CV can answer

200

https://www.dsiac.org/resourcesiournals/dsiac/winter-2017-volume-4-number-Vreal-time-situ-intelligent-video-analytics 57



CycIeGAN translates images between domains

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint.

Learns two functions:
F(x) = Horse to zebra
G(x) = Zebra to horse

Cycles back to starting
point to learn without
paired examples

F(G(x)) = x
https://github.com/junyanz/pytorch-CycIeGAN-and-pix2pix

Generative adversarial networks are powerful new models that are widely applicable
58



Batteries to Foam Leveraging existing datasets via
CycIeGAN

Battery Domain

CT Slice

Foam Domain
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I Domain Adaptation could reduce supervised labeling cost

Repurpose labels from one domain (battery) to

another domain (glass micro balloon foam)

o CycleGAN transforms foam CTs into the

"style" of battery labels

o Semi-supervised

Hand labeled small slices from 7 CT scans of

foam

Used 2 labels to select stopping point

Inferred over remaining 5 volumes

Post-process (fill in gaps) with standard CV

methods

Average 94.8% accuracy when compared

with human labeled slices

eliScuit

Glass Micro
Balloon Foam

fin= Cr Scan SI* r

INIAlrarkaition
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