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Abstract

Dislocations play a vital role in the mechanical behavior of crystalline
materials during deformation. To capture dislocation phenomenon
across all relevant scales, a multiscale modeling framework of plasticity
has emerged over the years, aimed at reaching a quantitative under-
standing of microstructure-property relations, such as to predict the
strength and toughness of metals and alloys for engineering applica-
tions. This paper briefly describes the state-of-the-art for the major
dislocation modeling techniques, and then discuss how recent progress
can be leveraged to advance the frontiers in simulations of dislocations.
The frontiers of dislocation modeling include opportunities to establish
quantitative connections between the scales, validate models against
experiments, and use data science methods (e.g., machine learning) to
gain understanding and enhance the current predictive capabilities.
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1. INTRODUCTION

The mechanics and dynamics of dislocations lies at the heart of many important engineering
applications, including aerospace, automotive, aviation, energy, and semiconductors. The
behaviors of dislocations, which are line defects in the crystal lattice whose motion generates
plastic deformation, play a governing role in the strength, toughness, fatigue-life and creep-
life of metallic materials. A comprehensive computational framework, capable of addressing
dislocation phenomena across length and time scales, would therefore enable predictive tools
to aid materials design, optimization of manufacturing processes, and design for extreme
environments (1).

Dislocation physics spans a tremendous range of length and time scales—from the
atomic structure of the dislocation core (~ 1 nm) up to the texture of polycrystals (~ 1 mm).
Since no single computational tool is capable of capturing the physics across all these scales,
a multi-scale modeling framework is needed, as shown in Fig. 1. In the context of the simu-
lations of dislocations, the computational tools in this framework, in order from smallest to
largest scale, are quantum mechanical models, classical molecular dynamics (MD), discrete
dislocation dynamics (DDD), continuum dislocation dynamics (CDD), and crystal plastic-
ity (CP). The essence of the multi-scale framework is that each modeling methodology is
best suited to a particular time and length scale range. The higher scale models need inputs
from lower scale models, however, on what physical features are most important and on how
to faithfully represent those features in a coarse-grained (more approximate) description.
For instance, CP models, which are at the top level of the multi-scale hierarchy, ideally
should simultaneously account for, in a statistical manner, all phenomena and interactions
that occur in lower scale models. This is indeed a very challenging task. Fortunately, the
lower scale models are designed to provide such information. The overall thrust of the
information-passing paradigm in multi-scale modeling is thus to study dislocations at the
more fundamental (lower) scales, learn about the key features that govern their behaviors,
and then pass that information up to higher scales. This process of upscaling informa-
tion is repeated until the highest scale is reached, which can be used to make engineering
predictions. In some sense, the overall goal of simulations of dislocations is to robustly
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establish this multi-scale framework so that it can be applied pervasively across materials
and applications.
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Figure 1

Multi-scale models of dislocations discussed in this review, showing the approximate length and
time scales for each. Figure modified from (2). Graphics reproduced from (3, 4, 5, 6, 7) with
permission.

There has been a lot of recent progress regarding simulations of dislocations at the
various scales, see Table 1. However, the multi-scale framework of dislocation simulations
presently still has a number of gaps that limit its predictive capabilities (1). The goal of
this article is to highlight those gaps and discuss recent advances that present opportunities
for addressing them. The largest issue is that, with a few exceptions, linkages between
the various models are not well established. Some linkages are poorly established either
because it is unclear how to meaningfully coarse-grain the information from the lower scale
models, it is unclear how to make use of upscaled information in a higher scale model,
or because performance of the lower scale model is too limited to simulate the necessary
deformation processes. A consequence of the disjointed state of the multi-scale framework
is that the higher scale models (CP) are still largely phenomenological, which often limits
their accuracy and predictive power (8, 9). We believe another important aspect of the
multi-scale modeling framework is that lower and higher scale models need to be directly
compared in simulations with (nearly) identical conditions. Such comparisons serve as
important validation steps for the large scale models, which are farther from fundamental
physics than the small scale models. Similarly, comparisons must be made between models
and experiments across as many of the scales as possible in order to establish that these
models are accurate approximations of real material systems. In particular, comparisons
between experiments and meso-scale models (DDD and CDD) are most lacking to date.
Hence, the gaps in the multi-scale framework can be summarized in two words: upscaling
and validation. These are the topics that need to be focused on to push multi-scale modeling
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of plasticity forward in the coming years.

The frontiers of simulations of dislocations are areas where progress can be made to
close these gaps by leveraging recent advances. These advances come in three areas: simu-
lation techniques, experimental techniques, and data-science methods. Improved simulation
techniques include: methods for extracting dislocation information from MD datasets; ef-
ficient time integrators, force computation routines, image solvers, and analysis tools for
DDD; and new formulations for CDD. On the experimental side, new methods include: high
strain rate small-scale testing methods; and techniques for extraction of 3D microstructure
information in the transmission electron microscope and using X-ray diffraction. Finally,
these improvements drive a need for advanced analysis techniques capable of making sense
of increasingly complex data sets. Data science approaches, such as machine learning, are
quickly filling this need, with a few examples in the area of dislocation modeling already.
Likely, the frontier of dislocation simulations is the intersection of all three of these areas,
where data science is concurrently applied to experimental and simulation data sets to ad-
vance understanding. In particular, we believe that because of DDD’s maturity, affordable
computational cost, and meso-scale position in the modeling hierarchy, it stands to advance
the frontier of dislocation modeling substantially.

The remainder of this review seeks to quickly describe the state-of-the-art for the five
major dislocation modeling techniques (Section 2), and then discuss how these methods can
be leveraged to advance the frontiers (Section 3). The discussions are carried out in light
of the recent advances in simulations of dislocations, whose representative publications are
summarized in Table 1.

2. MULTI-SCALE FRAMEWORK OF DISLOCATION MODELS
2.1. Quantum mechanical models

Models based on quantum mechanics provide the most accurate physical description and are
the most computationally expensive within the multi-scale framework of dislocation models.
Most of these models take the Born-Oppenheimer (BO) approximation, in which the atomic
nuclei follow classical mechanics, while the electrons are represented by quantum mechanical
wave functions and are assumed to stay at the ground state given the instantaneous position
of the nuclei. These models are often referred to as first-principles or ab initio models, for
which the density functional theory (DFT) is the most widely used approximation for the
quantum mechanical energy of the electrons (10).

The computational cost of DFT codes (e.g., VASP) often scales cubically with the
number of atoms. Due to the high computational cost, DFT simulations are usually limited
to a few hundred atoms. Hence DFT studies are most often focused on the structure
and energy of the dislocation core (3, 11), through zero temperature energy minimization
calculations. For example, DFT models have recently been used to study the stability and
mobility of dislocations in the pyramidal and prismatic slip systems of hexagonal closed-
packed (HCP) Ti and Zr, demonstrating that Ti exhibits a “locking” mechanism that
limits overall mobility while Zr does not (13). DFT has also been used to study dislocation-
solute interactions in Al (12) and Fe (11) alloys, showing in the latter case that interstitial
solutes stabilize the so-called hard-core of a screw dislocation in body-centered cubic (BCC)
metals. Ab initio models have also been widely used to generate material property databases
for developing interatomic potentials (89) for classical molecular dynamics models (see
Section 2.2). Recently, alternative implementations of the DFT method have been developed
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Table 1 Recent advances in dislocation modeling and crystal plasticity.

References
Quantum simulations Review: (10)
Dislocation core structures (3, 11)
Barrier to dislocation motion (12, 13)
Dislocations in quantum crystals (14, 15, 16)
Classical molecular simulations Book: (17), Review: (18)
Dislocation core energies (19, 20, 21)
Dislocation mobility (22, 23, 24, 25)
Cross-slip (26, 27)
Dislocation-obstacle interactions (28, 29)
Dislocation nucleation (30, 31)
Dislocation extraction algorithm (DXA) (32, 33)
Ultra-scale MD simulations of plasticity (34, 35b)
Discrete dislocation dynamics Book: (17), Review: (36)
Numerical integrators and parallelization (37, 38, 39)
Long range stress calculations (37, 40, 41, 42, 43, 44)
Image stress solvers for small samples (45, 46, 47)
Latent hardening coefficients (48, 49, 50, 51, 52)
Large-scale work-hardening (53, 6, 54)
Grain boundaries and polycrystals (55, 56, 43, 57)
Creep and dislocation climb at high temperature | (58, 59)
Irradiation-induced damage (60, 61, 62, 63)
Obstacle bypass (64, 21)
X-ray diffraction (65, 66, 67, 68)
Continuum dislocation dynamics Review: (69)
Field dislocation mechanics (FDM) (70, 71, 72, 73, 74, 75, 76)
High-order continuum dislocation dynamics (77, 78, 79, 80)
Dislocation patterning (81, 4, 82)
Crystal plasticity models Review: (83)
Dislocation-density based models (84, 85, 86, 87, 88, 52)

that scale more favorably with system size (90, 91, 92), but they have yet to become widely
adopted for dislocation studies.

While ab initio methods deal with the quantum mechanics of the electrons, it is also
possible to account for the quantum effects of the atomic nucleii when modeling dislocations.
For example, the effect of zero-point motion on the lattice resistance (i.e.Peierls stress)
of screw dislocations in body-centered cubic (BCC) Fe has been investigated using the
harmonic approximation (14) and ring-polymer molecular dynamics (RPMD) (15). The
path-integral Monte Carlo (PIMC) method has been applied to study the dislocation core
properties in hexagonal close packed (HCP) *He (16), which is a quantum solid due to the
light mass and strong zero-point fluctuation of helium atoms.

2.2. Classical molecular simulations

In models based on classical mechanics, the fundamental degrees of freedom are the position
of atoms, {r;}, 7 =1,---, N, where r; is the position vector of atom j, and N is the total
number of atoms. The atoms are assumed to interact with each other through a potential
energy function, U({r;}). In the classical molecular dynamics (MD) method, the atomic
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trajectories are computed by integrating Newton’s equation of motion,
d21‘-;
dt?

under appropriate initial and boundary conditions, where m; is the mass of atom 4, and Vy,

= -V, U({r;}), i=1..N 1.

m;

denotes the gradient with respect to the position of atom 4. In the molecular statics (MS)
method, the energy and structure of the dislocation can be obtained by minimizing the
potential energy function U({r;}). Classical MD and MS methods have been extensively
used to study the properties of individual dislocations, e.g. such as line energies (19, 20),
mobilities (22, 93, 23, 24, 25), cross-slip rates (26, 27), interactions between a few disloca-
tions (94, 95), interactions between dislocations and other defects, such as twins and grain
boundaries (96), precipitates (97, 98), and, more recently, the behavior of large collections
of dislocations (34, 35).

While classical molecular simulation methods are well established (18), analyzing atomic
trajectories to extract information on dislocations can be a labor intensive task. Although
algorithms exist to identify atoms near defects (e.g., by coordination number or central
symmetry analysis), it is not easy to identify the Burgers vector of dislocations from the
atomic coordinates. Recently, the dislocation extraction algorithm (DXA) (32, 33) has
been developed, which automatically detects, traces in space, and determines the Burgers
vector of dislocations in an arbitrary atomic system. DXA is efficient enough that it can be
employed on-the-fly during ultra-scale atomistic simulations (> 10° atoms) (34), enabling
the complete time history of a dislocation network to be cataloged. We will discuss some
of the opportunities enabled by DXA in Section 3.1.

Although the computational cost of classical MD scales linearly with the number of
atoms, the cost of simulating large atomistic systems is still high. Today, MD simulations
on dislocations are usually performed for systems containing up to ~ 10° atoms using
~ 100 CPUs. Given that MD time steps are typically on the order of 1 fs, the time
duration of MD simulations is on the order of ~ 10 ns (assuming 107 steps), leading to
very high strain rates (~ 10”s™', assuming 10% strain over 10 ns). To overcome the
timescale limitation, a number of advanced techniques for computing transition/activation
rates have been applied to thermally activated dislocation processes such as nucleation (30,
31) and obstacle bypass (28, 29). Accelerated molecular dynamics methods (99) have shown
promising results in the dynamics of point defects in crystals (100), but their applications
to dislocations (being an extended defect) have been difficult.

2.3. Discrete dislocation dynamics

In discrete dislocation dynamics (DDD), the dislocation lines are often discretized into
straight segments (17, 37) (although curved splines can also be used (101)), in which case
the fundamental degrees of freedom are the position of a set of nodes {r;}, 7 =1,---, N, and
the set of Burgers vectors {b;; } for the segments connecting the nodes. A major distinction
of DDD in the multi-scale hierarchy is that the total number of degrees of freedom do
not stay constant. Instead, the number of nodes, IV, often increases dramatically due to
dislocation multiplication during straining.

Given the dislocation network (as specified by {r;} and {b;;}), the stress field o(x)
can be computed based on continuum (usually isotropic) linear elasticity theory. The stress
field produces Peach-Koehler force on the dislocation lines, leading to driving force Fdrive
on every node i, and ultimately a nodal velocity based on a mobility law function v; =
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M (F?“"e). Therefore, the equation of motion in DDD is a first-order over-damped equation
that can be written as (102, 36),

dI‘i
dt

=gi({r;}), i=1..N 9.

where the function g; subsumes the calculation of nodal force followed by the nodal veloc-
ity using the mobility law. The mobility law encodes information about crystallographic
constraints on dislocation motion and drag mechanisms and can be constructed from the
predictions of molecular dynamics models (Section 2.2). Special algorithms have been
developed to detect dislocation collisions and handle topological changes in the disloca-
tion network (e.g., junction formation, annihilation, and insertion/deletion of discretization
nodes as the lengths of the dislocation lines change).

Over the years, there have been significant performance improvements in DDD meth-
ods. These include the development of analytical expressions for short-range interaction
forces (103, 104), efficient long-range force calculations with the fast multipole method
(FMM) (37, 40), and full-field eigenstrain-based approaches using the finite element method
(FEM) (105, 41) and the fast Fourier transform (FFT) method (42, 44).

Recently, Sills et al. (38) developed a subcycling time integrator based on a decomposi-
tion of the dislocation forces. This method showed a 100-fold performance gain compared to
traditional integrators during serial computation, and fair scalability up to 64 cores during
parallel computation. The subcycling integrator has further been extended for use with
graphics processing units (GPUs), which provides an additional 40-fold improvement in
performance compared to a single CPU (39). This gain in efficiency enables large-scale
DDD simulations without the need for major computational resources.

Furthermore, several techniques have been introduced to perform DDD simulations
beyond the traditional case of bulk single crystals. The developement of eigenstrain-based
approaches (41, 42, 43) that are readily employable for anisotropic and heterogeneous media
are paving the way to DDD simulations of polycrystals. In order to simulate small-scale ex-
periments (106) (e.g., nano-indentation, micro-pillar compression, and micro-tension tests),
image stress solvers capable of accounting for the free surfaces of the specimen have been
developed. For example, fast spectral image stress solvers have been developed for sim-
ulating cylindrical (45) and thin film geometries (46), as well as nano-indentation (47).
These methods exhibit exponential convergence in terms of the number of grid points used,
making them significantly faster than FEM solvers.

2.4. Continuum dislocation dynamics

In continuum dislocation dynamics (CDD), the fundamental degrees of freedom are a set
of fields defined over the simulation volume, {ps(x)}, J = 1,---, N¢, where N; is the
total number of fields. While the choice of field variables varies among different CDD
formulations (see review in (69)), it is common for p; to be a measure of some component
of the dislocation density. For example, the Nye’s tensor a (107) is a commonly used field
variable in CDD formulations. It measures the so called geometrically-necessary dislocation
(GND) density and can be used to compute the internal stress field o (x).

The equation of motion in CDD is a first-order (in time) partial differential equation
(PDE) describing the rate of field evolution 2 pr(x) given the current configuration of all
fields {ps(x)}. For example, in the field dislocation mechanics (FDM) formulation (70, 71),
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the field evolution equation can be formally written as

dae(x)
ot

= %% (alx) 2 v E]) 3

where v is a velocity vector describing the motion of dislocations subjected to the internal
and applied stresses.

“Kinematic closure” is a frequently encountered challenge in CDD formulations. For
example, the velocity field v(x) depends not only on the GND density o but also the
statistically stored dislocation (SSD) density, which was not captured in FDM. To address
this problem, the phenomenological mesoscopic field dislocation mechanics (PMFDM) (72)
was later introduced, in which the velocity field v(x) and the resulting plastic strain rate
are prescribed phenomenologically. As another approach to achieve closure, Hochrainer et
al. (77) proposed a new three-dimensional dislocation measure based on the dislocation
density and the line curvature fields defined in the higher configurational space of the
spatial position and the line direction. Simplified models (78, 79, 80, 81) were subsequently
proposed to alleviate the computational cost of this higher-order CDD model, e.g., by using
phenomenological relations to approximate the evolution of the average curvature (81).

Recently, Xia et al. (4) proposed a CDD model in which dislocations are represented as
vector fields (representing the local dislocation line orientations) for every slip system. The
kinetic evolution laws are then developed by assuming that dislocations on each slip system
arrange into bundles with a unique line orientation at each material point. Much like in
the higher-order CDD, this formulation has the advantage of preserving a direct connection
between dislocation velocities and internal stresses through the Peach-Koehler force. Yet
the decomposition into slip systems allows for explicit incorporation of fundamental unit
mechanisms, such as cross-slip, in the transport evolution laws (108), offering a clearer path
of calibrating CDD models against DDD simulations.

2.5. Constitutive laws in crystal plasticity models

Crystal plasticity (CP) models are at the top of the multi-scale hierarchy of plasticity models
and allow for direct comparisons with experiments at the macro-scale. They have been
used for a wide range of applications, including the prediction of the mechanical response
of polycrystalline materials subjected to various loading types, texture evolution during
forming, inter-granular and Hall-Petch behaviors, mechanical strength, failure and damage
propagation, nanoindentation and micropillar plastic responses, to name a few; see (83)
for a detailed review. CP models are often implemented using the finite-element method
(FEM) (83), although other implementations such as the micro-mechanical self-consistent
method (109) and the full-field Fourier-based method (110) have also been developed.

At the heart of CP models is a constitutive law, which, in the local formulation, pre-
scribes the plastic strain rate at a material point given the current state of the material
and the imposed loading at that point. For example, the fundamental degrees of freedom
for a phenomenological CP model at a given material point can be the set of shear strain
{7:} and flow resistance {7{} on slip system ¢, i = 1,---, N5, where Ny is the total number
of slip systems. A commonly used constitutive law can be written in the following form,

n Ng
: & Ti @ .
Y = Yo (;) ; T = E hij |51 4.
j=1
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where the dot indicates time derivative, 7; is the resolved shear stress on slip system i, o
and n are material constants accounting for the rate sensitivity of plastic flow, and h;; is
called the hardening matrix whose components are functions of 7;.

While the phenomenological constitutive law as described above is not directly linked
to lower scale dislocation models, dislocation-based constitutive laws have been developed,
which incorporate more dislocation-specific variables, such as the dislocation densities {p;}
on every slip system 4, into the degrees of freedom and equations of motion. As a result,
dislocation physics, such as Taylor and Orowan relations, can be naturally introduced, and
the evolution of dislocation densities is quantitatively accounted for in the constitutive
law (84, 85, 86, 87, 88). Further developments of CP models are aimed at making them
more accurate and predictive. For this purpose, lower-scale dislocation models have an
increasingly important role to play, both by determining the material parameters in CP
models and, more importantly, by making CP models aware of dislocation microstructures
(beyond density) and unit mechanisms (e.g., junction formation and cross slip) that control
the microstructure evolution.

3. FRONTIERS IN MULTI-SCALE MODELS OF DISLOCATIONS

We identify here five areas of research that we believe will be especially impactful to dis-
location research in the next decade. As illustrated in Fig. 2, these represent exciting
opportunities to establish quantitative connections between models at different scales, and
between models and experiments, so that the multi-scale framework can be robust enough
to allow dislocation physics to make a direct impact on the engineering calculations of
crystal plasticity.

Sec. 3.5 e SN

N

\ oy
\\\\ \\ Sec. 3.3
\‘Sec.3.‘| DDD Sec.3.2 cp ]

Sec. 3.4

Figure 2

Layout of the frontier topics on dislocation research to be discussed in this section. They represent
opportunities to strengthen the connections between models at different scales, and between
models and experiments.

First, we discuss new opportunities for establishing meaningful connections between the
various dislocation models. Quantitatively connecting the computational models across the
different scales is one of the major challenges in obtaining and maintaining a successful,
predictive framework for multi-scale modelling of plasticity. From a methodological stand-
point, the purpose is to benchmark and calibrate an upper scale model against a more
fundamental, lower scale model, while quantifying how much information is lost in the
transfer. In the existing hierarchy of modelling approaches, we believe that DDD has a
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central role to play in establishing links between the scales. By representing dislocations
as line objects, DDD simultaneously retains key microstructural features of the dislocation
network, while reducing the number of degrees of freedom by roughly ten orders of mag-
nitude compared to an atomistic description. Therefore, when properly calibrated against
atomistic models, the relatively affordable cost and high flexibility of DDD makes it an
ideal platform for comparing and calibrating higher-scale models of dislocation-mediated
plasticity. In Sections 3.1-3.3, we thus discuss new opportunities to connect DDD to MD,
use DDD to inform constitutive laws, and connect CDD to DDD and continuum theories of
plasticity. In Section 3.4, we then discuss how recent advances in experimental capabilities
enable new direct comparisons between simulations and experimental observations. Finally,
in Section 3.5, we discuss how data science and machine leaning tools can contribute to the
development of physics-based models and theories of plasticity.

3.1. Connecting MD and DDD models

The key premise of the DDD method is that the response to straining of a statistically
representative ensemble of dislocations can be assembled from the motion of its individual
constituent dislocations. In going from an atomistic description to a line representation of
dislocations, the connection between MD and DDD primarily lies in the core energies and
mobility laws of individual dislocation lines. To establish this connection, the conventional
workflow has consisted of simulations of isolated dislocations. Core energies of dislocation
lines have been extracted by comparing the total energy of periodic arrays of straight,
infinite dislocation dipoles calculated from ab initio (111, 112) or classical atomistic (19, 20,
21) simulations to their corresponding elastic energies obtained in continuum theories (113,
103). Similarly, mobility laws of individual, straight dislocations have been constructed
by extracting force-velocity relations from classical MD simulations of dislocations with
different character angles and temperatures in FCC metals (22, 25). For dislocations that
experience a higher lattice resistance, atomistic simulations have focused on the kink-pair
mechanism in BCC crystals (114, 115, 116, 23, 24), on the motion on different slip planes
in HCP crystals (93), and phenomenological mobility laws have been proposed for DDD
models (117, 118, 119, 120). Very recently, parametrization of line dynamics was also
proposed by analyzing the spectrum of thermal fluctuations of the dislocations, here again
extracted from atomistic simulations of dislocation dipoles (121).

While this conventional workflow has been widely adopted, the uncertainties associated
with this approach of information passing are yet to be quantified. Specifically, it remains
unclear if and how much is lost in transferring knowledge gained in atomistic simulations
of individual dislocations to large-scale DDD simulations of crystal plasticity, and what are
the effects of the atomistic mechanisms currently ignored in most DDD models, such as jog
and point defect production from dislocation intersections. Here, the recent demonstration
of the feasibility of ultra-scale MD simulations conducted by Zepada-Ruiz et al. (34, 35) now
offers a way to address these questions and opens a new path to validate the DDD model.
While such simulations have long been thought inaccessible, the authors in (34) performed
MD simulations to probe the limits of dislocation-mediated plasticity in BCC Ta, using
simulation cells as large as 0.3 wm, simulation times as long as 1 us, and strain rates as

low as 10% s7!

, see Fig. 3. Importantly, it was observed that after sufficient straining,
the flow stress and dislocation density saturated to path-independent values that are only a

function of the true strain rate. Similar simulations were also performed to investigate work
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hardening in FCC Al crystals loaded in uniaxial tension along various orientations (35),
where it was found that 3-stage hardening was solely a consequence of crystal rotation.
Thanks to the DXA algorithm (32, 33), which extracts dislocation configurations from
the atomistic trajectory in the form of discrete dislocation networks, the evolution of the
dislocation networks in these works could be recorded and analysed. Thus, these simulations
provide an unprecedented opportunity to compare and benchmark DDD to MD in terms
of the collective dynamics and network structure of statistically representative dislocation
ensembles, for which one-to-one correspondences can now be established.

a
12F

Twins and

oo
T

Stress (GPa)

IS
T

1 1
0.0 0.5 1.0 1.5
True strain, —log(L/L,)

Figure 3

Results from molecular dynamics simulations of uniaxial compression of BCC Ta at a strain rate
of 5.55 x 107 s~1. (a) Stress-strain curves at different temperatures. Snapshots from (b) 25 K and
(c¢) 50 K simulations showing twins and dislocations extracted from MD snapshots using DXA and
the grain segmentation algorithm (GSA). Reproduced from Zepada-Ruiz et al. (34) with
permission.

Achieving a quantitative agreement between MD and DDD simulations in terms of
stress-strain response, dislocation multiplication, dislocation fluxes, and network structure
evolution would constitute a major milestone for validating the coarse-graining approach
from the atomistic scale to the meso-scale. In the future, ultra-scale MD simulations of the
kind will become more common, and will be used to benchmark DDD models under more
complex scenarios, e.g., in the presence of precipitates or grain-boundaries. Should the
conventional approach based on knowledge transfer of individual dislocation properties and
unit mechanisms be found insufficient, a new workflow will need to be established wherein
key properties (dislocation core features, mobility laws, local rules, etc.) are extracted from
direct observations of large-scale MD simulations.

Another way to connect MD and DDD models is through the so-called concurrent multi-
scale approach, for which recent progress have been made through the development of the
Coupled Atomistic / Discrete-Dislocation (CADD) method (122). In CADD, the simulation
volume is decomposed into MD and DDD sub-domains that are evolved concurrently and

www. annualreviews.org » Frontiers in the Simulation of Dislocations

11



12

are coupled through an atomistic-to-continuum interface via displacement boundary condi-
tions (122). With this approach, the dislocation behaviors can be accounted for in atomistic
details in specific regions of interest (e.g., the crack tip), while the rest of the domain is
simulated more efficiently with a DDD model. When core energies and mobility laws are
well calibrated in the DDD model, the dynamics of dislocations in the CADD model has
been demonstrated to be in very good agreement with fully atomistic simulations (123).

3.2. Using DDD to inform constitutive models

The recent performance enhancements for DDD (41, 42, 38, 44, 39) are enabling an increased
role in constitutive theory development for plasticity. In this regard, DDD is a unique tool
within the multi-scale hierarchy of methods because it is capable of linking the physics of
individual dislocation lines with the stress-strain response of a material volume through the
evolution of dislocation networks. Two recent studies have demonstrated this capability
through large-scale DDD simulations (> (10 um)®) of strain hardening.

Sills et al. (6) performed DDD simulations of tensile deformation of bulk single crys-
talline Cu in a (15 pm)® simulation cell at the strain rates of 10°s™' and 10®s™! along
the [001] direction, making use of the subcycling time integrator (38). Notice that the
simulation volume is much bigger and the strain rates are many orders of magnitude lower
than what can be afforded by even the ultra-scale MD simulations. The authors observed
that the lengths of dislocation lines forming the dislocation network obeyed an exponen-
tial distribution, which can be described by two parameters, the total density p and a
non-dimensional parameter ¢. If the lengths of a dislocation network were scaled down
uniformly by a factor A, then the total density p would increase by a factor of A2, while
the non-dimensional parameter ¢ would remain constant. In this sense, ¢ is a “true mea-
sure” of how the dislocation lines are arranged, independent of their concentration, in the
material volume. The parameter ¢ is an example of how DDD simulations can identify key
parameters and relations that may be worth considering in the coarse-grained description
of dislocation-mediated plasticity such as CDD and CP.
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Figure 4

Shear stress-strain curves and simulation snapshots from DDD simulations of uniaxial deformation
in pure FCC metals. (a) Results for Cu showing the influence of each junction type. (b) Results
for Ni showing behavior with and without cross-slip. Reproduced from (a) Sills et al. (6) and (b)
Rao et al. (54) with permission.
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An interesting advantage of DDD compared to MD is that in DDD the dislocation
physics can be altered by manipulating “local rules” to probe the significance of various
mechanisms in the overall stress-strain behavior of the crystal. For example, by strategically
suppressing the formation of certain types of junctions, the authors (6) found that junction
formation was essential for strain hardening and ranked the relative contributions from the
four types of junctions to the hardening rate in FCC crystals (Fig. 4(a)).

Similarly, the role of cross slip in strain hardening was investigated by Rao et al. (54)
using DDD simulations of tensile deformation of single crystalline Ni micropillars with
dimensions 20 x 20 x 50 pm. These simulations used a detailed cross-slip formulation (53)
based on atomistic calculations (26) considering cross-slip with a variety of dislocation
geometries, such as from dislocation intersections. The study concluded that cross-slip was
essential for strain hardening in micropillars; when the authors suppressed cross-slip the
dislocation multiplication and hardening rate reduced significantly (Fig. 4(b)).

These studies give examples for how large-scale DDD simulations can be used to un-
derstand the physics of plasticity and give new insights into constitutive behaviors (e.g.,
hardening). Future studies can leverage the newly acquired DDD capabilities to improve
constitutive laws used in crystal plasticity (CP) models.

At present, almost all CP models invoke phenomenological assumptions to enable closure
of the governing equations (e.g., Eq. (4)). Accelerated DDD methods provide an oppor-
tunity for physics-based input into these equations. The difficult aspect of this process
is determining what specific information to extract from the evolving dislocation network
and how to then incorporate it into the governing equations. One example of successful
transfer of information is the development of specialized DDD simulations to quantify latent
hardening coeflicients between different slip systems (48, 50, 51), which are now routinely
used in dislocation density-based constitutive laws (49). Additional research is necessary
to develop more general frameworks for upscaling information from DDD to CP.

Future studies can also leverage the ongoing research focused on simulating the de-
formation of polycrystalline geometries with DDD (55, 56, 57), renewed interest in the
role of dislocation-like defects (e.g., disconnections) in grain boundary dynamics (124), as
well as the incorporation of other complex physics (36), such as interaction with point
defects (58, 59), precipitates (64, 21) and radiation-induced damage (60, 61, 62, 63).

3.3. Using CDD to understand dislocation patterning

Although CDD approaches are still in their nascency and their numerical implementation
remains challenging, several applications have emerged in the recent years. FDM-based
approaches have been applied to study thin-films (74) and dislocation pile-ups (76) in 2D,
and to 3D settings by assuming particular forms for the velocity functional or imposing
constant velocity fields (72, 73, 75). The first successful 3D implementation of higher-order
CDD was reported in (78), where the model introduced in (77) was applied to simulate
plasticity arising from two active slip systems in a micro-bending experiment.

Of particular interest in the development of CDD models is to predict the spontaneous
emergence of dislocation patterning during plastic deformation, which has been observed
consistently in experiments for several decades (125). Recent applications of CDD have
indeed produced dislocation patterning in 2D (81, 82) and 3D (4). In (81), the authors
adopted a simplified 2D version of the higher-order CDD framework introduced in (77),
and used a Taylor-like relationship to describe short-range elastic interactions. By varying
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the applied stress, they observed the formation of patterns that are consistent with the
principle of similitude, i.e., whose wavelengths inversely scale with the applied shear stress
(see Fig. 5(a-b)). Through linear stability analysis and simulation results, the authors at-
tributed the origin of pattern formation to short-range interactions, while discarding the
effect of long-range stresses. Surprisingly, however, the patterns obtained in this work con-
sisted of cell-like structures with densely populated interior regions bounded by depleted
walls. In another study, a CDD model based on slip systems (4) was used to study pattern
formation in three-dimensional simulations. The model predicted the formation of dislo-
cation patterning that is also consistent with the principle of similitude, see Fig. 5(c-d).
Their observed pattern formation was seen to be contingent on the cross-slip mechanism,
which is intrinsically a three-dimensional process. In contrast to the simplified 2D model
(81), the resulting patterns exhibit high dislocation densities at narrow cell walls bounding
lower-density cell interiors, consistent with experimental observations.
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Figure 5

Examples of dislocation patterning and relation between patterns wavelength A and the applied
shear stress 7 using (a-b) the 2D CDD model in (81) and (c-d) the 3D CDD model developed in
(4). Reproduced from Sandfeld and Zaiser (81)(a-b) and Xia et al. (4)(c-d) with permission.

In addition to these promising results, it is now also possible to benchmark CDD formu-
lations against lower-scales simulations thanks to recent progress in their implementation.
Such a comparison was for instance initiated in (126) where it was found that the kine-
matics of a CDD method is consistent with that of DDD under several different boundary
conditions. So far, the comparison was carried out on relatively simple configurations made
of non-intersecting circular dislocation loops subjected to a fixed velocity field, i.e., ne-
glecting elastic interactions. Such comparisons are enabled by the recent development of
techniques for converting discrete dislocations into continuum fields (126, 44). With these
techniques, dynamic CDD fields that result from the motion of dislocation lines explicitly
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computed with a DDD model can be generated, thereby offering a basis to compare and
inform evolution laws to be incorporated in mesoscale CDD and FDM models at scales
where individual dislocations are no longer resolved. The development of slip system based
CDD approaches (e.g., (4)) in which the notion of crystallography is introduced explicitly
also allows for direct connections between DDD and CDD. For instance, DDD simulations
were used to inform the cross-slip mechanism implemented in the CDD model in (108).
Direct comparisons between predictions of DDD and CDD simulations were recently made
by Sudmanns et al. (127), where uniaxial tension of a 5 pm cube was simulated. Using
guidance from DDD simulations, additional terms in the CDD governing equations were
constructed to consider multiplication by glissile junction formation and cross-slip. The dis-
location densities in the active and inactive slip systems from DDD and CDD were shown
to be in strong agreement. This study shows how insight gained from a lower scale model
can inform higher scale model development.

Once properly calibrated and validated, CDD appears as a promising technique for
simulating dislocation-mediated plasticity with some unique advantages. First, as a meso-
scale model CDD enjoys an advantage (compared to DDD) in that its number of degrees
of freedom is independent of the strain level and dislocation density. Second, being the
only model that has clearly shown dislocation patterning, it is in a unique position to
investigate the fundamental mechanisms and resolve the controversy on the root cause of
pattern formation (4, 81). Third, capturing patterning offers an opportunity to establish a
direct comparison with experimental results, especially in the low strain rate regime (e.g.
<1s™h).

3.4. Opportunities to connect models to experiments

One of the keys to advancing our understanding of dislocation physics and dislocation-
mediated plasticity is comparisons with experiments, which enable both validation of mod-
eling assumptions and the establishment of mechanistic linkages (128). Such comparisons
have been made at the atomic scale using high resolution transmission electron microscopy
(HRTEM) (129) and at the continuum (polycrystalline) scale using digital image correla-
tion (DIC) and electron backscatter diffraction (EBSD) (130, 131). Yet comparisons at the
meso-scale between methods like DDD and observations of dislocation microstructures have
been elusive. These comparisons have been difficult because of mismatches in time/length
scales and because it is not always straightforward to relate experimental data sets to
simulation data sets in an unambiguous way. We believe there are now three classes of ex-
periments where direct comparisons with DDD are possible: high strain rate experiments,
transmission electron tomography, and X-ray diffraction (see Fig. 6).

Due to time scale limitations, DDD simulations for pure FCC metals are limited to

strain rates of 102 s~ *

or greater, falling in the regime of high strain rate experiments. The
Kolsky (split Hopkinson) bar is a widely used technique for testing materials at high strain
rates (137). To our knowledge, direct comparisons between DDD simulations and Kolsky
bar experiments have yet to be made. Recent DDD performance enhancements enable
large enough strains (~ 5%) to be attained such that computed stress-strain curves can
be meaningfully compared with experiments. Such comparisons could also leverage digital
image correlation for full-field strain mapping (138) and pulse shaping methods (139) to
increase test accuracy at the low strains which are attainable in DDD simulations. While

the Kolsky bar can be applied to “bulk” samples (~ 0.1 to 1 cm), small-scale mechanical
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Opportunities for comparisons between DDD simulations and experiments. Kolsy bar experiments
on single crystals (39, 132); Small scale experiments (133, 134); 3D TEM (47, 135) ; X-ray
diffraction (68, 136). Reproduced with permission.

testing conducted in the scanning electron microscope (SEM) provides another valuable
tool set for studying plasticity (106). These methods have traditionally been limited to
low strain rates. Recently, Guillonneau et al. (134) developed a technique for performing
nano-indentation and micro-compression with strain rates from 1 to 1000 s~'. With this
capability, direct comparisons can be made for the first time between small-scale mechanical
experiments and DDD simulations. Efficient spectral image solvers (45, 46, 47) can be used
to simulate the finite volumes of the small-scale specimens.

Transmission electron microscopy (TEM) is perhaps the most important experimental
technique for studying dislocations because it is historically the only technique which can
unambiguously resolve the location of dislocation lines and determine their Burgers vectors.
However, TEM images have always suffered from one major issue: each image only provides
a two-dimensional representation of three-dimensional dislocation lines. Hence, directly
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comparing TEM images with DDD simulations has been difficult because it is hard to
tell how far dislocations are from each other and from free surfaces. For example, Drouet
et al. (140) considered the interaction between a dislocation line with a small dislocation
loop in an irradiated zirconium alloy. Because of the uncertainty in the TEM geometry,
the authors used trial-and-error DDD simulations to deduce the position, habit plane, and
Burgers vector of the dislocation loop.

A major drawback to TEM imaging is that samples must be very thin (several hundred
nm or less) so that electrons are able to transmit through them. In contrast, imaging in
the scanning electron microscope (SEM) examines only the surface region of samples and
can accommodate much larger samples. A recent advance in SEM imaging provides an-
other opportunity for comparisons with mesoscale simulations: accurate electron channeling
contrast imaging (A-ECCI) (141). Using this technique, individual dislocations near the
surface can be resolved and their Burgers vectors identified with a spatial resolution of 500
nm (142). This enables dislocation lines to be imaged during in situ mechanical testing of
“bulk” samples in the SEM (143).

New advances in electron tomography enable fully three-dimensional reconstructions of
dislocation networks, suitable for direct comparisons with DDD simulations. Using these
methods, dislocation geometries extracted from TEM experiments could be directly im-
ported into DDD codes. Stereo-pair imaging, wherein two TEM images are taken at dif-
ferent sample tilt angles, has been established as a technique for reconstructing dislocation
line geometries in three-dimensions (144, 145). Wang et al. (144) used this technique to
evaluate the influence of free surface image forces on dislocations in Cu. Recently, more
general electron tomographic reconstruction methods based on Fourier analysis have been
applied to dislocation lines as well (146, 135). In these methods, many images (~50 to 100)
are taken in the TEM over a range of tilt angles and are assembled together to reconstruct
the three-dimensional structure. The most widely used electron tomography method for
dislocation geometries is the weighted back-projection method, which has been successfully
applied to studies of dislocations at a crack tip, dislocation-precipitate interactions, and
dislocation-grain boundary interactions, to name a few (135). These methods have also
been used to evaluate how dislocations respond to increasing levels of stress, giving a four-
dimensional picture of dislocation behavior (147). Finally, it is important to observe that all
TEM observations require electron transparent samples (usually in the form of thin foils)
with small thickness, typically on the order of 100 nm. Hence, an efficient image stress
solver (46) is needed for DDD simulations of TEM-relevant geometries.

As another technique, X-ray diffraction has long been employed to study dislocation
structures. With the recent increase in prominence of light source user-facilities, X-ray
methods have become a backbone of experimental mechanics. Two X-ray diffraction meth-
ods have been used historically: powder diffraction and Laue diffraction (148). Powder
diffraction provides bulk information about the state of a polycrystalline lattice in the form
of intensity peaks; these peaks are known to shift and broaden as dislocation substructure
forms. Laue diffraction provides detailed information about the orientation and state of
deformation of local regions in a lattice. Recent advances in X-ray beam lines have en-
abled sub-micron beam resolution, with which Laue diffraction patterns can be analyzed to
construct geometrically necessary dislocation density fields in three-dimensions (136). Fur-
thermore, beam-line experiments have matured to enable in situ loading so that dislocation
network evolution can be observed in real-time. In recent years, post-processing algorithms
for DDD have been developed to predict powder (66, 67) and Laue (65, 68) diffraction
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patterns from DDD simulations, enabling direct comparisons with experiments.

In both powder and Laue diffraction experiments, the obtained data sets are “averaged”
representations of the dislocation network, i.e., discrete dislocation lines cannot be identified.
Several promising X-ray imaging techniques have recently been developed which could be
used to identify individual dislocation lines: Bragg coherent diffractive imaging (BCDI) and
dark-field X-ray microscopy. BCDI uses coherent diffraction patterns from Bragg peaks
obtained with X-ray nano-beams to provide a full three-dimensional displacement field at
nanoscale resolution. BCDI has been used to image dislocation dynamics in nanoscale
samples of Pd (149) and Au (150, 151). The primary drawback for BCDI at present is that
the material size is limited by the X-ray beam coherence; current beamline technologies limit
experiments to nanoscale samples (152). Dark-field X-ray microscopy utilizes an objective
lens in the diffracted beam and is able to resolve crystallographic misorientations with a
spatial resolution of ~ 100 nm in specimens with ~ 1 mm dimensions (153). Recently it
was shown that individual dislocations could be mapped using dark-field X-ray microscopy
in specimens with low dislocation densities (154).

While comparisons between computational models and experiments have been tradi-
tionally limited to typical experimental conditions (e.g., for macroscopic samples under low
strain rates) or at the atomic scale, the recent progress in experimental testing and imag-
ing techniques opens new paths for validating the models of dislocations, especially at the
meso-scale. A promising approach to leverage these novel tools is to start establishing com-
parisons from the simplest scenarios (e.g., pure single crystals) and then progress towards
more challenging cases (e.g., alloys then polycrystals) (1). In the future, we expect such
comparisons to become part of a systematic validation workflow, e.g., whereby new com-
plex physical mechanisms introduced in DDD models are benchmarked against small-scale
experiments with in situ imaging.

3.5. Opportunities for data science approaches

The volume of available data from dislocation simulations is growing at an unprecedented
rate thanks to recent algorithmic advances and the ever-increasing computational power
at hand. This trend creates both challenges and opportunities. On the one hand, the
amount of data that is being generated becomes so large and so detailed that it becomes
difficult to analyze it and filter out relevant mechanisms from the uninteresting background.
On the other hand, this vast amount of data, once appropriately reshaped, provides an
excellent opportunity to apply machine learning (ML) techniques that can unravel and
capture relationships within the data that could not have been easily identified, or simply
missed, using traditional workflows and reasoning.

From a general perspective, the power of ML-based techniques resides in their demon-
strated ability to learn the complex, highly non-linear mappings that may exist between
well-chosen features describing the state of a system and the desired output that one wishes
to predict with a given accuracy (e.g., mechanical response). Thus, it seems reasonable to
expect that ML techniques could significantly help advance our understanding and predic-
tive capabilities of dislocation-mediated plasticity, whose complex behavior that emerges
from the collective effects of interacting dislocation ensembles has puzzled our scientific
community for decades. More specifically, we believe that ML approaches could provide
significant advances in the following key areas:

1. Developing inter-atomic potentials for metallic systems (especially multi-component

Bertin et al.



alloys) with superior accuracy-to-cost ratio, thereby enabling MD simulations with
higher fidelity, getting us closer to simulating real material systems

2. Discovering new physics (correlations) potentially hidden in the vast, typically unin-
terpretable amounts of data generated by high-throughput calculations

3. Providing more direct connections between models across the scales, e.g., by identi-
fying the optimal set of coarse-graining variables

4. Improving the predictive power of models, e.g. by replacing previously phenomeno-
logical models with ML models trained on already existing or new experimental or
simulation data

5. Enabling more direct connections and comparisons between experimental data and
model predictions
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Figure 7

Workflow for applying data science techniques to simulations of dislocations.

Several recent works have already applied data-driven approaches in the context of
continuum mechanics (e.g., see recent review in (155)), and general frameworks have been
proposed to address the microstructure-property linkage (e.g., (156)). The development
of ML-based inter-atomic potentials has become a very active subject of study, with well
established methods (157) and applications that extend beyond the realm of materials
science (158). In the following, we first draw attentions to recent applications of data-
driven approaches in direct relation with dislocation microstructures before discussing the
general directions which we believe would be beneficial for dislocation modeling.

One of the early applications of ML based techniques to dislocation microstructures
was proposed by Yasser et al. (159). In this work, the GNDs dislocation density extracted
from EBSD images was used to predict the flow-stress in Al alloys with various precipitate
morphologies using artificial neural networks (ANN). More recently but in a similar spirit,
convolutional neural networks (CNN) were employed as a way to predict the total density
of dislocations from the density of GNDs alone (160). Since GND is a coarse-graining
measure of the total density and both quantities are geometrically and physically related,
the main idea relies on using a CNN to map the total density from small patches of GND
neighborhoods. The CNN model was trained on synthetic, random discrete dislocation line
configurations and then applied to extract total density from EBSD maps in a-Fe. Although
the CNN model only led to a marginal increase in the accuracy of flow stress predictions
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from the EBSD images compared to predictions based on the GNDs alone, such an approach
presents an interesting perspective on how models trained on numerical simulation data can
be used to infer hidden information from experimental measurements.

In (161), ML was used to assess whether sample to sample variability in stress-strain
responses of small-scale crystals can be predicted from the initial microstructure. The
authors used 2D DDD simulations in micron-sized volumes and employed both ANN and
support vector machines (SVM) to train their models. It was found that larger systems (i.e.,
with more dislocations) are easier to predict, specifically because they exhibit smaller strain
bursts resulting from avalanches-like processes. This led to the conclusion that such burst
processes, which are stochastic in nature, pose fundamental limits on the predictability
of plastic response of small crystalline systems. Among the various descriptors that were
tested to encode the initial system state (dislocation microstructure), it was found that
statistical measures of internal stresses as well as spatial densities of GNDs led to the most
accurate predictions.

Another interesting ML application to DDD simulations data was recently proposed in
(162). The authors ran hundreds of DDD simulations of different sizes with free-surfaces,
and investigated whether a ML-based approach can classify the volume size based on dislo-
cation microstructures sampled from a subvolume. More specifically, the focus was placed
on examining what descriptors are best suited for performing such a classification task. To
this end, several density fields that are commonly used in continuum models of dislocations
were tested and compared; namely, the dislocation density, Nye’s tensor, and higher-order
fields measures introduced in the higher-order CDD models (77, 78). Using a Gaussian
naive Bayes classifier, it was found that the set of descriptors used in higher-order CDD
outperforms both the GNDs density and total dislocation density features, especially at
coarse resolutions.

The methodology adopted in this last work (162) is particularly interesting because it
leverages the power of ML techniques to identify the best sets of microstructural variables
that need to be retained in coarse-grained models of plasticity. Thus, we believe that this
type of approach is a promising direction for simulations of plasticity, because it provides
a way to guide the development of higher-scale models. The use of ML techniques to con-
struct constitutive laws from lower-scale simulations also appears as a promising path for
extending the predictive capabilities of current models. An example of such an applica-
tion was recently proposed in (52), where a data-driven approach was used to quantify
slip systems interactions from a large set of DDD work-hardening simulations, instead of
using specialized DDD simulations. Although significant challenges still remain, this work
demonstrated the feasibility of constructing a ML-based crystal plasticity models directly
trained on large-scale DDD simulation data.

Finally, we conclude this section by highlighting several relevant considerations regard-
ing the use of ML-based techniques for dislocation modeling. First, we stress the importance
of the selection of the descriptor space. Choosing a good set of features for a given problem
is a challenging task and is what usually distinguishes a successful ML-based model from
the others. The selection of features can greatly benefit from prior knowledge of a system,
whereby the machine is guided with physical insights, e.g., by imposing crystal symmetries.
Conversely, training on a poor featurization of the input space can artificially increase the
complexity of the relations between the input and output data, or worse, lead models to
learn the “wrong” physics. More generally, while ML has shown promising results in a vast
number of fields, the underlying structure of the discovered relations is often hidden within
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the intricacy of the algorithm and cannot be easily interpreted. In other words, ML-based
approaches are often used as black-box tools from which it becomes difficult to extract a
clear understanding of the results or to generalize them. Even in this case, ML-based mod-
els, if adequately trained, can still be valuable as an efficient way to compute responses of
systems whose unit mechanisms are well understood but whose emergent properties are ex-
pensive to predict from physical simulations. For instance, developing novel CP models that
simultaneously (i) capture the complex interactions between microstructural features and
(ii) embrace their statistical nature appears as a challenge for which ML-based techniques
are promising.

4. CONCLUSION

We are in an exciting time regarding computational modeling of dislocations for the un-
derstanding and prediction of crystal plasticity. Several advances have been made for the
models at the different scales, and individual models have been enjoying significant suc-
cesses. At the lowest scale, the feasibility of direct MD simulations of metal plasticity has
been demonstrated, and ultra-scale MD are expected to become more common. At higher
scales, the DDD method has enjoyed several computational developments and is becoming
a mature tool capable of providing significant physical insights, while recent formulations
of the CDD method have led to the prediction of dislocation patterning.

Thanks to these advances, the multi-scale framework for dislocation based plasticity is
starting to come together. Beyond successes at their individual scale, this recent progress
now offers concrete opportunities to meaningfully connect the different methods together.
Thanks to the DXA algorithm, a direct connection between MD and DDD is now possible,
thereby allowing to go beyond the traditional workflow based on single dislocation matching.
Similarly, connection between DDD and CDD is starting to happen, especially through the
development of crystallographic-based CDD formulations. Large-scale DDD simulations
will be increasingly used to construct sophisticated, physics-based constitutive models to
be incorporated in CP frameworks. In the future, robust workflows will be established
to link models across the scales and reduce the uncertainties associated with information
passing. As a result, models at each scale will be better informed, and will be able to
simulate microstructures of increasing complexity with higher fidelity.

Concurrently, experimental data are becoming more abundant and with higher fidelity,
providing more opportunities to connect and benchmark computational models against ex-
periments. Small-scale experiments coupled with novel, high resolution imaging techniques
will allow for one-to-one comparisons between simulated and real material samples. These
will provide direct ways to validate models—especially at the much needed mesoscale—
and quantify their uncertainties both in terms of predictions of mechanical responses and
dislocation microstructures.

Finally, as computational models are getting mature, high throughput calculations are
becoming common and will generate ever increasing volumes of data. Application of data-
driven and machine learning techniques will thus soon become key to analyze and extract
information from simulation results and experimental data. Among the broad spectrum
of possible applications, the identification of microstructural variables that are key to the
development coarse-graining approaches, as well as the building of statistical constitutive
models with enhanced predictive capabilities stand as promising avenues for future research.
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