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Abstract— We have seen a rapid growth in the adoption of
electric vehicle in today’s commercial mobility service market,
from carrying passengers to the delivery of goods. One cardinal
issue concerning the operation of EVs is the optimal routing
of EV fleets with limited battery capacity. In this study, we
investigate the energy-optimal online routing problem for the
fleet of EVs, which focuses on identifying real-time minimum
electricity consumption paths (MECP) for multiple OD pairs
with limited information. We develop a multi-OD combinatorial
multi-arm semi-bandit model (MCMAB) that uses the fleet of
EVs as sensors in the transportation network and promotes
the utilization of common information shared by different OD
pairs. We further enrich the model with the path elimination
policy to obtain MECP of high confidence while significantly
reducing the number of learning iterations and the number of
explorations needed. We demonstrate the effectiveness of the
MCMAB and the efficiency of the path elimination policy with
comprehensive numerical experiments in Manhattan, NYC. The
results show that the proposed online routing algorithms can
achieve near-optimal MECPs efficiently, and the quality of the
solutions is significantly better than using the shortest travel
time paths as approximate MECPs.

I. INTRODUCTION

The electric vehicle (EV) has undergone tremendous
growth in the past few years, and it has been shown that
electrified urban transportation systems can effectively de-
crease greenhouse gas emissions and reduce travel costs [1].
To promote wider adoption of EVs, key challenges such
as improving battery performance, eco-routing and optimal
deployment of charging facilities have attracted significant
attention and existing studies have exclusively focused on
commuting vehicles [2], [3], [4], [5], [6]. Yet there is a
missing linkage between the use of EVs and the large-
scale deployment of vehicles for commercial services such as
urban on-demand mobility service and urban logistics. For
commercial uses, one bottleneck is to efficiently route the
EV fleet in real-time, which will significantly affect the time
in service and hence determine the operation efficiency. This
motivates us to investigate the online energy-optimal routing
problem for a fleet of EVs, which has significant implications
for applications such as routing electric buses in urban traffic
and routing electric robots for food delivery.

There are three major challenges for the energy-optimal
EV routing problem. First, the traffic condition is largely
stochastic and so is the battery consumption of EVs. Two
EVs traversing the same link at the same time are likely
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to consume different amounts of electricity due to stop-and-
go traffic and carrying capacity. Second, the EV operators
may have access to only limited local information, e.g. the
historical energy consumption of their own fleet which covers
part of the network. While there is an exponential number
of paths in an urban setting, this issue makes it difficult
to identify the energy-optimal path with partial observations
effectively. On the other hand, different routes for the same
OD and even for different ODs may share common segments
and this observation provides the opportunity to mitigate the
information limitation. This leads to the third challenge on
how to effectively use the data from the EV fleet to identify
energy-optimal routing policies.

Previous studies suggested several solutions to the EV
routing problem. One possible approach is to use the shortest
path algorithm such as the Dijkstra algorithm [7] and K-
shortest path algorithm [8], and represent link cost with
energy consumption or approximate energy consumption
with link travel time. However, these algorithms are not
suitable for EV routing due to the possible existence of
cycles (EV may incur negative link energy consumption)
and travel time may not be a good estimator of the actual
electricity usage. On the other hand, some researchers also
proposed the stochastic routing problem and considered that
the link travel time follows certain distributions [9], [10].
However, it is not realistic to accurately describe the actual
electricity consumption with only limited information from
the EV fleet, letting alone the non-stationary traffic condition
that varies dramatically over time.

We notice that the EV routing problem can be analogous
to the multi-arm bandit problem (MAB), where the decision-
makers (EV operator) need to choose the best action (energy-
optimal route) among a set of candidate actions (set of can-
didate routes) with unknown reward (stochastic energy con-
sumption). And the goal is to find the most profitable action
through efficient explorations with minimum data [11]. For
EV routing problem, each EV reveals an observation of the
unknown rewards after completing a trip, and the aggregate
information from the fleet of EVs which make multiple trips
among different ODs constitutes an online routing problem to
determine the optimal path with a balance between exploring
new actions and exploiting previous actions. Since each
route action consists of the choice of several links, and
that different routes may share common link segments, the
offline EV routing problem is a combinatorial optimization
problem and its online version falls under the category of
the combinatorial multi-arm bandit problem (CMAB) [12].
Several methods have been proposed to solve the MAB, such



as ε-Greedy [13], Upper Confidence Bounds (UCB) [14]
and Thompson Sampling [15], and these methods were later
extended to address the CMAB problem [16], [17], [18].
These algorithms, together with the analytical results on
upper bound and lower bound of the regret (the reward gap
between selected action and global optimal action), build the
foundation for our EV routing methodology development.

In this paper, we propose to solve the online energy-
optimal EV routing problem based on combinatorial multi-
arm semi-bandit. Here, semi-bandit means that only the
energy-consumption of each link along the traversed path
by EVs will be revealed and we assume no knowledge of
other unvisited routes [17]. We consider that, during a short
period of time, the link-level energy consumption follows an
unknown distribution which will be estimated from real-time
trip and energy-consumption information from the fleet of
EVs. And the fleet of EVs is scheduled to serve a predefined
set of OD pairs and the operator needs to identify the energy-
optimal route of each OD pair. While there exists a large
number of routes across all the ODs, we further devise the
route elimination algorithm to guide the exploration of the
bandit model and to enhance the sample efficiency in light
of the limited information in real-time. To summarize, our
proposed model is a multi-OD CMAB problem (MCMAB)
and this study has three major contributions:
(1) We develop a MCMAB framework to effectively utilize

the shared information among different routes and dif-
ferent OD pairs, which makes the best use of the limited
traffic and energy consumption information obtained by
the fleet of EVs.

(2) We devise the UCB based solution algorithm for the
MCMAB and the corresponding oracle for obtaining
the energy-optimal route, which is further embedded
with the route elimination algorithm to improve sample
efficiency.

(3) We demonstrate the effectiveness of the MCMAB and
the route elimination scheme through a real-world case
study, where we simulate the energy consumption of a
fleet of EVs in the Manhattan network and conduct com-
prehensive experiments to evaluate the performances of
the model.

The rest of the paper is organized as follows. The notations
of parameters and variables used in this paper are shown in
Table I. Section II discusses the setting of the online energy-
optimal EV routing problem setting and presents the multi-
arm bandit routing algorithm as well as the action elimination
policy. Section III describes the background information of
our case study and discusses the major results obtained from
the numerical experiments. Finally, we conclude the study
with major findings and future directions in section IV.

II. SEMI-BANDIT ONLINE MULTI-OD ROUTING
PROBLEM

A. Single OD Routing Model

Consider the road network G(V,E) where V is the node
set and E is the link set. Here, G(V,E) is a primal model

TABLE I
TABLE OF NOTATION

Parameters Descriptions
G(V,E) The road network where a node in V represents

an intersection and an link in E represents a road
segment

u, v; o, d Two distinct intersections in G(V,E)
P(u, v);P(o, d) All simple paths from node u to node v; from node

o to node d
p A path in P
|p| The number of links in path p
od(p) The origin and destination of path p
Tod The times that od has appeared
e A road segment in p
Variables Descriptions
ot, dt The origin and destination node of the trip at time t
Ce(t) The energy consumption for an EV passing road

segment e at time t
C(o, d) The energy consumption for an EV traveling from o

to d
re(t) Reward of link e at time t, which is the opposite

number of Ce(t)
p∗ The best route with largest expected reward
R Cumulative regret from time 1 to time T − 1

Q̂T (p) The average reward for path p from time 1 to time
T − 1

ÛT (p) The UCB (upper confidence bound) for path p from
time 1 to time T − 1

pUCB
T The selected path using the UCB algorithm at time

T
PT (oT , dT ) The potential paths from oT to dT at the beginning

of time T
mT (oT , dT ) The medium of all expected reward {rp(T )}

where a node represents an intersection and an link represents
a road segment. For each pair of nodes in the network u, v ∈
V , u 6= v, all simple paths (simple path J refers the path
where nodes along the path are all distinct) from node u to
node v form the candidate path set P(u, v). For each path
p ∈ P , p ⊆ {0, 1}|E|. We denote the e-th entry of p to
be pe, e = 1, 2, ..., |E|. pe = 1 if and only if the link e
belongs to path p. Each link e is associated with the link
travel time and the link electricity consumption, and both of
which follow certain unknown distributions. We denote the
random variable for the electricity consumption of an EV
traversing link e as Ce. At time T , we assume the knowledge
of electricity consumption Ce(t) realized in previous time
steps, where t = 1, 2, ..., T − 1 respectively.

The decision-making process for the online routing prob-
lem starts from time step t = 1 and proceeds with t =
2, 3, 4... up to the predefined terminal step. For every time
step t, the vehicle with the origin o and destination d selects
one certain route p(t) ∈ P(o, d) and arrives at the destination
d. At the end of the trip, the energy consumption Ce(t) of
each link e ∈ p(t) that traveled by this vehicle is revealed,
which indicates that we are able to retrieve the energy
consumption information for only the links that we have
visited so far. In this case, the energy consumption for each
link e along the path p(t) is realized, and this corresponds to
a semi− bandit feedback process, which is distinct from a
typical bandit feedback process where only end-to-end delay
is returned as in the traditional routing problems.

The objective of the routing problem is to minimize the



energy consumption C(o, d) by choosing an appropriate
route between o and d, we denote the reward of the bandit
as r(o, d) = −C(o, d). For our bandit problem, we set
the objective as to maximize the cumulative reward, which
translates into minimizing the cumulative regret over time
(gap of the reward between the selected route p(t) and the
best route p∗, the best route is defined as the oracle minimum
energy consumption path for the OD pair):

ER = E
T−1∑
t=1

(
∑
e∈p∗

re(t)−
∑

e∈p(t)

re(t)) (1)

One trivial approach to solve equation 1 is to consider
each path being independent of the other and cast it as
a conventional MAB problem where each path is treated
as a single arm. Then the UCB algorithm can be directly
implemented to sample and update the reward by pulling
each arm, and eventually identify the optimal arm to mini-
mize the cumulative regret in the long run. But this can be
extremely inefficient as it ignores the existence of common
link segments among candidate paths. Instead, we would like
to take advantage of the combinatorial nature between links
and paths and treat each link as the arm. Then each path p
can be considered as a super arm whose reward is the sum
of rewards of all links e ∈ p. Each time we pull the super
arm, we can update the reward information at the link level,
which contributes to broadcasting the information to other
paths of common link segments. In this regard, we introduce
the combinatorial UCB algorithm (CUCB) [19] to estimates
the upper confidence bound UT (p) of each action p with
high probability, which follows:∑

e∈p
re(T ) ≤ Q̂T (p) + ÛT (p) (2)

Here, Q̂T (p) is the average reward of path p in previous time
steps:

Q̂T (p) =
∑
e∈p

∑T−1
t=1 I[e ∈ p(t)]re(t)∑T−1

t=1 I[e ∈ p(t)]
(3)

where I[e ∈ p(t)] is an indicator variable and is equal to 1 if
and only if e ∈ p(t), and 0 otherwise. Using the "Hoeffding’s
Inequality" [20], we set the confidence region ÛT (p) to be:

ÛT (p) =
∑
e∈p

√
3ln(Tod(p))

2
∑T−1

t=1 I[e∈p(t)]

|p|
(4)

Here, we introduce the path length |p| to balance the differ-
ence of paths with large and small number of links. The
CUCB algorithm proceeds by iteratively selecting a path
following a given oracle algorithm, revealing the electricity
consumption on each link, and update the observed average
electricity consumption on each link. And we define the
oracle algorithm as to select the path of the highest UCB
(lowest potential energy consumption) value out of all the
candidate paths, which can be written as:

pUCB
T = argmaxp∈P(o,d)(Q̂T (p) + ÛT (p)) (5)

We summarize the pseudo-code for the CUCB algorithm in
Algorithm 1.

Algorithm 1 CUCB for the CMAB problem
Require: G(V,E); o, d,P(o, d); {p(t), {re(t)}e∈p(t)}, t =

1, 2, ..., T − 1
Ensure: p(T );

1: calculate Q̂T (p) using equation (3)
2: calculate ÛT (p) using equation (4)
3: select pUCB

T using equation (5)
4: return pUCB

T

Note that pUCB
T belongs to a predefined set P(o, d) and all

paths in P(o, d) contain a link at most once, so we do not
need to deal with the "negative cycle" issue.

B. Multi-OD Routing Model

For the case of routing a fleet of EVs, the operator
needs to identify the optimal routes across all the possible
OD pairs. Instead of performing CUCB for individual OD
independently, there may also exist overlapping links among
different ODs, which is similar to the link overlapping case
among different paths of each OD pair. This motivates us
to extend Algorithm 1 to account for the combinatorial
nature of the multi-OD routing problem. At time step t,
each candidate od pair is associated with a candidate path set
P(ot, dt) and will generate the observations of all links along
a chosen path. We can, therefore,introduce a straightforward
modification to Algorithm 1 by updating the link information
(electricity consumption, visited counts) from all paths of
all the OD pairs simultaneously. And the process can be
summarized in Algorithm 2.

Algorithm 2 CUCB for multiple ODs (MCMAB)
Require: G(V,E); {ot, dt, p(t), {re(t)}e∈p(t)}, t =

1, 2, ..., T − 1; P(oT , dT ) (the potential simple paths
from oT to node dT );

Ensure: p(T )
1: for any p in P(oT , dT ) do
2: calculate Q̂T (p) using equation (3)
3: calculate ÛT (p) using equation (4)
4: calculate rp(T ) using rp(T ) = Q̂T (p) + ÛT (p)
5: end for
6: select pUCB

T = argmaxp∈PT (oT ,dT )rp(T )
7: return pUCB

T

C. Path elimination

While there may exist a large number of candidate paths
for each OD pair, only a few of them will have close-
to-optimal performances. Since UCB is an algorithm that
balances between exploration and exploitation, significant
resources will be wasted on exploring bad paths if we
maintain a large candidate path set. In such cases, it is
more efficient to delete the path with bad performance as the
exploration process continues, which helps to speed up the



algorithm convergence and identify better-performed paths.
By eliminating sub-optimal actions through the iteration
process, it helps to reduce the size of the path sets to be
searched in the future iteration and focus on the exploration
among the optimal paths.

In this study, we develop the path elimination policy based
on the Path Elimination method introduced in [21]. The
proposed elimination policy requires the input of a minimum
number of actions to keep (δ1), the elimination probability
(α), and the size of each elimination (δ2). α increases from 0
to 1 over the iteration, which ensures a small chance of elim-
ination in early stages but allows for aggressive elimination
with more exploration conducted. The elimination algorithm
takes the observed mean path travel time at time T as an
input, and removes the worst δ2 candidate paths from the
path set based on the probability α. The path elimination
algorithm is summarized in Algorithm 3.

Algorithm 3 Path elimination algorithm
Require: G(V,E); {ot, dt, p(t), {re(t)}e∈p(t)}, t =

1, 2, ..., T − 1; PT (oT , dT ); δ1, δ2.
Ensure: p(T ); PT+1(oT , dT )

1: for any p in PT (oT , dT ) do
2: calculate Q̂T (p) using equation (3)
3: calculate ÛT (p) using equation (4)
4: calculate rp(T ) using rp(T ) = Q̂T (p) + ÛT (p)
5: end for
6: select pUCB

T = argmaxp∈PT
(oT , dT )rp(T )

7: PT+1(oT , dT ) = Pt(oT , dT )
8: generate a random number r in [0,1]
9: α = ea∗(T/b−1)

10: if |Pt(oT , dT )| > δ1 and r < α then
11: Find the δ2 percentile value mT (oT , dT ) of
{rp(T )}p∈PT (oT ,dT ).

12: for p ∈ PT (oT , dT ) do
13: if rp(T ) < mT (oT , dT ) then
14: PT+1(oT , dT ) = PT+1(oT , dT )/{p}
15: end if
16: end for
17: end if
18: return pUCB

T ; PT+1(oT , dT )

III. NUMERICAL EXPERIMENTS

A. Experiment setting

We choose Manhattan in New York City as the case study
area to evaluate the performances of our models for routing
a fleet of EVs across 10 selected OD pairs, as shown in
Figure 1. The Manhattan road network is extracted from
New York State open data and only link segments whose
speed limit is above 35 mph are kept. And we measure the
average speed for link energy consumption calculation using
speed data from Google Map API and open data from Uber
Movement. The processed Manhattan network has 1,455
nodes, 2,475 links, with a mean velocity of 20.4 mph.

The 10 OD pairs are selected with a small chance of
possible overlapping link segments. For each OD pair, we
use the k-shortest path algorithm to generate the candidate
path set based on the path travel time, where we set k=50. We
dispatch up to 1000 vehicles on each OD pair, which leads to
103 iterations for each OD and MCMAB based algorithms,
while 104 iterations for performing the CMAB algorithm,
to better compare the results of different algorithms, in the
figures, we extend the results from 103 iterations for multi-
OD into 104 iterations for single-OD.

In addition to the models discussed in this study, we
also introduce several benchmark algorithms for comparison
purposes, and are summarized as follows:

1) Shortest path (oracle): return the energy consumption
of the path with the shortest travel time at the current step.

2) Shortest path (one step lag): current energy consump-
tion of the shortest travel time path of previous steps.

3) Shortest path (10 steps average): the current energy
consumption of the shortest travel time path based on the
average performances from t− 10 to t− 1.

4) CMAB: choose the path independently for each OD
pair using Algorithm 1.

Fig. 1. Manhattan Network

B. Energy calculation

For calculating EV energy consumption, we develop a
physical model based on the results in [22]. The model
introduces vehicle specific power(VSP) to describe the ve-
hicle dynamics and second-by-second battery usage. In our
implementation, we simulate the dynamics of an EV travers-
ing each link based on the speed distribution to generate
samples of energy consumption, and we then use a B-spline
interpolation to construct the empirical distribution. This
method first produces a second-by-second profile of speed
and acceleration of an EV on a given path. We then feed
this profile into the physical model, which outputs the energy
consumption distribution of the EVs. Note that our CUCB
algorithms are still valid when the link energy consumption
is calculated via other energy models or is directly obtained
from the real-time consumption data of EVs.



C. Results

Figure 2 shows the cumulative regret across 6 different
methods. The overall regret for MCMAB with path elim-
ination is significantly smaller than others, which supports
the fast convergence and the superior performance in finding
the optimal path of the method. The contributing factor
of this lowest overall energy consumption is its smaller
candidate path set. This helps the algorithm to focus on a
few paths whose performances are all close to the MECP
and the algorithm can focus on further distinguishing the
performance differences among the remaining high-quality
paths. The results also demonstrate the superior performance
of the MCMAB than that of the CMAB, and this highlights
the importance of utilizing the combinatorial nature and
sharing information among different paths from OD pairs.
On the other hand, one may identify MECPs by using the
shortest travel time path as an approximation. And our results
also demonstrate the potential bias of such approaches, where
oftentimes the shortest travel time path does not necessarily
be the MECP. Specifically, the oracle shortest path approach
yields the best performances in all three shortest path meth-
ods, and the resulting cumulative regret is higher than the
worst-performing bandit algorithm (CMAB). And its regret
at the final step is 175% higher than the best performing
MCMAB with path elimination. Moreover, in practice, we
do not have access to oracle shortest path information, and
the other two feasible shortest path approaches based on
historical information may result in another 70% increase in
total regret. These results clearly state the importance of an
online routing model for the energy-optimal routing problem
and prove the superiority of our proposed solutions in terms
of both sample efficiency and solution quality.

Fig. 2. Cumulative regret

Figure 3 can quantify the gaps of the shortest path (oracle)
with the three bandit algorithms. In the first 500 iterations,
CMAB is found to perform worse than the oracle shortest
due to the excessive explorations spent on the large initial
candidate path set. After that, the CMAB starts to differen-
tiate good paths from the bad ones and select paths that are
more energy-efficient than the shortest travel time path. On
the other hand, the other two bandit algorithms are found
to perform consistently better than the oracle shortest path.
This again illustrates the importance of information sharing

in the MCMAB model. While the two MCMAB algorithms
have almost identical performances in the first 200 iterations,
the path elimination starts to show effectiveness in the
following iterations, and the increasingly large gap suggests
the consistent correctness of the path removal operations.
At the end of the 10000 iterations, we report that MCMAB
with path elimination helps to save a total of 298.9 kWh as
compared to the oracle shortest path policy, and the savings
for CMAB and MCMAB are 138.2 kWh and 204.8 kWh
respectively. And if we average over the final 1000 iterations,
MCMAB with path elimination finds path (0.010 kWh) that
is 66.7% more efficient than the shortest travel time path
(0.033 kWh), representing a saving of 23 kWh per thousand
trips. In this regard, the MCMAB algorithm can help to
achieve immense energy savings for large-scale EV fleet in
real-world applications.

Fig. 3. Gap compared with Shortest path (oracle)

We also visualize the detailed algorithm performances on
each OD, and the results can be found in Figure 4. These
results are clear evidence that the shortest travel path is
unlikely the MECP and not even a good approximation for
certain ODs. In some of the cases, the shortest path is found
to perform better than the bandit algorithms, nevertheless,
the cumulative gap is in general very small (smaller than 10).
Moreover, for cases where bandit algorithms are superior, we
find the differences between bandit algorithms and shortest
paths are much higher. These results state that the bandit
algorithms are able to identify consistently good routes
across different ODs.

Fig. 4. Per OD cumulative regret



Fig. 5. The distribution of visited paths of the routing algorithms (OD 9)

Finally, in Figure 5, we present the visit distribution of the
algorithms on selecting different candidate paths in the last
500 iterations, where each mark denotes one path selection at
a iteration. And we mark the top 10 good-performance paths
(counted from the MECPs at each iteration) with orange
arrows on the right side, and the oracle MECP with black
arrow. It is observed that the CMAB visited diverse paths,
which is indicative of the ongoing exploration process due to
the large candidate path set. On the contrary, both MCMAB
based algorithms are found to land their path selections
much more frequently within the top 10 paths, and the
path elimination process helps the MCMAB to focus almost
exclusively on the good-performance paths. For the oracle
shortest path, many of its selections are found to lie outside
the top 10 paths, and this observation is consistent with the
cumulative regret as shown in Figure 4.

IV. CONCLUSION

In this study, we develop the MCMAB model and the
path elimination algorithm to find MECP for the online
routing of a commercial EV fleet. Our results show that
the proposed algorithms can yield near-optimal MECP with
limited information, and the performances are significantly
better than the shortest travel time-based approaches. The
proposed algorithms may therefore contribute to more effi-
cient EV battery management, and will help EV operators
to prepare EVs for large-scale deployment and commercial
usage. As for future extensions, we plan to introduce the
correlation matrix to capture the link electricity consumption
dependencies to improve the learning efficiency, and we will
derive theoretical proofs on the upper bound of the long-term
expected reward regret for the MCMAB models.
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