
11
Sandia
National
Laboratories

P1393R0: A General Property
Customization Mechanism

David Hollman, Chris Kohlhoff, Bryce Lelbach,
Gordon Brown, Michal Dominiak

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidary of Honeywell
International Inc., for the U. S. Department of Energys National Nuclear Security Administration
under contract DE-NA0003525. This document is SAND #XXXX-XXXX.

SAND2019-1604PE

1 CONCEPT-DRIVEN DESIGN

1 CONCEPT-DRIVEN DESIGN

66 Concepts = Constraints + Axioms
- A. Sutton and B. Stroustrup, SLE '11

1 CONCEPT-DRIVEN DESIGN

66 Concepts = Constraints + Axioms
- A. Sutton and B. Stroustrup, SLE '11

66 Look at the algorithms!
- E. Niebler, numerous hall conversations

3 1 CONSTRAINT OPTIMIZATION

• Concept driven design is an optimization problem that balances minimization

of constraints on a set of algorithms with the minimization of cognitive load on

the user.

Inner Product

of all Constraints

(Fewest Concepts)

Ideal

Concept Set
Outer Product

of all Constraints

(Most Flexible)

3 1 CONSTRAINT OPTIMIZATION

• Concept driven design is an optimization problem that balances minimization

of constraints on a set of algorithms with the minimization of cognitive load on

the user.

Inner Product

of all Constraints

(Fewest Concepts)

Ideal

Concept Set

66 The design of a concept library
is the result of two minimization

problems: concept and constraint

minimization.

- A. Sutton and B. Stroustrup, SLE '11

Outer Product

of all Constraints

(Most Flexible)

3 1 CONSTRAINT OPTIMIZATION

• Concept driven design is an optimization problem that balances minimization

of constraints on a set of algorithms with the minimization of cognitive load on

the user.

Inner Product

of all Constraints

(Fewest Concepts)

Ideal

Concept Set

66 The design of a concept library
is the result of two minimization

problems: concept and constraint

minimization.

- A. Sutton and B. Stroustrup, SLE '11

Outer Product

of all Constraints

(Most Flexible)

66 An effective specification of
concepts is the product of an

iterative process that minimizes

the number of concepts while

maintaining expressive and

effective constraints.

- A. Sutton and B. Stroustrup, SLE '11

4 1 AXIOM SET OPTIMIZATION

• The analogous optimization problem for the semantic axioms looks like:

Inner Product of Specific Choices

from each Semantic Set

(Fewest Concepts)

Ideal

Concept Set

4.
Outer Product

of all Semantic Sets

(Most Inclusive)

4 1 AXIOM SET OPTIMIZATION

• The analogous optimization problem for the semantic axioms looks like:

Inner Product of Specific Choices

from each Semantic Set

(Fewest Concepts)

Ideal

Concept Set

4.

This is the hard part

Outer Product

of all Semantic Sets

(Most Inclusive)

4 1 AXIOM SET OPTIMIZATION

• The analogous optimization problem for the semantic axioms looks like:

Inner Product of Specific Choices

from each Semantic Set

(Fewest Concepts)

Ideal

Concept Set

4.

This is the hard part

Outer Product

of all Semantic Sets

(Most Inclusive)

• The most inclusive solution is to use all of the possible combinations of

what everyone things the abstraction should do.

4 1 AXIOM SET OPTIMIZATION

• The analogous optimization problem for the semantic axioms looks like:

Inner Product of Specific Choices

from each Semantic Set

(Fewest Concepts)

Ideal

Concept Set

4.

This is the hard part

Outer Product

of all Semantic Sets

(Most Inclusive)

• The most inclusive solution is to use all of the possible combinations of

what everyone things the abstraction should do.

• The fewest concepts solution (arguably the least cognitive load) chooses

one semantic from each group of conflicting options.

1 AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD?

1 AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD?

• Not every user cares about every semantic property

5 1 AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD?

• Not every user cares about every semantic property

• But some users really care about some semantic properties

5 1 AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD?

• Not every user cares about every semantic property

• But some users really care about some semantic properties

• Many concepts are unusable in certain domains without certain

semantic properties

5 1 AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD?

• Not every user cares about every semantic property

• But some users really care about some semantic properties

• Many concepts are unusable in certain domains without certain

semantic properties

• Different domains have different axiom sets for different concepts

5 1 AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD?

• Not every user cares about every semantic property

• But some users really care about some semantic properties

• Many concepts are unusable in certain domains without certain

semantic properties

• Different domains have different axiom sets for different concepts

• Just meeting the semantic requirements of an algorithm may not be

sufficiently consistent with the zero-overhead principle (or low-

overhead principle)

6 1 THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobni cate_l and frobni cate_2, that use the same

concept, Thi ng:

template <Thing T, auto I1, auto 12>
void frobnicate_2(T t, I1 i, 12 i);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) {
/* ... */

for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(t, i, j);

}

}

6 1 THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobni cate_l and frobni cate_2, that use the same

concept, Thi ng:

template <Thing T, auto 11, auto 12>
void frobnicate_2(T t, I1 i, 12 .1);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) {
/* ... */

for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(t, i, j);

}

}

• Both algorithms use the same constraints

6 1 THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobni cate_l and frobni cate_2, that use the same

concept, Thi ng:

template <Thing T, auto I1, auto 12>

void frobnicate_2(T t, I1 i, 12 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) {
/* ... */

for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(t, i, j);

}

}

• Both algorithms use the same constraints

• But suppose frobni cate_2 () (when used as inner-loop code), and won't run

efficiently unless Thi ng has caching enabled.

6 1 THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobni cate_1 and frobni cate_2, that use the same

concept, Thi ng:

template <Thing T, auto I1, auto 12>

void frobnicate_2(T t, I1 i, 12 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) {
/* ... */

for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(t, i, j);

}

}

• Both algorithms use the same constraints

• But suppose frobni cate_2 () (when used as inner-loop code), and won't run

efficiently unless Thi ng has caching enabled.

• Does the caller of frobni cate_l () need to know about caching?

6 1 THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobni cate_1 and frobni cate_2, that use the same

concept, Thi ng:

template <Thing T, auto I1, auto 12>

void frobnicate_2(T t, I1 i, 12 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) {
/* ... */

for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(t, i, j);

}

}

• Both algorithms use the same constraints

• But suppose frobni cate_2 () (when used as inner-loop code), and won't run

efficiently unless Thi ng has caching enabled.

• Does the caller of frobni cate_l () need to know about caching?

• Current options:

6 1 THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobni cate_1 and frobni cate_2, that use the same

concept, Thi ng:

template <Thing T, auto I1, auto 12>

void frobnicate_2(T t, I1 i, 12 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) {
/* ... */

for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(t, i, j);

}

}

• Both algorithms use the same constraints

• But suppose frobni cate_2 () (when used as inner-loop code), and won't run

efficiently unless Thi ng has caching enabled.

• Does the caller of frobni cate_1() need to know about caching?

• Current options:

• Expand the concept to Thi ng<Cachi ngMode>, and template frobni cate_1()

on Cachi ngMode

6 1 THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobni cate_1 and frobni cate_2, that use the same

concept, Thi ng:

template <Thing T, auto I1, auto 12>

void frobnicate_2(T t, I1 i, 12 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) {
/* ... */

for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(t, i, j);

}

}

• Both algorithms use the same constraints

• But suppose frobni cate_2 () (when used as inner-loop code), and won't run

efficiently unless Thi ng has caching enabled.

• Does the caller of frobni cate_1() need to know about caching?

• Current options:

• Expand the concept to Thi ng<Cachi ngMode>, and template frobni cate_1()

on Cachi ngMode

• Be okay with the efficiency loss

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);

} // namespace std
namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;

} // end generic_third_party_library
void my_frobnicate() {

Frobnicator auto frob = TPLFrobnicator<Myspecialconcern>();
/* ... */

std::apply_standard_frobnication(frob);
}

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);

} // namespace std

Suppose we want to introduce a standard frobnication algorithm.

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);

} // namespace std

}
mv Troonicate()

Presumably, if we put it in the standard, we want to do our best to avoid scenarios where users are forced to roll their on apply_f robni cati on ()

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;

} // end generic_third_party_library

' ' • ' ') {

A third-party library provides a Frobnicator.

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

void my_frobnicate() {
Frobnicator auto frob = TPLFrobnicator<MySpecialConcern>();
/* ... */

std::apply_standard_frobnication(frob);
}

Some user code wants to call the standard algorithm with the third party F robni cato r.

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F

} // namespace std
namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;

} // end generic_third_party_library
void my_frobnicate() {

Frobnicator auto frob = TPLFrobnicator<MySpecialConcern>();
/* ... */

std::apply_standard_frobnication(frob);
}

f);

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);

} // namespace std
namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;

} // end generic_third_party_library
void my_frobnicate() {

Frobnicator auto frob = TPLFrobnicator<Myspecialconcern>();
/* ... */

std::apply_standard_frobnication(frob);
}

This issue is one of cross-cutting concerns

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);

} // namespace std
namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;

} // end generic_third_party_library
void my_frobnicate() {

Frobnicator auto frob = TPLFrobnicator<Myspecialconcern>();
/* ... */

std::apply_standard_frobnication(frob);
}

This issue is one of cross-cutting concerns

• std : : apply_standa rd_frobni cati on 0 needs to communicate a cross-cutting concern to

TPLFrobni cator without adding to the user's cognitive load for the Frobni cator concept.

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);

} // namespace std
namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;

} // end generic_third_party_library
void my_frobnicate() {

Frobnicator auto frob = TPLFrobnicator<Myspecialconcern>();
/* ... */

std::apply_standard_frobnication(frob);
}

This issue is one of cross-cutting concerns

• std : : apply_standa rd_frobni cati on 0 needs to communicate a cross-cutting concern to

TPLFrobni cator without adding to the user's cognitive load for the Frobni cator concept.

• (The expression of this concern would need to be part of the standard library)

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);

} // namespace std
namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;

} // end generic_third_party_library
void my_frobnicate() {

Frobnicator auto frob = TPLFrobnicator<Myspecialconcern>();
/* ... */

std::apply_standard_frobnication(frob);
}

This issue is one of cross-cutting concerns

• std : : apply_standard_frobni cati on 0 needs to communicate a cross-cutting concern to

TPLFrobni cator without adding to the user's cognitive load for the Frobni cator concept.

• (The expression of this concern would need to be part of the standard library)

• my_frobni cate () needs to communicate a cross-cutting concern (expressed as

MySpeci alConcern) to the third-party library, but that concern is too domain-specific to be in the

standard library.

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);

} // namespace std
namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;

} // end generic_third_party_library
void my_frobnicate() {

Frobnicator auto frob = TPLFrobnicator<Myspecialconcern>();
/* ... */

std::apply_standard_frobnication(frob);
}

This issue is one of cross-cutting concerns

• std : : apply_standard_frobni cati on 0 needs to communicate a cross-cutting concern to

TPLFrobnicator without adding to the user's cognitive load for the Frobnicator concept.

• (The expression of this concern would need to be part of the standard library)

• my_frobni cate () needs to communicate a cross-cutting concern (expressed as

MySpecialConcern) to the third-party library, but that concern is too domain-specific to be in the

standard library.

• (But it would be nice for the third party library authors to be able to use the same mechanism to

communicate this concern.)

7 1 NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);

} // namespace std
namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;

} // end generic_third_party_library
void my_frobnicate() {

Frobnicator auto frob = TPLFrobnicator<Myspecialconcern>();
/* ... */

std::apply_standard_frobnication(frob);
}

This issue is one of cross-cutting concerns

• std : : apply_standa rd_frobni cati on 0 needs to communicate a cross-cutting concern to

TPLFrobnicator without adding to the user's cognitive load for the Frobnicator concept.

• (The expression of this concern would need to be part of the standard library)

• my_frobni cate () needs to communicate a cross-cutting concern (expressed as

MySpeci alConcern) to the third-party library, but that concern is too domain-specific to be in the

standard library.

• (But it would be nice for the third party library authors to be able to use the same mechanism to

communicate this concern.)

• The third-party library needs a way to communicate that the standard's cross-cutting concern is

orthogonal (or not) to the user's cross-cutting concern.

8 1 A String CONCEPT?

Consider what it would take to make a Stri ng concept that makes

everyone happy...

8 1 A String CONCEPT?

Consider what it would take to make a Stri ng concept that makes

everyone happy...

Examples of std: :string-like things

in the wild:

• llvm: : SmallStri ng

• folly : : fbstri ng

• Qt's QStri ng

• Unreal Engine's FStri ng

8 1 A String CONCEPT?

Consider what it would take to make a Stri ng concept that makes

everyone happy...

Examples of std • :string-like things

in the wild:

• llvm::SmallString

• folly : : fbstri ng

• Qt's QStri ng

• Unreal Engine's FStri ng

Properties algorithms may need to align with

the zero-overhead principle:

• Unicode support

• Small buffer optimization

• Is the data contiguous?

• Is the data aligned?

• Is the data in network pinned memory?

8 1 A String CONCEPT?

Consider what it would take to make a Stri ng concept that makes

everyone happy...

Examples of std • :string-like things

in the wild:

• llvm::SmallString

• folly : : fbstri ng

• Qt's QStri ng

• Unreal Engine's FStri ng

Properties algorithms may need to align with

the zero-overhead principle:

• Unicode support

• Small buffer optimization

• Is the data contiguous?

• Is the data aligned?

• Is the data in network pinned memory?

These can't be part of the concept (too much cognitive overhead), but they may be

necessary for some algorithms to avoid unacceptable performance overhead.

9 1 FIXING THE frobnicate EXAMPLE

We can fix the f robni cate example with properties:

template <Thing T, auto Item>
void frobnicate_2(T t, Item i, Item

template <Thing T, Range R>
void frobnicate_1(T t, R r) {
/* ... */
auto my_t = prefer(t, caching)
for(auto const& i : r) {

for(auto const& j : r) {
frobnicate_2(my_t, i, j);

}

}

/* ... */

}

;

i);

9 1 FIXING THE frobnicate EXAMPLE

We can fix the f robni cate example with properties:

auto my_t = prefer(t, caching);

Tell the Thi ng that it's about to be part of an inner loop and should cache things if it knows how.

9 1 FIXING THE frobnicate EXAMPLE

We can fix the f robni cate example with properties:

template <Thing T, auto Item>
void frobnicate_2(T t, Item i, Item

template <Thing T, Range R>
void frobnicate_1(T t, R r) {
/* ... */
auto my_t = prefer(t, caching)
for(auto const& i : r) {

for(auto const& j : r) {
frobnicate_2(my_t, i, j);

}
}

;

i);

9 1 FIXING THE frobnicate EXAMPLE

We can fix the f robni cate example with properties:

template <Thing T, auto Item>
void frobnicate_2(T t, Item i, Item

template <Thing T, Range R>
void frobnicate_1(T t, R r) {
/* ... */
auto my_t = prefer(t, caching)
for(auto const& i : r) {

for(auto const& j : r) {
frobnicate_2(my_t, i, j);

}
}

;

i);

• The cachi ng property doesn't contribute to the cognitive load for most callers of

frobnicate_2().

9 1 FIXING THE frobnicate EXAMPLE

We can fix the f robni cate example with properties:

template <Thing T, auto Item>
void frobnicate_2(T t, Item i, Item

template <Thing T, Range R>
void frobnicate_1(T t, R r) {
/* ... */
auto my_t = prefer(t, caching)
for(auto const& i : r) {

for(auto const& j : r) {
frobnicate_2(my_t, i, j);

}
}

;

i);

• The cachi ng property doesn't contribute to the cognitive load for most callers of

frobni cate_2 () .

• Without this property, frobni cate_1() might have to roll its own frobni cate_2 ()

9 1 FIXING THE frobnicate EXAMPLE

We can fix the f robni cate example with properties:

template <Thing T, auto Item>
void frobnicate_2(T t, Item i, Item

template <Thing T, Range R>
void frobnicate_1(T t, R r) {
/* ... */
auto my_t = prefer(t, caching)
for(auto const& i : r) {

for(auto const& j : r) {
frobnicate_2(my_t, i, j);

}
}

;

i);

• The cachi ng property doesn't contribute to the cognitive load for most callers of

frobni cate_2 () .

• Without this property, frobni cate_l () might have to roll its own frobni cate_2 ()

• A savvy frobni cate_2 () author can even specialize for the cachi ng case, if it

matters.

10 I
HEADER <property> SYNOPSIS: CONCEPT-

PRESERVING PROPERTIES

namespace std {
// customization point objects:
inline namespace /* unspecified *' {

}

inline constexpr /* unspecified ,k require = /* see-below */;
inline constexpr /* unspecified * prefer = /* see-below */;
inline constexpr /* unspecified * query = /* see-below */;

}

// Customization point type traits:
template<class T, class... P> struct can_require;
template<class T, class... P> struct can_prefer;
template<class T, class P> struct can_query;

template<class T, class... Properties>
inline constexpr bool can_require_v = can_require<T, Properties...>::value;

template<class T, class... Properties>
inline constexpr bool can_prefer_v = can_prefer<T, Properties...>::value;

template<class T, class Property>
inline constexpr bool can_query_v = can_query<T, Property>::value;

// namespace std

10 I
HEADER <property> SYNOPSIS: CONCEPT-

PRESERVING PROPERTIES

{
// customization point objects:

inline constexpr /* unspecified * require = /* see-below */;

A customization point object that returns an instance of the given object with the property. It can be the

same instance if that object already has that property. Fails at compile time if it cannot require the

property of the object given.

10 I
HEADER <property> SYNOPSIS: CONCEPT-

DIDCEI:A/IMn DIDnIDDTIC

// customization point objects:

inline constexpr /* unspecified * prefer = /* see-below */;

A customization point object that requi res a property if it can, or returns the object as-is if it cannot.

10 I
HEADER <property> SYNOPSIS: CONCEPT-

PRESERVING PROPERTIES

// customization point objects:

-1.
inline constexpr /* unspecified); query = /* see-below */;

}

A customization point object to query for the presence of a requirable property, or for the value of some

other aspect of the object given, like its cache size or the alignment of its underlying data.

10 I
HEADER <property> SYNOPSIS: CONCEPT-

PRESERVING PROPERTIES

}

// Customization point type traits:
template<class T, class... P> struct can_require;
template<class T, class... P> struct can_prefer;
template<class T, class P> struct can_query;

Type traits to determine the usability of the customization point objects statically.

10 I
HEADER <property> SYNOPSIS: CONCEPT-

PRESERVING PROPERTIES

template<class T, class... Properties>
inline constexpr bool can_require_v = can_require<T, Properties...>::value;

template<class T, class... Properties>
inline constexpr bool can_prefer_v = can_prefer<T, Properties...>::value;

template<class T, class Property>
inline constexpr bool can_query_v = can_query<T, Property>::value;

...and their _v versions, as usual.

10 I
HEADER <property> SYNOPSIS: CONCEPT-

PRESERVING PROPERTIES
namespace std {
// customization point objects:
inline namespace /* unspecified */ {
inline constexpr /* unspecified */ require = /* see-below */;
inline constexpr /* unspecified */ prefer = /* see-below */;
inline constexpr /* unspecified */ query = /* see-below */;

}

// Customization point type traits:
template<class T, class... P> struct can_require;
template<class T, class... P> struct can_prefer;
template<class T, class P> struct can_query;

template<class T, class... Properties>
inline constexpr bool can_require_v = can_require<T, Properties...>::value;

template<class T, class... Properties>
inline constexpr bool can_prefer_v = can_prefer<T, Properties...>::value;

template<class T, class Property>
inline constexpr bool can_query_v = can_query<T, Property>::value;

} // namespace std

CONCEPT-ENFORCING PROPERTIES

Inner Product

of all Constraints

(Fewest Concepts)

Ideal

Concept Set

inner Product of Specific Choices

from each Semantic Set

(Fewest Concepts)

Ideal

Concept Set

Outer Product

of all Constraints

(Most Flexible)

Outer Product

of all Semantic Sets

(Most Inclusive)

CONCEPT-ENFORCING PROPERTIES

Inner Product

of all Constraints

(Fewest Concepts)

Ideal

Concept Set

Inner Product of Specific Choices

from each Semantic Set

(Fewest Concepts)

Broadly speaking...

Ideal

Concept Set

Outer Product

of all Constraints

(Most Flexible)

Outer Product

of all Semantic Sets

(Most Inclusive)

CONCEPT-ENFORCING PROPERTIES

Inner Product

of all Constraints

(Fewest Concepts)

Ideal
Concept Set

Inner Product of Specific Choices

from each Semantic Set

(Fewest Concepts)

Ideal
Concept Set

1

Outer Product

of all Constraints

(Most Flexible)

Outer Product

of all Semantic Sets

(Most Inclusive)

Broadly speaking...
• Concept-preserving properties are useful when the cross-cutting concerns of a subset of

the algorithms falls to the right (more flexible/inclusive side) of the otherwise ideal

concept set.

CONCEPT-ENFORCING PROPERTIES

Inner Product

of all Constraints

(Fewest Concepts)

Ideal

Concept Set

Inner Product of Specific Choices

from each Semantic Set

(Fewest Concepts)

Ideal

Concept Set

Outer Product

of all Constraints

(Most Flexible)

Outer Product

of all Semantic Sets

(Most Inclusive)

Broadly speaking...
• Concept-preserving properties are useful when the cross-cutting concerns of a subset of

the algorithms falls to the right (more flexible/inclusive side) of the otherwise ideal

concept set

• Concept-enforcing properties are useful when the needs of a subset of the algorithms

falls to the left (fewer concepts) side of the otherwise ideal concept set.

CONCEPT-ENFORCING PROPERTIES

Inner Product

of all Constraints

(Fewest Concepts)

Ideal

Concept Set

Inner Product of Specific Choices

from each Semantic Set

(Fewest Concepts)

Ideal

Concept Set

Outer Product

 > of all Constraints

(Most Flexible)

Outer Product

of all Semantic Sets

(Most Inclusive)

Broadly speaking...
• Concept-preserving properties are useful when the cross-cutting concerns of a subset of

the algorithms falls to the right (more flexible/inclusive side) of the otherwise ideal

concept set

• Concept-enforcing properties are useful when the needs of a subset of the algorithms

falls to the left (fewer concepts) side of the otherwise ideal concept set.

• When a particular cross-cutting concern is common to multiple concepts, there needs to

be a way to obtain an object meeting the requirements of a different concept but that

addresses the same cross-cutting concern.

1

12 I
HEADER <property> SYNOPSIS: CONCEPT-

ENFORCING PROPERTIES

namespace std {
// customization point objects:
inline namespace /* unspecified */ {
inline constexpr /* unspecified */ require_concept = /* see-below */;

}

}

// Customization point type traits:
template<class T, class P> struct can_require_concept;

template<class T, class... Properties>
inline constexpr bool can_require_concept_v =

can_require_concept<T, Properties...>::value;
// namespace std

12 I
HEADER <property> SYNOPSIS: CONCEPT-

ENFORCING PROPERTIES

// customization point objects:
inline namespace /* unspecified */ {
inline constexpr /* unspecified */ require_concept = /* see-below */;

}

A customization point object that returns an object with the same applicable concept-preserving

properties but that meets the requirements of the concept associated with the given property.

12 I
HEADER <property> SYNOPSIS: CONCEPT-

ENFORCING PROPERTIES

// customization point objects:
inline namespace /* unspecified */ {
inline constexpr /* unspecified * require_concept = /* see-below */;

}

It can be the same instance if that object already meets the requirements of the associated concept.

Fails at compile time if no such object can be created.

12 I
HEADER <property> SYNOPSIS: CONCEPT-

ENFORCING PROPERTIES

// Customization point type traits:
template<class T, class P> struct can_require_concept;

Type trait to determine the usability of the customization point object statically.

12 I
HEADER <property> SYNOPSIS: CONCEPT-

ENFORCING PROPERTIES

template<class T, class... Properties>
inline constexpr bool can_require_concept_v =

can_require_concept<T, Properties...>::value;

...and the _v version, as usual.

12 I
HEADER <property> SYNOPSIS: CONCEPT-

ENFORCING PROPERTIES

namespace std {
// customization point objects:
inline namespace /* unspecified */ {
inline constexpr /* unspecified *, require_concept = /* see-below

}

// Customization point type traits:
template<class T, class P> struct can_require_concept;

template<class T, class... Properties>
inline constexpr bool can_require_concept_v =

can_require_concept<T, Properties...>::value;
} // namespace std

* / ;

13 PROPERTY APPLICABILITY TRAIT

13 I
PROPERTY APPLICABILITY TRAIT

• Concept-enforcing properties introduce a problem: how does one

indicate that a concept-preserving property is "applicable" to a

concept and must be preserved across a requi re_concept ()?

13 I
PROPERTY APPLICABILITY TRAIT

• Concept-enforcing properties introduce a problem: how does one

indicate that a concept-preserving property is "applicable" to a

concept and must be preserved across a requi re_concept ()?

• Simplest answer: specify that properties must declare the concept or

concepts they apply to using a type trait.

13 I
PROPERTY APPLICABILITY TRAIT

• Concept-enforcing properties introduce a problem: how does one

indicate that a concept-preserving property is "applicable" to a

concept and must be preserved across a requi re_concept ()?

• Simplest answer: specify that properties must declare the concept or

concepts they apply to using a type trait.

• This has the added benefit of restricting the cognitive effect of

properties to the concept sets that they opt in to.

13 I
PROPERTY APPLICABILITY TRAIT

• Concept-enforcing properties introduce a problem: how does one

indicate that a concept-preserving property is "applicable" to a

concept and must be preserved across a requi re_concept ()?

• Simplest answer: specify that properties must declare the concept or

concepts they apply to using a type trait.

• This has the added benefit of restricting the cognitive effect of

properties to the concept sets that they opt in to.

• A property intended for strings doesn't accidentally get applied to

allocators, and allocator authors don't have to think about what

happens if a string property is passed to their requi re

implementation.

14
HEADER <property> SYNOPSIS: PROPERTY

APPLICABILITY

namespace std {
// Customization point type traits:
template<class T, class P> struct is_applicable_property;

template<class T, class... Properties>
inline constexpr bool is_applicable_property_v =

is_applicable_property<T, Properties...>::value;
} // namespace std

15 ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thi ng concept) from the earlier example.

struct caching_t {
template <class T>
static constexpr bool is_applicable_property_v = Thing<T>;
static constexpr bool is_requirable = true;
static constexpr bool is_preferable = true;
template <class T>
static constexpr bool static_query_v = std::query(T{}, caching_t{});
constexpr auto operator<=>(caching_t) const noexcept = default;
using polymorphic_query_result_type = bool;
static constexpr bool value() { return true; }

};
inline constexpr caching_t caching = { };

15 ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thi ng concept) from the earlier example.

struct caching_t {

};
inline constexpr caching_t caching = { };

We've used the convention of naming the type of a property with an _t suffix.

15 ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thi ng concept) from the earlier example.

template <class T>
static constexpr bool is_applicable_property_v = Thing<T>;

This opts in to applicability to types meeting the requirements of Thi ng

15 ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thi ng concept) from the earlier example.

static constexpr bool is_requirable = true;

This opts in to the requi re customization point

15 ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thi ng concept) from the earlier example.

static constexpr bool is_preferable = ;

This opts in to the prefer customization point

15 ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thi ng concept) from the earlier example.

template <class T>
static constexpr bool static_query_v = std::query(T{}, caching_t{});

Exposes the value of the query at compile time (if querying the property is a valid constant expression).

15 ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thi ng concept) from the earlier example.

constexpr auto operator<=>(caching_t) const noexcept = default;
,.
,
; 1

Properties must be equality comparable.

15 ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thi ng concept) from the earlier example.

using polymorphic_query_result_type = bool;

This is the type that a query on a polymorphic wrapper should return return when querying this

property. Since querying cachi ng just returns whether or not it is enabled, use bool here.

15 ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thi ng concept) from the earlier example.

static constexpr bool value() { return true; }

This will make more sense with non-boolean properties, but basically it allows generic code to check for

a successful prefer of a property p using std: :query(std: :prefer (x 1 p) , p) ==

p.value()

15 ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thi ng concept) from the earlier example.

struct caching_t {
template <class T>
static constexpr bool is_applicable_property_v = Thing<T>,
static constexpr bool is_requirable = true;
static constexpr bool is_preferable = true;
template <class T>
static constexpr bool static_query_v = std::query(T{}, caching_t{});
constexpr auto operator<=>(caching_t) const noexcept = default;
using polymorphic_query_result_type = bool;
static constexpr bool value() { return true; }

};
inline constexpr caching_t caching = { };

15 ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thi ng concept) from the earlier example.

struct caching_t {
template <class T>
static constexpr bool is_applicable_property_v = Thing<T>;
static constexpr bool is_requirable = true;
static constexpr bool is_preferable = true;
template <class T>
static constexpr bool static_query_v = std::query(T{}, caching_t{});
constexpr auto operator<=>(caching_t) const noexcept = default;
using polymorphic_query_result_type = bool;
static constexpr bool value() { return true; }

};
inline constexpr caching_t caching = { };

(Note: this oversimplifies a bit; in reality, we'd want a pair of mutually exclusive properties that turn on and off caching, respectively.)

16

QUESTIONS?

