NISA @cnerey

B B i G B

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidary of Honeywell
International Inc., for the U. S. Department of Energy's National Nuclear Security Administration
under contract DE-NAO003525. This document is SAND #XXXX-XXXX.

Sandia
SAND2019- 1604PE
INAuvI Ial

Laboratories

P1393RO0O: A General Property
Customization Mechanism

|| | | b

David Hollman, Chris Kohlhoff, Bryce Lelbach,
Gordon Brown, Michat Dominiak

CONCEPT-DRIVEN DESIGN

CONCEPT-DRIVEN DESIGN

66 Concepts = Constraints + Axioms]
- A. Sutton and B. Stroustrup, SLE '11 i

CONCEPT-DRIVEN DESIGN

66 Concepts = Constraints + Axioms

- A. Sutton and B. Stroustrup, SLE '11

86 Look at the algorithms! |

- E. Niebler, numerous hall conversations

CONSTRAINT OPTIMIZATION

e Concept driven design is an optimization problem that balances minimization
of constraints on a set of algorithms with the minimization of cognitive load on
the user. .

Ideal
Concept Set

. Outer Product I

of all Constraints -
(Most Flexible)

Inner Product

of all Constraints
(Fewest Concepts)

CONSTRAINT OPTIMIZATION

e Concept driven design is an optimization problem that balances minimization
of constraints on a set of algorithms with the minimization of cognitive load on
the user.

Ideal
Concept Set

. Outer Product

Inner Product

I 1

of all Constraints
(Most Flexible)

of all Constraints
(Fewest Concepts)

66 The design of a concept library
IS the result of two minimization
problems: concept and constraint
minimization.

- A. Sutton and B. Stroustrup, SLE '11

CONSTRAINT OPTIMIZATION

e Concept driven design is an optimization problem that balances minimization
of constraints on a set of algorithms with the minimization of cognitive load on

the user.

Inner Product

Ideal
Concept Set
{

Outer Product

of all Constraints
(Fewest Concepts)

66 The design of a concept library
IS the result of two minimization
problems: concept and constraint
minimization.

- A. Sutton and B. Stroustrup, SLE '11

of all Constraints
(Most Flexible)

66 An effective specification of
concepts is the product of an
iterative process that minimizes
the number of concepts while
maintaining expressive and
effective constraints.

- A. Sutton and B. Stroustrup, SLE '11

AXIOM SET OPTIMIZATION

e The analogous optimization problem for the semantic axioms looks like:

Ideal
Concept Set

. Outer Product

of all Semantic Sets

Inner Product of Specific Choices

from each Semantic Set
(Fewest Concepts)

(Most Inclusive)

AXIOM SET OPTIMIZATION

e The analogous optimization problem for the semantic axioms looks like:

Ideal
Concept Set
{

This is the hard part

Outer Product
of all Semantic Sets
(Most Inclusive)

Inner Product of Specific Choices ‘

from each Semantic Set
(Fewest Concepts)

AXIOM SET OPTIMIZATION

e The analogous optimization problem for the semantic axioms looks like:

Ideal
- . Concept Set
Inner Product of Specific Choices Outer Product

from each Semantic Set of all Semantic Sets
(Fewest Concepts) (Most Inclusive)

This is the hard part I

e The most inclusive solution is to use all of the possible combinations of
what everyone things the abstraction should do.

AXIOM SET OPTIMIZATION

e The analogous optimization problem for the semantic axioms looks like:

Ideal
Concept Set

Outer Product

{

Inner Product of Specific Choices ‘

of all Semantic Sets
(Most Inclusive)

from each Semantic Set
(Fewest Concepts)

I 1

This is the hard part

e The most inclusive solution is to use all of the possible combinations of
what everyone things the abstraction should do.

e The fewest concepts solution (arguably the least cognitive load) chooses
one semantic from each group of conflicting options.

AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD?

AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD? ‘

e Not every user cares about every semantic property E

AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD? ‘

e Not every user cares about every semantic property [
e But some users really care about some semantic properties

AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD? ‘

e Not every user cares about every semantic property [
e But some users really care about some semantic properties
e Many concepts are unusable in certain domains without certain
semantic properties

AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD? ‘

e Not every user cares about every semantic property [
e But some users really care about some semantic properties
e Many concepts are unusable in certain domains without certain
semantic properties
e Different domains have different axiom sets for different concepts I

AXIOM SET OPTIMIZATION

WHY IS THIS PART SO HARD? ‘

e Not every user cares about every semantic property [
e But some users really care about some semantic properties
e Many concepts are unusable in certain domains without certain

semantic properties

e Different domains have different axiom sets for different concepts

e Just meeting the semantic requirements of an algorithm may not be |
sufficiently consistent with the zero-overhead principle (or low-
overhead principle)

THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobnicate_1 and frobnicate_2, that use the same
concept, Thing: ‘

template <Thing T, auto Il, auto I2>
void frobnicate_2(T t, I1 i, I2 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) { I

for(auto const& i : r) {
for(auto const& j : r) { "
frobnicate_2(t, i, j);

THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobnicate_1 and frobnicate_2, that use the same
concept, Thing:

template <Thing T, auto Il, auto I2>
void frobnicate_2(T t, I1 i, I2 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) { I

for(auto const& i : r) {
for(auto const& j : r) { B
frobnicate_2(t, i, j);

e Both algorithms use the same constraints (ay)

THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobnicate_1 and frobnicate_2, that use the same
concept, Thing:

template <Thing T, auto Il, auto I2>
void frobnicate_2(T t, I1 i, I2 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) { I

for(auto const& i : r) {
for(auto const& j : r) { B
frobnicate_2(t, i, j);

e Both algorithms use the same constraints (ay)
e But suppose frobnicate_2() (when used as inner-loop code), and won't run
efficiently unless Thing has caching enabled. I

THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobnicate_1 and frobnicate_2, that use the same
concept, Thing:

template <Thing T, auto Il, auto I2>

void frobnicate_2(T t, I1 i, I2 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) { I

for(auto const& i : r) {
for(auto const& j : r) { B

frobnicate_2(t, i, j);

e Both algorithms use the same constraints (ay)
e But suppose frobnicate_2() (when used as inner-loop code), and won't run

efficiently unless Thing has caching enabled. I
e Does the caller of frobnicate_1() need to know about caching? |

THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobnicate_1 and frobnicate_2, that use the same
concept, Thing:

template <Thing T, auto Il, auto I2>

void frobnicate_2(T t, I1 i, I2 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) { I

for(auto const& i : r) {
for(auto const& j : r) { B

frobnicate_2(t, i, j);

Both algorithms use the same constraints (ay)

But suppose frobnicate_2() (when used as inner-loop code), and won't run

efficiently unless Thing has caching enabled. I
Does the caller of frobnicate_1() need to know about caching? |
Current options:

THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobnicate_1 and frobnicate_2, that use the same
concept, Thing: ‘

template <Thing T, auto Il, auto I2>
void frobnicate_2(T t, I1 i, I2 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) { I

for(auto const& i : r) {
for(auto const& j : r) { B
frobnicate_2(t, i, j);

e Both algorithms use the same constraints (ay) I
e But suppose frobnicate_2() (when used as inner-loop code), and won't run

efficiently unless Thing has caching enabled. I
e Does the caller of frobnicate_1() need to know about caching? |
e Current options:

e Expand the concept to Thing<CachingMode>, and template frobnicate_1() ‘

on CachingMode

THE NESTED CONCERNS PROBLEM

Consider two algorithms, frobnicate_1 and frobnicate_2, that use the same
concept, Thing: ‘

template <Thing T, auto Il, auto I2>
void frobnicate_2(T t, I1 i, I2 j);

template <Thing T, ForwardRange R>
void frobnicate_1(T t, R r) { I

for(auto const& i : r) {
for(auto const& j : r) { B
frobnicate_2(t, i, j);

e Both algorithms use the same constraints (ay) I
e But suppose frobnicate_2() (when used as inner-loop code), and won't run

efficiently unless Thing has caching enabled. I
e Does the caller of frobnicate_1() need to know about caching? |
e Current options:

e Expand the concept to Thing<CachingMode>, and template frobnicate_1() ‘

on CachingMode
e Be okay with the efficiency loss

NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);
}
namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;
}
void my_frobnicate() {
Frobnicator auto frob = TPLFrobnicator<MySpecialConcern>(); I

std::apply_standard_frobnication(frob);
}

NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);

}

Suppose we want to introduce a standard frobnication algorithm.

NESTED CONCERNS: STANDARD LIBRARY
Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);

}

Presumably, if we put it in the standard, we want to do our best to avoid scenarios where users are forced to roll their on apply_frobnication() B

NESTED CONCERNS: STANDARD LIBRARY
Why should the standard library care about this problem?

namespace generic_third_party_Llibrary {
template <class...> struct TPLFrobnicator;

}

A third-party library provides a Frobnicator. B

NESTED CONCERNS: STANDARD LIBRARY
Why should the standard library care about this problem?

void my_frobnicate() {
Frobnicator auto frob = TPLFrobnicator<MySpecialConcern>();

std: :apply_standard_frobnication(frob); I
}

Some user code wants to call the standard algorithm with the third party Frobn-icator. B

NESTED CONCERNS: STANDARD LIBRARY
Why should the standard library care about this problem?

namespace std {

template <Frobnicator F> void apply_standard_frobnication(F f);
}
namespace generic_third_party_Llibrary {

template <class...> struct TPLFrobnicator;

}
void my_frobnicate() {
Frobnicator auto frob = TPLFrobnicator<MySpecialConcern>();

std: :apply_standard_frobnication(frob); I
}

NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);
}
namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;
}
void my_frobnicate() {
Frobnicator auto frob = TPLFrobnicator<MySpecialConcern>(); I

std::apply_standard_frobnication(frob);
}

This issue is one of cross-cutting concerns

NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {

template <Frobnicator F> void apply_standard_frobnication(F f);
}
namespace generic_third_party_library {

template <class...> struct TPLFrobnicator;

}
void my_frobnicate() {
Frobnicator auto frob = TPLFrobnicator<MySpecialConcern>(); I
std::apply_standard_frobnication(frob);
}
|
This issue is one of cross-cutting concerns
e std::apply_standard_frobnication() needs to communicate a cross-cutting concern to
TPLFrobnicator without adding to the user's cognitive load for the Frobnicator concept.
I

NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {

template <Frobnicator F> void apply_standard_frobnication(F f);
}
namespace generic_third_party_Llibrary {

template <class...> struct TPLFrobnicator;

}

void my_frobnicate() {
Frobnicator auto frob = TPLFrobnicator<MySpecialConcern>(); I

std::apply_standard_frobnication(frob);
}

This issue is one of cross-cutting concerns

e std::apply_standard_frobnication() needs to communicate a cross-cutting concern to
TPLFrobnicator without adding to the user's cognitive load for the Frobnicator concept.
e (The expression of this concern would need to be part of the standard library)

NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {

template <Frobnicator F> void apply_standard_frobnication(F f);
}
namespace generic_third_party_library {

template <class...> struct TPLFrobnicator;

}

void my_frobnicate() {
Frobnicator auto frob = TPLFrobnicator<MySpecialConcern>(); I

std::apply_standard_frobnication(frob);
}

This issue is one of cross-cutting concerns

e std::apply_standard_frobnication() needs to communicate a cross-cutting concern to
TPLFrobnicator without adding to the user's cognitive load for the Frobnicator concept.
e (The expression of this concern would need to be part of the standard library)

e my_frobnicate() needs to communicate a cross-cutting concern (expressed as
MySpecialConcern) to the third-party library, but that concern is too domain-specific to be in the
standard library.

NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {
template <Frobnicator F> void apply_standard_frobnication(F f);
}
namespace generic_third_party_library {
template <class...> struct TPLFrobnicator;
}
void my_frobnicate() {
Frobnicator auto frob = TPLFrobnicator<MySpecialConcern>(); I

std::apply_standard_frobnication(frob);
}

This issue is one of cross-cutting concerns

e std::apply_standard_frobnication() needs to communicate a cross-cutting concern to
TPLFrobnicator without adding to the user's cognitive load for the Frobnicator concept.

e (The expression of this concern would need to be part of the standard library)

e my_frobnicate() needs to communicate a cross-cutting concern (expressed as
MySpecialConcern) to the third-party library, but that concern is too domain-specific to be in the
standard library.

e (But it would be nice for the third party library authors to be able to use the same mechanism to
communicate this concern.) [

NESTED CONCERNS: STANDARD LIBRARY

Why should the standard library care about this problem?

namespace std {

template <Frobnicator F> void apply_standard_frobnication(F f);
}
namespace generic_third_party_Llibrary {

template <class...> struct TPLFrobnicator;

}

void my_frobnicate() {
Frobnicator auto frob = TPLFrobnicator<MySpecialConcern>(); I

std::apply_standard_frobnication(frob);
}

This issue is one of cross-cutting concerns

e std::apply_standard_frobnication() needs to communicate a cross-cutting concern to
TPLFrobnicator without adding to the user's cognitive load for the Frobnicator concept.

e (The expression of this concern would need to be part of the standard library)

e my_frobnicate() needs to communicate a cross-cutting concern (expressed as
MySpecialConcern) to the third-party library, but that concern is too domain-specific to be in the
standard library.

e (But it would be nice for the third party library authors to be able to use the same mechanism to
communicate this concern.) [
¢ The third-party library needs a way to communicate that the standard's cross-cutting concern is
orthogonal (or not) to the user's cross-cutting concern.

A String CONCEPT?

Consider what it would take to make a String concept that makes
everyone happy...

I DR $ 309090

A String CONCEPT?

Consider what it would take to make a String concept that makes

everyone happy...

Examples of std: :string-like things |
in the wild:

e Llvm: :SmallString

e folly::fbstring

e Qt's QString

e Unreal Engine's FString |

A String CONCEPT?

Consider what it would take to make a String concept that makes

everyone happy...

Examples of std: : string-like things
in the wild:

e Llvm: :SmallString

e folly::fbstring

e Qt's QString

e Unreal Engine's FString

Properties algorithms may need to align with
the zero-overhead principle:

e Unicode support

e Small buffer optimization

e |s the data contiguous?

¢ |s the data aligned?

e |s the data in network pinned memory?

A String CONCEPT?

Consider what it would take to make a String concept that makes

everyone happy...

Examples of std: : string-like things
in the wild:

e Llvm: :SmallString

e folly::fbstring

e Qt's QString

e Unreal Engine's FString

Properties algorithms may need to align with
the zero-overhead principle:

Unicode support

Small buffer optimization

|s the data contiguous?

Is the data aligned?

Is the data in network pinned memory?

These can't be part of the concept (too much cognitive overhead), but they may be

necessary for some algorithms to avoid unacceptable performance overhead.

I DR $ 309090

FIXING THE frobnicate EXAMPLE

We can fix the frobnicate example with properties: ‘

template <Thing T, auto Item>
void frobnicate_2(T t, Item i, Item j);

template <Thing T, Range R> I
void frobnicate_1(T t, R r) {

auto my_t = prefer(t, caching);
for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(my_t, i, j);

FIXING THE frobnicate EXAMPLE

We can fix the frobnicate example with properties: ‘
|
auto my_t = prefer(t, caching);
Tell the Thing that it's about to be part of an inner loop and should cache things if it knows how. I
|

FIXING THE frobnicate EXAMPLE

We can fix the frobnicate example with properties:

template <Thing T, auto Item> ‘
void frobnicate_2(T t, Item i, Item j);

template <Thing T, Range R>
void frobnicate_1(T t, R r) { I

auto my_t = prefer(t, caching);
for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(my_t, i, j);
}
i

FIXING THE frobnicate EXAMPLE

We can fix the frobnicate example with properties: ‘

template <Thing T, auto Item>
void frobnicate_2(T t, Item i, Item j);

template <Thing T, Range R> I
void frobnicate_1(T t, R r) {

auto my_t = prefer(t, caching);
for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(my_t, i, j);
}
}

e The caching property doesn't contribute to the cognitive load for most callers of
frobnicate_2().

FIXING THE frobnicate EXAMPLE

We can fix the frobnicate example with properties: ‘

template <Thing T, auto Item>
void frobnicate_2(T t, Item i, Item j);

template <Thing T, Range R> I
void frobnicate_1(T t, R r) {

auto my_t = prefer(t, caching);
for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(my_t, i, j);
}
}

e The caching property doesn't contribute to the cognitive load for most callers of
frobnicate_2().
e Without this property, frobnicate_1() might have to roll its own frobnicate_2()

FIXING THE frobnicate EXAMPLE

We can fix the frobnicate example with properties: ‘

template <Thing T, auto Item>
void frobnicate_2(T t, Item i, Item j);

template <Thing T, Range R> I
void frobnicate_1(T t, R r) {

auto my_t = prefer(t, caching);
for(auto const& i : r) {
for(auto const& j : r) {
frobnicate_2(my_t, i, j);
}
}

e The caching property doesn't contribute to the cognitive load for most callers of
frobnicate_2().

e Without this property, frobnicate_1() might have to roll its own frobnicate_2()

e A savy frobnicate_2() author can even specialize for the caching case, if it
matters.

HEADER <property> SYNOPSIS: CONCEPT-
PRESERVING PROPERTIES

namespace std {

inline namespace {
inline constexpr require =
inline constexpr prefer = : I
inline constexpr query =

}

template<class class... P> struct can_require;
template<class class... P> struct can_prefer;
template<class class P> struct can_query;

template<class class... Properties>
inline constexpr bool can_require_v = can_require<T, Properties...>::value;
template<class T, class... Properties>
inline constexpr bool can_prefer_v = can_prefer<T, Properties...>::value;
template<class T, class Property>
inline constexpr bool can_query_v = can_query<T, Property>::value; I

HEADER <property> SYNOPSIS: CONCEPT-
PRESERVING PROPERTIES

10

inline constexpr require =

I
I
A customization point object that returns an instance of the given object with the property. It can be the
same instance if that object already has that property. Fails at compile time if it cannot require the
property of the object given.

HEADER <property> SYNOPSIS: CONCEPT-

10

inline constexpr E : ‘

A customization point object that requ-ires a property if it can, or returns the object as-is if it cannot.

HEADER <property> SYNOPSIS: CONCEPT-
PRESERVING PROPERTIES

10

inline constexpr s I

A customization point object to query for the presence of a requirable property, or for the value of some |
other aspect of the object given, like its cache size or the alignment of its underlying data. ‘

HEADER <property> SYNOPSIS: CONCEPT-
PRESERVING PROPERTIES

10

template<class T, class... P> struct can_require; i

template<class T, class... P> struct can_prefer;
template<class T, class P> struct can_query;

Type traits to determine the usability of the customization point objects statically. |

HEADER <property> SYNOPSIS: CONCEPT-
PRESERVING PROPERTIES

10

template<class T, class... Properties>
inline constexpr bool can_require_v = can_require<T, Properties...>::
template<class T, class... Properties>
inline constexpr bool can_prefer_v = can_prefer<T, Properties...>::
template<class T, class Property>
inline constexpr bool can_query_v = can_query<T, Property>::value;
I
...and their _v versions, as usual. |

HEADER <property> SYNOPSIS: CONCEPT-
PRESERVING PROPERTIES

namespace std {

inline namespace {

inline constexpr require =

inline constexpr prefer =

inline constexpr query = - I

}

template<class class... P> struct can_require;
template<class class... P> struct can_prefer;
template<class class P> struct can_query;

template<class class... Properties>

inline constexpr bool can_require_v = can_require<T, Properties...>::value;
template<class T, class... Properties>

inline constexpr bool can_prefer_v = can_prefer<T, Properties...>::value;
template<class T, class Property>

inline constexpr bool can_query_v = can_query<T, Property>::value;

11

CONCEPT-ENFORCING PROPERTIES

Inner Product

Ideal
Concept Set
4

of all Constraints
(Fewest Concepts)

Inner Product of Specific Choices

from each Semantic Set
(Fewest Concepts)

Ideal
Concept Set
4

Outer Product
of all Constraints
(Most Flexible)

Outer Product

of all Semantic Sets
(Most Inclusive)

CONCEPT-ENFORCING PROPERTIES

11

Inner Product

Ideal
Concept Set
4

of all Constraints
(Fewest Concepts)

Inner Product of Specific Choices

from each Semantic Set
(Fewest Concepts)

Broadly speaking...

Ideal
Concept Set
4

Outer Product
of all Constraints
(Most Flexible)

Outer Product

of all Semantic Sets
(Most Inclusive)

CONCEPT-ENFORCING PROPERTIES

Ideal
Concept Set
4

11

Outer Product
of all Constraints
(Most Flexible)

Inner Product
of all Constraints
(Fewest Concepts)

Ideal
Concept Set

i Outer Product

of all Semantic Sets
(Most Inclusive)

Inner Product of Specific Choices

from each Semantic Set
(Fewest Concepts)

Broadly speaking...
e Concept-preserving properties are useful when the cross-cutting concerns of a subset of
the algorithms falls to the right (more flexible/inclusive side) of the otherwise ideal
concept set. .

CONCEPT-ENFORCING PROPERTIES

Ideal
Concept Set
4

11

Outer Product
of all Constraints
(Most Flexible)

Inner Product

of all Constraints
(Fewest Concepts)

Ideal
Concept Set

i Outer Product

of all Semantic Sets
(Most Inclusive)

Inner Product of Specific Choices

from each Semantic Set
(Fewest Concepts)

Broadly speaking...

e Concept-preserving properties are useful when the cross-cutting concerns of a subset of
the algorithms falls to the right (more flexible/inclusive side) of the otherwise ideal

concept set.

e Concept-enforcing properties are useful when the needs of a subset of the algorithms

falls to the left (fewer concepts) side of the otherwise ideal concept set.

I 1 I T

CONCEPT-ENFORCING PROPERTIES

Ideal
Concept Set
{

11

Outer Product
of all Constraints
(Most Flexible)

Inner Product

of all Constraints
(Fewest Concepts)

Ideal
Concept Set

i Outer Product

of all Semantic Sets
(Most Inclusive)

Inner Product of Specific Choices

from each Semantic Set
(Fewest Concepts)

Broadly speaking...

e Concept-preserving properties are useful when the cross-cutting concerns of a subset of
the algorithms falls to the right (more flexible/inclusive side) of the otherwise ideal
concept set.

e Concept-enforcing properties are useful when the needs of a subset of the algorithms
falls to the left (fewer concepts) side of the otherwise ideal concept set.

e When a particular cross-cutting concern is common to multiple concepts, there needs to
be a way to obtain an object meeting the requirements of a different concept but that
addresses the same cross-cutting concern.

HEADER <property> SYNOPSIS: CONCEPT-
ENFORCING PROPERTIES

12

namespace std {

inline namespace {
inline constexpr require_concept =

} . i

template<class T, class P> struct can_require_concept;

inline constexpr bool can_require_concept_v =
can_require_concept<T, Properties...>::

template<class T, class... Properties> I

HEADER <property> SYNOPSIS: CONCEPT-
ENFORCING PROPERTIES

12

inline namespace {

inline constexpr require_concept =

} . "

A customization point object that returns an object with the same applicable concept-preserving I
properties but that meets the requirements of the concept associated with the given property. |

HEADER <property> SYNOPSIS: CONCEPT-
ENFORCING PROPERTIES

12

inline namespace {

inline constexpr require_concept = - I

}

It can be the same instance if that object already meets the requirements of the associated concept. I
Fails at compile time if no such object can be created. I
I

HEADER <property> SYNOPSIS: CONCEPT-
ENFORCING PROPERTIES

12

template<class T, class P> struct can_require_concept;

Type trait to determine the usability of the customization point object statically.

HEADER <property> SYNOPSIS: CONCEPT-
ENFORCING PROPERTIES

12

template<class T, class... Properties>
inline constexpr bool can_require_concept_v =
can_require_concept<T, Properties...>::value;

...and the _v version, as usual.

HEADER <property> SYNOPSIS: CONCEPT-
ENFORCING PROPERTIES

12

namespace std {

inline namespace { I
inline constexpr require_concept =

}

template<class T, class P> struct can_require_concept;

template<class T, class... Properties>
inline constexpr bool can_require_concept_v =
can_require_concept<T, Properties...>::

13

PROPERTY APPLICABILITY TRAIT

PROPERTY APPLICABILITY TRAIT

13

e Concept-enforcing properties introduce a problem: how does one ‘
Indicate that a concept-preserving property is "applicable" to a
concept and must be preserved across a require_concept()”?

PROPERTY APPLICABILITY TRAIT

13

e Concept-enforcing properties introduce a problem: how does one ‘
Indicate that a concept-preserving property is "applicable" to a
concept and must be preserved across a require_concept()”?

e Simplest answer: specify that properties must declare the concept or
concepts they apply to using a type trait. ’

PROPERTY APPLICABILITY TRAIT

13

e Concept-enforcing properties introduce a problem: how does one ‘
Indicate that a concept-preserving property is "applicable" to a
concept and must be preserved across a require_concept()”?
e Simplest answer: specify that properties must declare the concept or
concepts they apply to using a type trait. ’
e This has the added benefit of restricting the cognitive effect of
properties to the concept sets that they opt in to.

13

PROPERTY APPLICABILITY TRAIT

e Concept-enforcing properties introduce a problem: how does one
Indicate that a concept-preserving property is "applicable" to a
concept and must be preserved across a require_concept()”?

e Simplest answer: specify that properties must declare the concept or
concepts they apply to using a type trait.

e This has the added benefit of restricting the cognitive effect of
properties to the concept sets that they opt in to.

e A property intended for strings doesn't accidentally get applied to
allocators, and allocator authors don't have to think about what
happens if a string property is passed to their require
implementation.

HEADER <property> SYNOPSIS: PROPERTY
APPLICABILITY

14

namespace std {

template<class T, class P> struct is_applicable_property;

template<class T, class... Properties>
inline constexpr bool is_applicable_property_v =
is_applicable_property<T, Properties...> |
I

ANATOMY OF A PROPERTY

15

Let's implement the concept-preserving property (applicable to the
Thing concept) from the earlier example.

struct caching_t { I
template <class T>
static constexpr bool 1is_applicable_property_v = Thing<T>; i
static constexpr bool -is_requirable = t 3
static constexpr bool -is_preferable je;
template <class T>

static constexpr bool static_query_v = std::query(T{}, caching_t{});
constexpr auto operator<=>(caching_t) const noexcept = default;
using polymorphic_query_result_type = bool;

static constexpr bool value() { return true; }

}s

inline constexpr caching_t caching = { };

ANATOMY OF A PROPERTY

15

Let's implement the concept-preserving property (applicable to the ‘
Thing concept) from the earlier example.

struct caching_t { I

}s

inline constexpr caching_t caching = { };

We've used the convention of naming the type of a property with an _t suffix. I

15

ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the
Thing concept) from the earlier example.

template <class T> I
static constexpr bool 1is_applicable_property_v = Thing<T>;

This opts in to applicability to types meeting the requirements of Thing

15

ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the
Thing concept) from the earlier example.
[
static constexpr bool -is_requirable = i
This opts in to the require customization point
I
|

15

ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the
Thing concept) from the earlier example.
[
static constexpr bool -is_preferable = !
This opts in to the prefer customization point
I
|

ANATOMY OF A PROPERTY

15

Let's implement the concept-preserving property (applicable to the
Thing concept) from the earlier example.
|
template <class T>
static constexpr bool static_query_v = std::query(T{}, caching_t{});
Exposes the value of the query at compile time (if querying the property is a valid constant expression).
I

ANATOMY OF A PROPERTY

15

Let's implement the concept-preserving property (applicable to the
Thing concept) from the earlier example.
[
|
constexpr auto operator<=>(caching_t) const noexcept = default;
Properties must be equality comparable.
I
|

ANATOMY OF A PROPERTY

15

Let's implement the concept-preserving property (applicable to the
Thing concept) from the earlier example.

using polymorphic_query_result_type = bool;

This is the type that a query on a polymorphic wrapper should return return when querying this
property. Since querying caching just returns whether or not it is enabled, use bool here. [

ANATOMY OF A PROPERTY

15

Let's implement the concept-preserving property (applicable to the
Thing concept) from the earlier example. ‘

static constexpr bool value() { return

This will make more sense with non-boolean properties, but basically it allows generic code to check for
a successful prefer of a property p using std: :query(std: :prefer(x, p), p) == r
p.value() |

ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the
Thing concept) from the earlier example.

struct caching_t {
template <class T>
static constexpr bool 1is_applicable_property_v = Thing<T>; I
static constexpr bool is_requirable = true;
static constexpr bool -is_preferable 5
template <class T>

static constexpr bool static_query_v = std::query(T{}, caching_t{});
constexpr auto operator<=>(caching_t) const noexcept = default;
using polymorphic_query_result_type = bool;

static constexpr bool value() { return truej; }

}s

inline constexpr caching_t caching = { };

15

ANATOMY OF A PROPERTY

Let's implement the concept-preserving property (applicable to the

Thing concept) from the earlier example.

struct caching_t {

}s

template <class T>

static constexpr bool -+is_applicable_ property v = Thing<T>;
static constexpr bool -is_requirable -

static constexpr bool -is_preferable ;

template <class T>

static constexpr bool static_query_v = std::query(T{}, caching_t{});
constexpr auto operator<=>(caching_t) const noexcept = default;
using polymorphic_query_result_type = bool;

static constexpr bool value() { return truej; }

inline constexpr caching_t caching = { };

(Note: this oversimplifies a bit; in reality, we'd want a pair of mutually exclusive properties that turn on and off caching, respectively.)

QUESTIONS?

